X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/c7324bef2894b8515a71f28cc948fa6bea9ccbaf..e9281ae812bd5b30394c78889034e653373f1397:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index fe284352..b1639a88 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -22,9 +22,7 @@
 #include "mifareutil.h"
 
 static uint32_t iso14a_timeout;
-uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
 int rsamples = 0;
-int traceLen = 0;
 int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
@@ -104,9 +102,9 @@ uint16_t FpgaSendQueueDelay;
 
 //variables used for timing purposes:
 //these are in ssp_clk cycles:
-uint32_t NextTransferTime;
-uint32_t LastTimeProxToAirStart;
-uint32_t LastProxToAirDuration;
+static uint32_t NextTransferTime;
+static uint32_t LastTimeProxToAirStart;
+static uint32_t LastProxToAirDuration;
 
 
 
@@ -144,13 +142,14 @@ const uint8_t OddByteParity[256] = {
   1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 };
 
-
 void iso14a_set_trigger(bool enable) {
 	trigger = enable;
 }
 
 void iso14a_clear_trace() {
-	memset(trace, 0x44, TRACE_SIZE);
+	uint8_t *trace = BigBuf_get_addr();
+	uint16_t max_traceLen = BigBuf_max_traceLen();
+	memset(trace, 0x44, max_traceLen);
 	traceLen = 0;
 }
 
@@ -171,17 +170,28 @@ byte_t oddparity (const byte_t bt)
 	return OddByteParity[bt];
 }
 
-uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
+void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 {
-	int i;
-	uint32_t dwPar = 0;
-
-	// Generate the parity bits
-	for (i = 0; i < iLen; i++) {
-		// and save them to a 32Bit word
-		dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+	uint16_t paritybit_cnt = 0;
+	uint16_t paritybyte_cnt = 0;
+	uint8_t parityBits = 0;
+
+	for (uint16_t i = 0; i < iLen; i++) {
+		// Generate the parity bits
+		parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
+		if (paritybit_cnt == 7) {
+			par[paritybyte_cnt] = parityBits;	// save 8 Bits parity
+			parityBits = 0;						// and advance to next Parity Byte
+			paritybyte_cnt++;
+			paritybit_cnt = 0;
+		} else {
+			paritybit_cnt++;
+		}
 	}
-	return dwPar;
+
+	// save remaining parity bits
+	par[paritybyte_cnt] = parityBits;
+	
 }
 
 void AppendCrc14443a(uint8_t* data, int len)
@@ -190,33 +200,59 @@ void AppendCrc14443a(uint8_t* data, int len)
 }
 
 // The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
+bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
 {
 	if (!tracing) return FALSE;
+	
+	uint8_t *trace = BigBuf_get_addr();
+	uint16_t num_paritybytes = (iLen-1)/8 + 1;	// number of valid paritybytes in *parity
+	uint16_t duration = timestamp_end - timestamp_start;
+
 	// Return when trace is full
-	if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
+	uint16_t max_traceLen = BigBuf_max_traceLen();
+	if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
 		tracing = FALSE;	// don't trace any more
 		return FALSE;
 	}
 	
-	// Trace the random, i'm curious
-	trace[traceLen++] = ((timestamp >> 0) & 0xff);
-	trace[traceLen++] = ((timestamp >> 8) & 0xff);
-	trace[traceLen++] = ((timestamp >> 16) & 0xff);
-	trace[traceLen++] = ((timestamp >> 24) & 0xff);
+	// Traceformat:
+	// 32 bits timestamp (little endian)
+	// 16 bits duration (little endian)
+	// 16 bits data length (little endian, Highest Bit used as readerToTag flag)
+	// y Bytes data
+	// x Bytes parity (one byte per 8 bytes data)
+	
+	// timestamp (start)
+	trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
+	trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
+	trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
+	trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
+	
+	// duration
+	trace[traceLen++] = ((duration >> 0) & 0xff);
+	trace[traceLen++] = ((duration >> 8) & 0xff);
+
+	// data length
+	trace[traceLen++] = ((iLen >> 0) & 0xff);
+	trace[traceLen++] = ((iLen >> 8) & 0xff);
 
+	// readerToTag flag
 	if (!readerToTag) {
 		trace[traceLen - 1] |= 0x80;
 	}
-	trace[traceLen++] = ((dwParity >> 0) & 0xff);
-	trace[traceLen++] = ((dwParity >> 8) & 0xff);
-	trace[traceLen++] = ((dwParity >> 16) & 0xff);
-	trace[traceLen++] = ((dwParity >> 24) & 0xff);
-	trace[traceLen++] = iLen;
+
+	// data bytes
 	if (btBytes != NULL && iLen != 0) {
 		memcpy(trace + traceLen, btBytes, iLen);
 	}
 	traceLen += iLen;
+
+	// parity bytes
+	if (parity != NULL && iLen != 0) {
+		memcpy(trace + traceLen, parity, num_paritybytes);
+	}
+	traceLen += num_paritybytes;
+
 	return TRUE;
 }
 
