X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/bf32dd923f3fbbfaa0932390fb1a771d03d0cf45..a38f5a0704240efdf46ee423f0c9ed10a48b1078:/common/lfdemod.c?ds=inline diff --git a/common/lfdemod.c b/common/lfdemod.c index 4c0f3ad9..8b951dc8 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -9,9 +9,8 @@ //----------------------------------------------------------------------------- #include -#include #include "lfdemod.h" -#include "common.h" +#include //un_comment to allow debug print calls when used not on device void dummy(char *fmt, ...){} @@ -26,15 +25,13 @@ void dummy(char *fmt, ...){} #define prnt dummy #endif -uint8_t justNoise(uint8_t *BitStream, size_t size) -{ - static const uint8_t THRESHOLD = 123; - //test samples are not just noise - uint8_t justNoise1 = 1; - for(size_t idx=0; idx < size && justNoise1 ;idx++){ - justNoise1 = BitStream[idx] < THRESHOLD; - } - return justNoise1; +//test samples are not just noise +uint8_t justNoise(uint8_t *bits, size_t size) { + #define THRESHOLD 123 + uint8_t val = 1; + for(size_t idx=0; idx < size && val ;idx++) + val = bits[idx] < THRESHOLD; + return val; } //by marshmellow @@ -63,30 +60,30 @@ uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) for (uint8_t i = 0; i < bitLen; i++){ ans ^= ((bits >> i) & 1); } - //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); + //prnt("DEBUG: ans: %d, ptype: %d",ans,pType); return (ans == pType); } //by marshmellow // takes a array of binary values, start position, length of bits per parity (includes parity bit), -// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run) +// Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run) size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) { uint32_t parityWd = 0; size_t j = 0, bitCnt = 0; - for (int word = 0; word < (bLen); word+=pLen){ + for (int word = 0; word < (bLen); word += pLen){ for (int bit=0; bit < pLen; bit++){ parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; BitStream[j++] = (BitStream[startIdx+word+bit]); } j--; // overwrite parity with next data // if parity fails then return 0 - if (pType == 2) { // then marker bit which should be a 1 - if (!BitStream[j]) return 0; - } else { - if (parityTest(parityWd, pLen, pType) == 0) return 0; + switch (pType) { + case 3: if (BitStream[j]==1) { return 0; } break; //should be 0 spacer bit + case 2: if (BitStream[j]==0) { return 0; } break; //should be 1 spacer bit + default: if (parityTest(parityWd, pLen, pType) == 0) { return 0; } break; //test parity } - bitCnt+=(pLen-1); + bitCnt += (pLen-1); parityWd = 0; } // if we got here then all the parities passed @@ -96,7 +93,8 @@ size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t p // by marshmellow // takes a array of binary values, length of bits per parity (includes parity bit), -// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run) +// Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run) +// Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) { uint32_t parityWd = 0; @@ -106,11 +104,14 @@ size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t p parityWd = (parityWd << 1) | BitSource[word+bit]; dest[j++] = (BitSource[word+bit]); } + // if parity fails then return 0 - if (pType == 2) { // then marker bit which should be a 1 - dest[j++]=1; - } else { - dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; + switch (pType) { + case 3: dest[j++]=0; break; // marker bit which should be a 0 + case 2: dest[j++]=1; break; // marker bit which should be a 1 + default: + dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1; + break; } bitCnt += pLen; parityWd = 0; @@ -123,8 +124,7 @@ size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t p uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) { uint32_t num = 0; - for(int i = 0 ; i < numbits ; i++) - { + for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | (*src); src++; } @@ -135,8 +135,7 @@ uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) { uint32_t num = 0; - for(int i = 0 ; i < numbits ; i++) - { + for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | *(src + (numbits-(i+1))); } return num; @@ -146,8 +145,11 @@ uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) { - uint8_t foundCnt=0; - for (int idx=0; idx < *size - pLen; idx++){ + // Sanity check. If preamble length is bigger than bitstream length. + if ( *size <= pLen ) return 0; + + uint8_t foundCnt = 0; + for (int idx = 0; idx < *size - pLen; idx++){ if (memcmp(BitStream+idx, preamble, pLen) == 0){ //first index found foundCnt++; @@ -165,13 +167,13 @@ uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_ //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID -uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) +int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) { //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future // otherwise could be a void with no arguments //set defaults uint32_t i = 0; - if (BitStream[1]>1) return 0; //allow only 1s and 0s + if (BitStream[1]>1) return -1; //allow only 1s and 0s // 111111111 bit pattern represent start of frame // include 0 in front to help get start pos @@ -182,14 +184,15 @@ uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_ uint8_t FmtLen = 10; *startIdx = 0; errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); - if (errChk == 0 || *size < 64) return 0; + if (errChk == 0 ) return -4; + if (*size < 64) return -3; if (*size > 64) FmtLen = 22; *startIdx += 1; //get rid of 0 from preamble idx = *startIdx + 9; for (i=0; i> 63); @@ -215,10 +218,12 @@ int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int smplCnt++; } else { //transition if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ + if (smplCnt > clk-(clk/4)-1) { //full clock if (smplCnt > clk + (clk/4)+1) { //too many samples errCnt++; - BinStream[bitCnt++]=7; + if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); + BinStream[bitCnt++] = 7; } else if (waveHigh) { BinStream[bitCnt++] = invert; BinStream[bitCnt++] = invert; @@ -256,13 +261,15 @@ int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int //by marshmellow void askAmp(uint8_t *BitStream, size_t size) { - for(size_t i = 1; i=30) //large jump up - BitStream[i]=127; - else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down - BitStream[i]=-127; + uint8_t last = 128; + for(size_t i = 1; i < size; ++i){ + if (BitStream[i]-BitStream[i-1] >= 30) //large jump up + last = 255; + else if(BitStream[i-1] - BitStream[i] >= 20) //large jump down + last = 0; + + BitStream[i] = last; } - return; } //by marshmellow @@ -274,7 +281,7 @@ int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr if (*clk==0 || start < 0) return -3; if (*invert != 1) *invert = 0; if (amp==1) askAmp(BinStream, *size); - if (g_debugMode==2) prnt("DEBUG: clk %d, beststart %d", *clk, start); + if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp); uint8_t initLoopMax = 255; if (initLoopMax > *size) initLoopMax = *size; @@ -287,20 +294,21 @@ int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr size_t errCnt = 0; // if clean clipped waves detected run alternate demod if (DetectCleanAskWave(BinStream, *size, high, low)) { - if (g_debugMode==2) prnt("DEBUG: Clean Wave Detected"); + if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod"); errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); if (askType) //askman return manrawdecode(BinStream, size, 0); - else //askraw - return errCnt; + //askraw + return errCnt; } + if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod"); int lastBit; //set first clock check - can go negative size_t i, bitnum = 0; //output counter uint8_t midBit = 0; uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely - size_t MaxBits = 3072; + size_t MaxBits = 3072; //max bits to collect lastBit = start - *clk; for (i = start; i < *size; ++i) { @@ -311,6 +319,7 @@ int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr BinStream[bitnum++] = *invert ^ 1; } else if (i-lastBit >= *clk+tol) { if (bitnum > 0) { + if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i); BinStream[bitnum++]=7; errCnt++; } @@ -337,38 +346,36 @@ int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr *size = bitnum; return errCnt; } - //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt -int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert) -{ - uint16_t bitnum=0, MaxBits = 512, errCnt = 0; - size_t i, ii; +int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert){ + uint16_t bitnum = 0, MaxBits = 512, errCnt = 0; + size_t i, k; uint16_t bestErr = 1000, bestRun = 0; if (*size < 16) return -1; //find correct start position [alignment] - for (ii=0;ii<2;++ii){ - for (i=ii; i<*size-3; i+=2) - if (BitStream[i]==BitStream[i+1]) + for (k=0; k < 2; ++k){ + for (i=k; i<*size-3; i += 2) + if (BitStream[i] == BitStream[i+1]) errCnt++; - if (bestErr>errCnt){ - bestErr=errCnt; - bestRun=ii; + if (bestErr > errCnt){ + bestErr = errCnt; + bestRun = k; } errCnt=0; } //decode - for (i=bestRun; i < *size-3; i+=2){ - if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ - BitStream[bitnum++]=invert; - } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ - BitStream[bitnum++]=invert^1; + for (i=bestRun; i < *size-3; i += 2){ + if (BitStream[i] == 1 && (BitStream[i+1] == 0)){ + BitStream[bitnum++] = invert; + } else if ((BitStream[i] == 0) && BitStream[i+1] == 1){ + BitStream[bitnum++] = invert^1; } else { - BitStream[bitnum++]=7; + BitStream[bitnum++] = 7; } - if(bitnum>MaxBits) break; + if (bitnum>MaxBits) break; } *size=bitnum; return bestErr; @@ -458,10 +465,10 @@ int gProxII_Demod(uint8_t BitStream[], size_t *size) //return start position return (int) startIdx; } - return -5; + return -5; //spacer bits not found - not a valid gproxII } -//translate wave to 11111100000 (1 for each short wave 0 for each long wave) +//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq]) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { size_t last_transition = 0; @@ -483,8 +490,9 @@ size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow size_t numBits = 0; // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) - // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere + // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 + // (could also be fc/5 && fc/7 for fsk1 = 4-9) for(idx = 161; idx < size-20; idx++) { // threshold current value @@ -492,23 +500,24 @@ size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow else dest[idx] = 1; // Check for 0->1 transition - if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition + if (dest[idx-1] < dest[idx]) { preLastSample = LastSample; LastSample = currSample; currSample = idx-last_transition; if (currSample < (fclow-2)){ //0-5 = garbage noise (or 0-3) //do nothing with extra garbage - } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves or 3-6 = 5 + } else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves (or 3-6 = 5) + //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5) if (LastSample > (fchigh-2) && (preLastSample < (fchigh-1) || preLastSample == 0 )){ - dest[numBits-1]=1; //correct previous 9 wave surrounded by 8 waves + dest[numBits-1]=1; } dest[numBits++]=1; - } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = garbage + } else if (currSample > (fchigh) && !numBits) { //12 + and first bit = unusable garbage //do nothing with beginning garbage - } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's + } else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's) dest[numBits++]=1; - } else { //9+ = 10 sample waves + } else { //9+ = 10 sample waves (or 6+ = 7) dest[numBits++]=0; } last_transition = idx; @@ -518,6 +527,7 @@ size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow } //translate 11111100000 to 10 +//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { @@ -527,8 +537,9 @@ size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint32_t n=1; for( idx=1; idx < size; idx++) { n++; - if (dest[idx]==lastval) continue; + if (dest[idx]==lastval) continue; //skip until we hit a transition + //find out how many bits (n) we collected //if lastval was 1, we have a 1->0 crossing if (dest[idx-1]==1) { n = (n * fclow + rfLen/2) / rfLen; @@ -537,6 +548,7 @@ size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, } if (n == 0) n = 1; + //add to our destination the bits we collected memset(dest+numBits, dest[idx-1]^invert , n); numBits += n; n=0; @@ -570,7 +582,7 @@ int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32 { if (justNoise(dest, *size)) return -1; - size_t numStart=0, size2=*size, startIdx=0; + size_t numStart=0, size2 = *size, startIdx=0; // FSK demodulator *size = fskdemod(dest, size2,50,1,10,8); //fsk2a if (*size < 96*2) return -2; @@ -589,10 +601,11 @@ int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32 *hi2 = (*hi2<<1)|(*hi>>31); *hi = (*hi<<1)|(*lo>>31); //Then, shift in a 0 or one into low + *lo <<= 1; if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|1; + *lo |= 1; else // 0 1 - *lo=(*lo<<1)|0; + *lo |= 0; } return (int)startIdx; } @@ -602,7 +615,7 @@ int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, ui { if (justNoise(dest, *size)) return -1; - size_t numStart=0, size2=*size, startIdx=0; + size_t numStart=0, size2 = *size, startIdx=0; // FSK demodulator *size = fskdemod(dest, size2,50,1,10,8); //fsk2a if (*size < 96) return -2; @@ -664,32 +677,92 @@ int IOdemodFSK(uint8_t *dest, size_t size) int VikingDemod_AM(uint8_t *dest, size_t *size) { //make sure buffer has data if (*size < 64*2) return -2; - size_t startIdx = 0; uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found - uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8) - ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8) - ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8); - if ( checkCalc != 0xA8 ) return -5; + uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ + bytebits_to_byte(dest+startIdx+8,8) ^ + bytebits_to_byte(dest+startIdx+16,8) ^ + bytebits_to_byte(dest+startIdx+24,8) ^ + bytebits_to_byte(dest+startIdx+32,8) ^ + bytebits_to_byte(dest+startIdx+40,8) ^ + bytebits_to_byte(dest+startIdx+48,8) ^ + bytebits_to_byte(dest+startIdx+56,8); + if ( checkCalc != 0xA8 ) return -5; if (*size != 64) return -6; //return start position - return (int) startIdx; + return (int)startIdx; +} + +// by iceman +// find Visa2000 preamble in already demoded data +int Visa2kDemod_AM(uint8_t *dest, size_t *size) { + if (*size < 96*2) return -1; //make sure buffer has data + size_t startIdx = 0; + uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -2; //preamble not found + if (*size != 96) return -3; //wrong demoded size + //return start position + return (int)startIdx; +} +// by iceman +// find Noralsy preamble in already demoded data +int NoralsyDemod_AM(uint8_t *dest, size_t *size) { + if (*size < 96*2) return -1; //make sure buffer has data + size_t startIdx = 0; + uint8_t preamble[] = {1,0,1,1,1,0,1,1,0,0,0,0}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -2; //preamble not found + if (*size != 96) return -3; //wrong demoded size + //return start position + return (int)startIdx; +} +// find presco preamble 0x10D in already demoded data +int PrescoDemod(uint8_t *dest, size_t *size) { + if (*size < 128*2) return -1; //make sure buffer has data + size_t startIdx = 0; + uint8_t preamble[] = {0,0,0,1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -2; //preamble not found + if (*size != 128) return -3; //wrong demoded size + //return start position + return (int)startIdx; } // Ask/Biphase Demod then try to locate an ISO 11784/85 ID // BitStream must contain previously askrawdemod and biphasedemoded data -int FDXBdemodBI(uint8_t *dest, size_t *size) -{ - //make sure buffer has enough data - if (*size < 128) return -1; - +int FDXBdemodBI(uint8_t *dest, size_t *size) { + if (*size < 128*2) return -1; //make sure buffer has enough data size_t startIdx = 0; uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -2; //preamble not found + if (*size != 128) return -3; //wrong demoded size + //return start position + return (int)startIdx; +} +// ASK/Diphase fc/64 (inverted Biphase) +// Note: this i s not a demod, this is only a detection +// the parameter *dest needs to be demoded before call +// 0xFFFF preamble, 64bits +int JablotronDemod(uint8_t *dest, size_t *size){ + if (*size < 64*2) return -1; //make sure buffer has enough data + size_t startIdx = 0; + uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -2; //preamble not found + if (*size != 64) return -3; // wrong demoded size + + uint8_t checkchksum = 0; + for (int i=16; i < 56; i += 8) { + checkchksum += bytebits_to_byte(dest+startIdx+i,8); + } + checkchksum ^= 0x3A; + uint8_t crc = bytebits_to_byte(dest+startIdx+56, 8); + if ( checkchksum != crc ) return -5; return (int)startIdx; } @@ -728,7 +801,7 @@ int PyramiddemodFSK(uint8_t *dest, size_t *size) *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 if (*size < 128) return -2; //did we get a good demod? - uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}; size_t startIdx = 0; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found @@ -736,6 +809,32 @@ int PyramiddemodFSK(uint8_t *dest, size_t *size) return (int)startIdx; } +// find nedap preamble in already demoded data +int NedapDemod(uint8_t *dest, size_t *size) { + //make sure buffer has data + if (*size < 128) return -3; + + size_t startIdx = 0; + //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1}; + uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + return (int) startIdx; +} + +// Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits +// by iceman +int IdteckDemodPSK(uint8_t *dest, size_t *size) { + //make sure buffer has data + if (*size < 64*2) return -1; + size_t startIdx = 0; + uint8_t preamble[] = {0,1,0,0,1,0,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,1,0,1,1}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -2; //preamble not found + if (*size != 64) return -3; // wrong demoded size + return (int) startIdx; +} + // by marshmellow // to detect a wave that has heavily clipped (clean) samples uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) @@ -840,24 +939,28 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) if (clockFnd>0) { clkCnt = clockFnd; clkEnd = clockFnd+1; + } else { + clkCnt=1; } - else clkCnt=1; //test each valid clock from smallest to greatest to see which lines up - for(; clkCnt < clkEnd; clkCnt++){ - if (clk[clkCnt] <= 32){ + for(; clkCnt < clkEnd; clkCnt++) { + if (clk[clkCnt] <= 32) { tol=1; - }else{ + } else { tol=0; } //if no errors allowed - keep start within the first clock - if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; - bestErr[clkCnt]=1000; + if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) + loopCnt = clk[clkCnt] * 2; + + bestErr[clkCnt] = 1000; + //try lining up the peaks by moving starting point (try first few clocks) for (ii=0; ii < loopCnt; ii++){ if (dest[ii] < peak && dest[ii] > low) continue; - errCnt=0; + errCnt = 0; // now that we have the first one lined up test rest of wave array loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; for (i=0; i < loopEnd; ++i){ @@ -871,29 +974,29 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) } //if we found no errors then we can stop here and a low clock (common clocks) // this is correct one - return this clock - if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i); - if(errCnt==0 && clkCnt<7) { + if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i); + if (errCnt==0 && clkCnt<7) { if (!clockFnd) *clock = clk[clkCnt]; return ii; } //if we found errors see if it is lowest so far and save it as best run - if(errCnt BitStream[i-1] && BitStream[i]>=BitStream[i+1]) @@ -1283,7 +1386,7 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc } } if (rfCounter > 0 && rfLensFnd < 15){ - //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); + //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); rfCnts[rfLensFnd]++; rfLens[rfLensFnd++] = rfCounter; } @@ -1441,7 +1544,7 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) uint16_t errCnt=0, waveLenCnt=0; fc = countFC(dest, *size, 0); if (fc!=2 && fc!=4 && fc!=8) return -1; - //PrintAndLog("DEBUG: FC: %d",fc); + //prnt("DEBUG: FC: %d",fc); *clock = DetectPSKClock(dest, *size, *clock); if (*clock == 0) return -1; int avgWaveVal=0, lastAvgWaveVal=0; @@ -1449,7 +1552,7 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) for (i=0; i= dest[i+2]){ waveEnd = i+1; - //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); + //prnt("DEBUG: waveEnd: %d",waveEnd); waveLenCnt = waveEnd-waveStart; if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+2)){ //not first peak and is a large wave but not out of whack lastAvgWaveVal = avgWaveVal/(waveLenCnt); @@ -1476,8 +1579,8 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) numBits += (firstFullWave / *clock); //set start of wave as clock align lastClkBit = firstFullWave; - //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); - //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); + if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u",firstFullWave,fullWaveLen); + if (g_debugMode==2) prnt("DEBUG: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc); waveStart = 0; dest[numBits++] = curPhase; //set first read bit for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ @@ -1492,9 +1595,9 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) waveLenCnt = waveEnd-waveStart; lastAvgWaveVal = avgWaveVal/waveLenCnt; if (waveLenCnt > fc){ - //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); + //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); //this wave is a phase shift - //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); + //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit curPhase ^= 1; dest[numBits++] = curPhase; @@ -1518,3 +1621,186 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) *size = numBits; return errCnt; } + +//by marshmellow +//attempt to identify a Sequence Terminator in ASK modulated raw wave +bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) { + size_t bufsize = *size; + //need to loop through all samples and identify our clock, look for the ST pattern + uint8_t fndClk[] = {8,16,32,40,50,64,128}; + int clk = 0; + int tol = 0; + int i, j, skip, start, end, low, high, minClk, waveStart; + bool complete = false; + int tmpbuff[bufsize / 32]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured + int waveLen[bufsize / 32]; // if clock is larger then we waste memory in array size that is not needed... + size_t testsize = (bufsize < 512) ? bufsize : 512; + int phaseoff = 0; + high = low = 128; + memset(tmpbuff, 