@@ -252,14 +288,21 @@ void UartReset()
 	Uart.state = STATE_UNSYNCD;
 	Uart.bitCount = 0;
 	Uart.len = 0;						// number of decoded data bytes
+	Uart.parityLen = 0;					// number of decoded parity bytes
 	Uart.shiftReg = 0;					// shiftreg to hold decoded data bits
-	Uart.parityBits = 0;				// 
+	Uart.parityBits = 0;				// holds 8 parity bits
 	Uart.twoBits = 0x0000;	 			// buffer for 2 Bits
 	Uart.highCnt = 0;
 	Uart.startTime = 0;
 	Uart.endTime = 0;
 }
 
+void UartInit(uint8_t *data, uint8_t *parity)
+{
+	Uart.output = data;
+	Uart.parity = parity;
+	UartReset();
+}
 
 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
@@ -268,6 +311,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 	Uart.twoBits = (Uart.twoBits << 8) | bit;
 	
 	if (Uart.state == STATE_UNSYNCD) {												// not yet synced
+	
 		if (Uart.highCnt < 7) {													// wait for a stable unmodulated signal
 			if (Uart.twoBits == 0xffff) {
 				Uart.highCnt++;
@@ -314,6 +358,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 						Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);		// store parity bit
 						Uart.bitCount = 0;
 						Uart.shiftReg = 0;
+						if((Uart.len&0x0007) == 0) {							// every 8 data bytes
+							Uart.parity[Uart.parityLen++] = Uart.parityBits;	// store 8 parity bits
+							Uart.parityBits = 0;
+						}
 					}
 				}
 			}
@@ -329,17 +377,32 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 					Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); 			// store parity bit
 					Uart.bitCount = 0;
 					Uart.shiftReg = 0;
+					if ((Uart.len&0x0007) == 0) {								// every 8 data bytes
+						Uart.parity[Uart.parityLen++] = Uart.parityBits;		// store 8 parity bits
+						Uart.parityBits = 0;
+					}
 				}
 			} else {															// no modulation in both halves - Sequence Y
 				if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) {	// Y after logic "0" - End of Communication
 					Uart.state = STATE_UNSYNCD;
-					if(Uart.len == 0 && Uart.bitCount > 0) {										// if we decoded some bits
-						Uart.shiftReg >>= (9 - Uart.bitCount);					// add them to the output
-						Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
-						Uart.parityBits <<= 1;									// no parity bit - add "0"
-						Uart.bitCount--;										// last "0" was part of the EOC sequence
+					Uart.bitCount--;											// last "0" was part of EOC sequence
+					Uart.shiftReg <<= 1;										// drop it
+					if(Uart.bitCount > 0) {										// if we decoded some bits
+						Uart.shiftReg >>= (9 - Uart.bitCount);					// right align them
+						Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);		// add last byte to the output
+						Uart.parityBits <<= 1;									// add a (void) parity bit
+						Uart.parityBits <<= (8 - (Uart.len&0x0007));			// left align parity bits
+						Uart.parity[Uart.parityLen++] = Uart.parityBits;		// and store it
+						return TRUE;
+					} else if (Uart.len & 0x0007) {								// there are some parity bits to store
+						Uart.parityBits <<= (8 - (Uart.len&0x0007));			// left align remaining parity bits
+						Uart.parity[Uart.parityLen++] = Uart.parityBits;		// and store them
+					}
+					if (Uart.len) {
+						return TRUE;											// we are finished with decoding the raw data sequence
+					} else {
+						UartReset();					// Nothing receiver - start over
 					}
-					return TRUE;
 				}
 				if (Uart.state == STATE_START_OF_COMMUNICATION) {				// error - must not follow directly after SOC
 					UartReset();
@@ -354,6 +417,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 						Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); 		// store parity bit
 						Uart.bitCount = 0;
 						Uart.shiftReg = 0;
+						if ((Uart.len&0x0007) == 0) {							// every 8 data bytes
+							Uart.parity[Uart.parityLen++] = Uart.parityBits;	// store 8 parity bits
+							Uart.parityBits = 0;
+						}
 					}
 				}
 			}
@@ -398,6 +465,7 @@ void DemodReset()
 {
 	Demod.state = DEMOD_UNSYNCD;
 	Demod.len = 0;						// number of decoded data bytes
+	Demod.parityLen = 0;
 	Demod.shiftReg = 0;					// shiftreg to hold decoded data bits
 	Demod.parityBits = 0;				// 
 	Demod.collisionPos = 0;				// Position of collision bit
@@ -407,6 +475,13 @@ void DemodReset()
 	Demod.endTime = 0;
 }
 
+void DemodInit(uint8_t *data, uint8_t *parity)
+{
+	Demod.output = data;
+	Demod.parity = parity;
+	DemodReset();
+}
+
 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
 {
@@ -455,6 +530,10 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 				Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); 	// store parity bit
 				Demod.bitCount = 0;
 				Demod.shiftReg = 0;
+				if((Demod.len&0x0007) == 0) {							// every 8 data bytes
+					Demod.parity[Demod.parityLen++] = Demod.parityBits;	// store 8 parity bits
+					Demod.parityBits = 0;
+				}
 			}
 			Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
 		} else {														// no modulation in first half
@@ -467,16 +546,25 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 					Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
 					Demod.bitCount = 0;
 					Demod.shiftReg = 0;
+					if ((Demod.len&0x0007) == 0) {						// every 8 data bytes
+						Demod.parity[Demod.parityLen++] = Demod.parityBits;	// store 8 parity bits1
+						Demod.parityBits = 0;
+					}
 				}
 				Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
 			} else {													// no modulation in both halves - End of communication
-				if (Demod.len > 0 || Demod.bitCount > 0) {				// received something
-					if(Demod.bitCount > 0) {							// if we decoded bits
-						Demod.shiftReg >>= (9 - Demod.bitCount);		// add the remaining decoded bits to the output
-						Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
-						// No parity bit, so just shift a 0
-						Demod.parityBits <<= 1;
-					}
+				if(Demod.bitCount > 0) {								// there are some remaining data bits
+					Demod.shiftReg >>= (9 - Demod.bitCount);			// right align the decoded bits
+					Demod.output[Demod.len++] = Demod.shiftReg & 0xff;	// and add them to the output
+					Demod.parityBits <<= 1;								// add a (void) parity bit
+					Demod.parityBits <<= (8 - (Demod.len&0x0007));		// left align remaining parity bits
+					Demod.parity[Demod.parityLen++] = Demod.parityBits;	// and store them
+					return TRUE;
+				} else if (Demod.len & 0x0007) {						// there are some parity bits to store
+					Demod.parityBits <<= (8 - (Demod.len&0x0007));		// left align remaining parity bits
+					Demod.parity[Demod.parityLen++] = Demod.parityBits;	// and store them
+				}
+				if (Demod.len) {
 					return TRUE;										// we are finished with decoding the raw data sequence
 				} else { 												// nothing received. Start over
 					DemodReset();
@@ -505,8 +593,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	// bit 1 - trigger from first reader 7-bit request
 	
 	LEDsoff();
-	// init trace buffer
-	iso14a_clear_trace();
 
 	// We won't start recording the frames that we acquire until we trigger;
 	// a good trigger condition to get started is probably when we see a
@@ -514,19 +600,25 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	// triggered == FALSE -- to wait first for card
 	bool triggered = !(param & 0x03); 
 	
+	// Allocate memory from BigBuf for some buffers
+	// free all previous allocations first
+	BigBuf_free();
+
 	// The command (reader -> tag) that we're receiving.
-	// The length of a received command will in most cases be no more than 18 bytes.
-	// So 32 should be enough!
-	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+	
 	// The response (tag -> reader) that we're receiving.
-	uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
-
-	// As we receive stuff, we copy it from receivedCmd or receivedResponse
-	// into trace, along with its length and other annotations.
-	//uint8_t *trace = (uint8_t *)BigBuf;
+	uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
 	
 	// The DMA buffer, used to stream samples from the FPGA
-	uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
+	// init trace buffer
+	iso14a_clear_trace();
+	iso14a_set_tracing(TRUE);
+
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -537,11 +629,11 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
 
 	// Set up the demodulator for tag -> reader responses.
-	Demod.output = receivedResponse;
-
+	DemodInit(receivedResponse, receivedResponsePar);
+	
 	// Set up the demodulator for the reader -> tag commands
-	Uart.output = receivedCmd;
-
+	UartInit(receivedCmd, receivedCmdPar);
+	
 	// Setup and start DMA.
 	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
 	
@@ -566,7 +658,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 		// test for length of buffer
 		if(dataLen > maxDataLen) {
 			maxDataLen = dataLen;
-			if(dataLen > 400) {
+			if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
 				Dbprintf("blew circular buffer! dataLen=%d", dataLen);
 				break;
 			}
@@ -598,8 +690,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 					if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
 
 					if(triggered) {
-						if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
-						if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
+						if (!LogTrace(receivedCmd, 
+										Uart.len, 
+										Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+										Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
+										Uart.parity, 
+										TRUE)) break;
 					}
 					/* And ready to receive another command. */
 					UartReset();
@@ -616,8 +712,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 				if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
 					LED_B_ON();
 