0, sizeof(tmpbuff)); + memset(waveLen, 0, sizeof(waveLen)); + + + if ( getHiLo(buffer, testsize, &high, &low, 80, 80) == -1 ) { + if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting"); + return false; //just noise + } + i = 0; + j = 0; + minClk = 255; + // get to first full low to prime loop and skip incomplete first pulse + while ((buffer[i] < high) && (i < bufsize)) + ++i; + while ((buffer[i] > low) && (i < bufsize)) + ++i; + skip = i; + + // populate tmpbuff buffer with pulse lengths + while (i < bufsize) { + // measure from low to low + while ((buffer[i] > low) && (i < bufsize)) + ++i; + start= i; + while ((buffer[i] < high) && (i < bufsize)) + ++i; + //first high point for this wave + waveStart = i; + while ((buffer[i] > low) && (i < bufsize)) + ++i; + if (j >= (bufsize/32)) { + break; + } + waveLen[j] = i - waveStart; //first high to first low + tmpbuff[j++] = i - start; + if (i-start < minClk && i < bufsize) { + minClk = i - start; + } + } + // set clock - might be able to get this externally and remove this work... + if (!clk) { + for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { + tol = fndClk[clkCnt]/8; + if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { + clk=fndClk[clkCnt]; + break; + } + } + // clock not found - ERROR + if (!clk) { + if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting"); + return false; + } + } else tol = clk/8; + + *foundclock = clk; + + // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2) + start = -1; + for (i = 0; i < j - 4; ++i) { + skip += tmpbuff[i]; + if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior + if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 + if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave + if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit + start = i + 3; + break; + } + } + } + } + } + // first ST not found - ERROR + if (start < 0) { + if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting"); + return false; + } else { + if (g_debugMode==2) prnt("DEBUG STT: first STT found at: %d, j=%d",start, j); + } + if (waveLen[i+2] > clk*1+tol) + phaseoff = 0; + else + phaseoff = clk/2; + + // skip over the remainder of ST + skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point + + // now do it again to find the end + end = skip; + for (i += 3; i < j - 4; ++i) { + end += tmpbuff[i]; + if (tmpbuff[i] >= clk*1-tol && tmpbuff[i] <= (clk*2)+tol && waveLen[i] < clk+tol) { //1 to 2 clocks depending on 2 bits prior + if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol && waveLen[i+1] > clk*3/2-tol) { //2 clocks and wave size is 1 1/2 + if (tmpbuff[i+2] >= (clk*3)/2-tol && tmpbuff[i+2] <= clk*2+tol && waveLen[i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave + if (tmpbuff[i+3] >= clk*1-tol && tmpbuff[i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit + complete = true; + break; + } + } + } + } + } + end -= phaseoff; + //didn't find second ST - ERROR + if (!complete) { + if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting"); + return false; + } + if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff); + //now begin to trim out ST so we can use normal demod cmds + start = skip; + size_t datalen = end - start; + // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock + if ( clk - (datalen % clk) <= clk/8) { + // padd the amount off - could be problematic... but shouldn't happen often + datalen += clk - (datalen % clk); + } else if ( (datalen % clk) <= clk/8 ) { + // padd the amount off - could be problematic... but shouldn't happen often + datalen -= datalen % clk; + } else { + if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk); + return false; + } + // if datalen is less than one t55xx block - ERROR + if (datalen/clk < 8*4) { + if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting"); + return false; + } + size_t dataloc = start; + if (buffer[dataloc-(clk*4)-(clk/8)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) { + //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start + for ( i=0; i <= (clk/8); ++i ) { + if ( buffer[dataloc - (clk*4) - i] <= low ) { + dataloc -= i; + break; + } + } + } + + size_t newloc = 0; + i=0; + if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen); + + // warning - overwriting buffer given with raw wave data with ST removed... + while ( dataloc < bufsize-(clk/2) ) { + //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part) + if (buffer[dataloc]low && buffer[dataloc+3]low) { + for(i=0; i < clk/2-tol; ++i) { + buffer[dataloc+i] = high+5; + } + } + for (i=0; i