-					if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
-					if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
+					if (!LogTrace(receivedResponse, 
+									Demod.len, 
+									Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 
+									Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
+									Demod.parity,
+									FALSE)) break;
 
 					if ((!triggered) && (param & 0x01)) triggered = TRUE;
 
@@ -648,10 +748,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 //-----------------------------------------------------------------------------
 // Prepare tag messages
 //-----------------------------------------------------------------------------
-static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
 {
-	int i;
-
 	ToSendReset();
 
 	// Correction bit, might be removed when not needed
@@ -668,12 +766,11 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity
 	ToSend[++ToSendMax] = SEC_D;
 	LastProxToAirDuration = 8 * ToSendMax - 4;
 
-	for(i = 0; i < len; i++) {
-		int j;
+	for(uint16_t i = 0; i < len; i++) {
 		uint8_t b = cmd[i];
 
 		// Data bits
-		for(j = 0; j < 8; j++) {
+		for(uint16_t j = 0; j < 8; j++) {
 			if(b & 1) {
 				ToSend[++ToSendMax] = SEC_D;
 			} else {
@@ -683,7 +780,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity
 		}
 
 		// Get the parity bit
-		if ((dwParity >> i) & 0x01) {
+		if (parity[i>>3] & (0x80>>(i&0x0007))) {
 			ToSend[++ToSendMax] = SEC_D;
 			LastProxToAirDuration = 8 * ToSendMax - 4;
 		} else {
@@ -699,8 +796,12 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity
 	ToSendMax++;
 }
 
-static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
-	CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
+{
+	uint8_t par[MAX_PARITY_SIZE];
+	
+	GetParity(cmd, len, par);
+	CodeIso14443aAsTagPar(cmd, len, par);
 }
 
 
@@ -747,7 +848,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
 // Stop when button is pressed
 // Or return TRUE when command is captured
 //-----------------------------------------------------------------------------
-static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
 {
     // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
     // only, since we are receiving, not transmitting).
@@ -756,8 +857,7 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen
     FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
     // Now run a `software UART' on the stream of incoming samples.
-	UartReset();
-    Uart.output = received;
+	UartInit(received, parity);
 
 	// clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@ -777,18 +877,17 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen
     }
 }
 
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
 int EmSend4bit(uint8_t resp);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
-int EmSendCmd(uint8_t *resp, int respLen);
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
-				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
+int EmSendCmd(uint8_t *resp, uint16_t respLen);
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
 
-static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+static uint8_t* free_buffer_pointer;
 
 typedef struct {
   uint8_t* response;
@@ -798,10 +897,6 @@ typedef struct {
   uint32_t ProxToAirDuration;
 } tag_response_info_t;
 
-void reset_free_buffer() {
-  free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
-}
-
 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
 	// Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
 	// This will need the following byte array for a modulation sequence
@@ -813,7 +908,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
 	// ----------- +
 	//    166 bytes, since every bit that needs to be send costs us a byte
 	//
-  
+ 
+ 
   // Prepare the tag modulation bits from the message
   CodeIso14443aAsTag(response_info->response,response_info->response_n);
   
@@ -834,15 +930,22 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe
   return true;
 }
 
+
+// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
+// -> need 273 bytes buffer
+#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
+
 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
   // Retrieve and store the current buffer index
   response_info->modulation = free_buffer_pointer;
   
   // Determine the maximum size we can use from our buffer
-  size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
+  size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
   
   // Forward the prepare tag modulation function to the inner function
-  if (prepare_tag_modulation(response_info,max_buffer_size)) {
+  if (prepare_tag_modulation(response_info, max_buffer_size)) {
     // Update the free buffer offset
     free_buffer_pointer += ToSendMax;
     return true;
@@ -857,10 +960,6 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
 //-----------------------------------------------------------------------------
 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 {
-	// Enable and clear the trace
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
-
 	uint8_t sak;
 
 	// The first response contains the ATQA (note: bytes are transmitted in reverse order).
@@ -891,6 +990,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			response1[1] = 0x00;
 			sak = 0x28;
 		} break;
+		case 5: { // MIFARE TNP3XXX
+			// Says: I am a toy
+			response1[0] = 0x01;
+			response1[1] = 0x0f;
+			sak = 0x01;
+		} break;		
 		default: {
 			Dbprintf("Error: unkown tagtype (%d)",tagType);
 			return;
@@ -898,10 +1003,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	}
 	
 	// The second response contains the (mandatory) first 24 bits of the UID
-	uint8_t response2[5];
+	uint8_t response2[5] = {0x00};
 
 	// Check if the uid uses the (optional) part
-	uint8_t response2a[5];
+	uint8_t response2a[5] = {0x00};
+	
 	if (uid_2nd) {
 		response2[0] = 0x88;
 		num_to_bytes(uid_1st,3,response2+1);
@@ -922,17 +1028,21 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
 
 	// Prepare the mandatory SAK (for 4 and 7 byte UID)
-	uint8_t response3[3];
+	uint8_t response3[3]  = {0x00};
 	response3[0] = sak;
 	ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
 
 	// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
-	uint8_t response3a[3];
+	uint8_t response3a[3]  = {0x00};
 	response3a[0] = sak & 0xFB;
 	ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
 	uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
-	uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+	uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: 
+	// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, 
+	// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
+	// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
+	// TC(1) = 0x02: CID supported, NAD not supported
 	ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
 
 	#define TAG_RESPONSE_COUNT 7
@@ -959,16 +1069,23 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		.modulation_n = 0
 	};
   
-	// Reset the offset pointer of the free buffer
-	reset_free_buffer();
-  
+	BigBuf_free_keep_EM();
+
+	// allocate buffers:
+	uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
+	uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
+	free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
+
+	// clear trace
+    iso14a_clear_trace();
+	iso14a_set_tracing(TRUE);
+
 	// Prepare the responses of the anticollision phase
 	// there will be not enough time to do this at the moment the reader sends it REQA
 	for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
 		prepare_allocated_tag_modulation(&responses[i]);
 	}
 
-	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
 	int len = 0;
 
 	// To control where we are in the protocol
@@ -990,14 +1107,13 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	for(;;) {
 		// Clean receive command buffer
 		
-		if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+		if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
 			DbpString("Button press");
 			break;
 		}
 
 		p_response = NULL;
 		
-		// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
 		// Okay, look at the command now.
 		lastorder = order;
 		if(receivedCmd[0] == 0x26) { // Received a REQUEST
@@ -1006,22 +1122,21 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			p_response = &responses[0]; order = 6;
 		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {	// Received request for UID (cascade 1)
 			p_response = &responses[1]; order = 2;
-		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { 	// Received request for UID (cascade 2)
 			p_response = &responses[2]; order = 20;
 		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {	// Received a SELECT (cascade 1)
 			p_response = &responses[3]; order = 3;
 		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {	// Received a SELECT (cascade 2)
 			p_response = &responses[4]; order = 30;
 		} else if(receivedCmd[0] == 0x30) {	// Received a (plain) READ
-			EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+			EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
 			// Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
 			// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
 			p_response = NULL;
 		} else if(receivedCmd[0] == 0x50) {	// Received a HALT
-//			DbpString("Reader requested we HALT!:");
+
 			if (tracing) {
-				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-				LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			}
 			p_response = NULL;
 		} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {	// Received an authentication request
@@ -1033,10 +1148,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 			} else {
 				p_response = &responses[6]; order = 70;
 			}
-		} else if (order == 7 && len == 8) { // Received authentication request
+		} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
 			if (tracing) {
-				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-				LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+				LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 			}
 			uint32_t nr = bytes_to_num(receivedCmd,4);
 			uint32_t ar = bytes_to_num(receivedCmd+4,4);
@@ -1080,8 +1194,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				default: {
 					// Never seen this command before
 					if (tracing) {
-						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-						LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					}
 					Dbprintf("Received unknown command (len=%d):",len);
 					Dbhexdump(len,receivedCmd,false);
@@ -1101,8 +1214,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 				if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
 					Dbprintf("Error preparing tag response");
 					if (tracing) {
-						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-						LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+						LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					}
 					break;
 				}
@@ -1125,16 +1237,19 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 		if (p_response != NULL) {
 			EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
 			// do the tracing for the previous reader request and this tag answer:
+			uint8_t par[MAX_PARITY_SIZE];
+			GetParity(p_response->response, p_response->response_n, par);
+	
 			EmLogTrace(Uart.output, 
 						Uart.len, 
 						Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
 						Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-						Uart.parityBits,
+						Uart.parity,
 						p_response->response, 
 						p_response->response_n,
 						LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
 						(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-						SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
+						par);
 		}
 		
 		if (!tracing) {
@@ -1145,6 +1260,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
 	Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
 	LED_A_OFF();
+	BigBuf_free_keep_EM();
 }
 
 
@@ -1180,7 +1296,7 @@ void PrepareDelayedTransfer(uint16_t delay)
 // if == 0:	transfer immediately and return time of transfer
 // if != 0: delay transfer until time specified
 //-------------------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
+static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
 {
 	
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
@@ -1205,13 +1321,6 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
 	// clear TXRDY
 	AT91C_BASE_SSC->SSC_THR = SEC_Y;
 
-	// for(uint16_t c = 0; c < 10;) {	// standard delay for each transfer (allow tag to be ready after last transmission)
-		// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-			// AT91C_BASE_SSC->SSC_THR = SEC_Y;	
-			// c++;
-		// }
-	// }
-
 	uint16_t c = 0;
 	for(;;) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
@@ -1224,14 +1333,13 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
 	}
 	
 	NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
-	
 }
 
 
 //-----------------------------------------------------------------------------
 // Prepare reader command (in bits, support short frames) to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
+void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
 {
 	int i, j;
 	int last;
@@ -1271,10 +1379,10 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari
 			b >>= 1;
 		}
 
-		// Only transmit (last) parity bit if we transmitted a complete byte
+		// Only transmit parity bit if we transmitted a complete byte
 		if (j == 8) {
 			// Get the parity bit
-			if ((dwParity >> i) & 0x01) {
+			if (parity[i>>3] & (0x80 >> (i&0x0007))) {
 				// Sequence X
 				ToSend[++ToSendMax] = SEC_X;
 				LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
@@ -1312,9 +1420,9 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari
 //-----------------------------------------------------------------------------
 // Prepare reader command to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
 {
-  CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+  CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
 //-----------------------------------------------------------------------------
@@ -1322,7 +1430,7 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
 // Stop when button is pressed (return 1) or field was gone (return 2)
 // Or return 0 when command is captured
 //-----------------------------------------------------------------------------
-static int EmGetCmd(uint8_t *received, int *len)
+static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 {
 	*len = 0;
 
@@ -1347,8 +1455,7 @@ static int EmGetCmd(uint8_t *received, int *len)
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
 	
 	// Now run a 'software UART' on the stream of incoming samples.
-	UartReset();
-	Uart.output = received;
+	UartInit(received, parity);
 
 	// Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@ -1389,7 +1496,7 @@ static int EmGetCmd(uint8_t *received, int *len)
 }
 
 
-static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
+static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
 {
 	uint8_t b;
 	uint16_t i = 0;
@@ -1456,16 +1563,18 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
 	Code4bitAnswerAsTag(resp);
 	int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
 	// do the tracing for the previous reader request and this tag answer:
+	uint8_t par[1];
+	GetParity(&resp, 1, par);
 	EmLogTrace(Uart.output, 
 				Uart.len, 
 				Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
 				Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-				Uart.parityBits,
+				Uart.parity,
 				&resp, 
 				1, 
 				LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
 				(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-				SwapBits(GetParity(&resp, 1), 1));
+				par);
 	return res;
 }
 
@@ -1473,7 +1582,7 @@ int EmSend4bit(uint8_t resp){
 	return EmSend4bitEx(resp, false);
 }
 
-int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
+int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
 	CodeIso14443aAsTagPar(resp, respLen, par);
 	int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
 	// do the tracing for the previous reader request and this tag answer:
@@ -1481,29 +1590,33 @@ int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t p
 				Uart.len, 
 				Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, 
 				Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 
-				Uart.parityBits,
+				Uart.parity,
 				resp, 
 				respLen, 
 				LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
 				(LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, 
-				SwapBits(GetParity(resp, respLen), respLen));
+				par);
 	return res;
 }
 
-int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
-	return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
+	uint8_t par[MAX_PARITY_SIZE];
+	GetParity(resp, respLen, par);
+	return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
 }
 
-int EmSendCmd(uint8_t *resp, int respLen){
-	return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
+int EmSendCmd(uint8_t *resp, uint16_t respLen){
+	uint8_t par[MAX_PARITY_SIZE];
+	GetParity(resp, respLen, par);
+	return EmSendCmdExPar(resp, respLen, false, par);
 }
 
-int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
 	return EmSendCmdExPar(resp, respLen, false, par);
 }
 
-bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
-				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
+bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
+				 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
 {
 	if (tracing) {
 		// we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
@@ -1514,15 +1627,9 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
 		uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
 		reader_EndTime = tag_StartTime - exact_fdt;
 		reader_StartTime = reader_EndTime - reader_modlen;
-		if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
-			return FALSE;
-		} else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
+		if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
 			return FALSE;
-		} else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
-			return FALSE;
-		} else {
-			return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
-		}
+		} else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
 	} else {
 		return TRUE;
 	}
@@ -1533,9 +1640,9 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
 //  If a response is captured return TRUE
 //  If it takes too long return FALSE
 //-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
-	uint16_t c;
+	uint32_t c;
 	
 	// Set FPGA mode to "reader listen mode", no modulation (listen
 	// only, since we are receiving, not transmitting).
@@ -1544,8 +1651,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset,
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
 	
 	// Now get the answer from the card
-	DemodReset();
-	Demod.output = receivedResponse;
+	DemodInit(receivedResponse, receivedResponsePar);
 
 	// clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@@ -1559,17 +1665,16 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset,
 			if(ManchesterDecoding(b, offset, 0)) {
 				NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
 				return TRUE;
-			} else if(c++ > iso14a_timeout) {
+			} else if (c++ > iso14a_timeout) {
 				return FALSE; 
 			}
 		}
 	}
 }
 
-void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
+void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
 {
-
-	CodeIso14443aBitsAsReaderPar(frame,bits,par);
+	CodeIso14443aBitsAsReaderPar(frame, bits, par);
   
 	// Send command to tag
 	TransmitFor14443a(ToSend, ToSendMax, timing);
@@ -1578,190 +1683,187 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *tim
   
 	// Log reader command in trace buffer
 	if (tracing) {
-		LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
-		LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
+		LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
 	}
 }
 
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
+void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
 {
-  ReaderTransmitBitsPar(frame,len*8,par, timing);
+  ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
+void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
-  ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
+  uint8_t par[MAX_PARITY_SIZE];
+  GetParity(frame, len/8, par);
+  ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
-void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
+void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
-  ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
+  uint8_t par[MAX_PARITY_SIZE];
+  GetParity(frame, len, par);
+  ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
-int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
+int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
 {
-	if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
+	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
 	if (tracing) {
-		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
-		LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
 	}
 	return Demod.len;
 }
 
-int ReaderReceive(uint8_t* receivedAnswer)
-{
-	return ReaderReceiveOffset(receivedAnswer, 0);
-}
-
-int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
+int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
 {
-	if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
+	if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
 	if (tracing) {
-		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
-		LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
+		LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
 	}
-	*parptr = Demod.parityBits;
 	return Demod.len;
 }
 
 /* performs iso14443a anticollision procedure
  * fills the uid pointer unless NULL
  * fills resp_data unless NULL */
-int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
-  uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
-  uint8_t sel_all[]    = { 0x93,0x20 };
-  uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
-  uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
-  uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);	// was 3560 - tied to other size changes
-  byte_t uid_resp[4];
-  size_t uid_resp_len;
-
-  uint8_t sak = 0x04; // cascade uid
-  int cascade_level = 0;
-  int len;
-	 
-  // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
+	uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
+	uint8_t sel_all[]    = { 0x93,0x20 };
+	uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
+	uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+	uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
+	uint8_t resp_par[MAX_PARITY_SIZE];
+	byte_t uid_resp[4];
+	size_t uid_resp_len;
+
+	uint8_t sak = 0x04; // cascade uid
+	int cascade_level = 0;
+	int len;
+
+	// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
     ReaderTransmitBitsPar(wupa,7,0, NULL);
 	
-  // Receive the ATQA
-  if(!ReaderReceive(resp)) return 0;
-  // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
-
-  if(p_hi14a_card) {
-    memcpy(p_hi14a_card->atqa, resp, 2);
-    p_hi14a_card->uidlen = 0;
-    memset(p_hi14a_card->uid,0,10);
-  }
+	// Receive the ATQA
+	if(!ReaderReceive(resp, resp_par)) return 0;
 
-  // clear uid
-  if (uid_ptr) {
-    memset(uid_ptr,0,10);
-  }
+	if(p_hi14a_card) {
+		memcpy(p_hi14a_card->atqa, resp, 2);
+		p_hi14a_card->uidlen = 0;
+		memset(p_hi14a_card->uid,0,10);
+	}
 
-  // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
-  // which case we need to make a cascade 2 request and select - this is a long UID
-  // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
-  for(; sak & 0x04; cascade_level++) {
-    // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
-    sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
-
-    // SELECT_ALL
-    ReaderTransmit(sel_all,sizeof(sel_all), NULL);
-    if (!ReaderReceive(resp)) return 0;
-
-	if (Demod.collisionPos) {			// we had a collision and need to construct the UID bit by bit
-		memset(uid_resp, 0, 4);
-		uint16_t uid_resp_bits = 0;
-		uint16_t collision_answer_offset = 0;
-		// anti-collision-loop:
-		while (Demod.collisionPos) {
-			Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
-			for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
-				uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
-				uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
+	// clear uid
+	if (uid_ptr) {
+		memset(uid_ptr,0,10);
+	}
+
+	// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+	// which case we need to make a cascade 2 request and select - this is a long UID
+	// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+	for(; sak & 0x04; cascade_level++) {
+		// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+		sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+		// SELECT_ALL
+		ReaderTransmit(sel_all, sizeof(sel_all), NULL);
+		if (!ReaderReceive(resp, resp_par)) return 0;
+
+		if (Demod.collisionPos) {			// we had a collision and need to construct the UID bit by bit
+			memset(uid_resp, 0, 4);
+			uint16_t uid_resp_bits = 0;
+			uint16_t collision_answer_offset = 0;
+			// anti-collision-loop:
+			while (Demod.collisionPos) {
+				Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
+				for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {	// add valid UID bits before collision point
+					uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
+					uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
+				}
+				uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
+				uid_resp_bits++;
+				// construct anticollosion command:
+				sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);  	// length of data in bytes and bits
+				for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
+					sel_uid[2+i] = uid_resp[i];
+				}
+				collision_answer_offset = uid_resp_bits%8;
+				ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
+				if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
 			}
-			uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);					// next time select the card(s) with a 1 in the collision position
-			uid_resp_bits++;
-			// construct anticollosion command:
-			sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);  	// length of data in bytes and bits
-			for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
-				sel_uid[2+i] = uid_resp[i];
+			// finally, add the last bits and BCC of the UID
+			for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
+				uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
+				uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
 			}
-			collision_answer_offset = uid_resp_bits%8;
-			ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
-			if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
-		}
-		// finally, add the last bits and BCC of the UID
-		for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
-			uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
-			uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
-		}
 
-	} else {		// no collision, use the response to SELECT_ALL as current uid
-		memcpy(uid_resp,resp,4);
-	}
-	uid_resp_len = 4;
-       // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+		} else {		// no collision, use the response to SELECT_ALL as current uid
+			memcpy(uid_resp, resp, 4);
+		}
+		uid_resp_len = 4;
 
-    // calculate crypto UID. Always use last 4 Bytes.
-    if(cuid_ptr) {
-        *cuid_ptr = bytes_to_num(uid_resp, 4);
-    }
+		// calculate crypto UID. Always use last 4 Bytes.
+		if(cuid_ptr) {
+			*cuid_ptr = bytes_to_num(uid_resp, 4);
+		}
 
-    // Construct SELECT UID command
-	sel_uid[1] = 0x70;													// transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-    memcpy(sel_uid+2,uid_resp,4);										// the UID
-	sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];  	// calculate and add BCC
-    AppendCrc14443a(sel_uid,7);											// calculate and add CRC
-    ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
-
-    // Receive the SAK
-    if (!ReaderReceive(resp)) return 0;
-    sak = resp[0];
-
-    // Test if more parts of the uid are comming
-    if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
-      // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
-      // http://www.nxp.com/documents/application_note/AN10927.pdf
-      memcpy(uid_resp, uid_resp + 1, 3);
-      uid_resp_len = 3;
-    }
+		// Construct SELECT UID command
+		sel_uid[1] = 0x70;													// transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+		memcpy(sel_uid+2, uid_resp, 4);										// the UID
+		sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];  	// calculate and add BCC
+		AppendCrc14443a(sel_uid, 7);										// calculate and add CRC
+		ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
+
+		// Receive the SAK
+		if (!ReaderReceive(resp, resp_par)) return 0;
+		sak = resp[0];
+
+    // Test if more parts of the uid are coming
+		if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
+			// Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+			// http://www.nxp.com/documents/application_note/AN10927.pdf
+			uid_resp[0] = uid_resp[1];
+			uid_resp[1] = uid_resp[2];
+			uid_resp[2] = uid_resp[3]; 
+
+			uid_resp_len = 3;
+		}
 
-    if(uid_ptr) {
-      memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
-    }
+		if(uid_ptr) {
+			memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+		}
 
-    if(p_hi14a_card) {
-      memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
-      p_hi14a_card->uidlen += uid_resp_len;
-    }
-  }
+		if(p_hi14a_card) {
+			memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+			p_hi14a_card->uidlen += uid_resp_len;
+		}
+	}
 
-  if(p_hi14a_card) {
-    p_hi14a_card->sak = sak;
-    p_hi14a_card->ats_len = 0;
-  }
+	if(p_hi14a_card) {
+		p_hi14a_card->sak = sak;
+		p_hi14a_card->ats_len = 0;
+	}
 
-  if( (sak & 0x20) == 0) {
-    return 2; // non iso14443a compliant tag
-  }
+	// non iso14443a compliant tag
+	if( (sak & 0x20) == 0) return 2; 
 
-  // Request for answer to select
-  AppendCrc14443a(rats, 2);
-  ReaderTransmit(rats, sizeof(rats), NULL);
+	// Request for answer to select
+	AppendCrc14443a(rats, 2);
+	ReaderTransmit(rats, sizeof(rats), NULL);
 
-  if (!(len = ReaderReceive(resp))) return 0;
+	if (!(len = ReaderReceive(resp, resp_par))) return 0;
 
-  if(p_hi14a_card) {
-    memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
-    p_hi14a_card->ats_len = len;
-  }
+	
+	if(p_hi14a_card) {
+		memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+		p_hi14a_card->ats_len = len;
+	}
 
-  // reset the PCB block number
-  iso14_pcb_blocknum = 0;
-  return 1;
+	// reset the PCB block number
+	iso14_pcb_blocknum = 0;
+	return 1;	
 }
 
 void iso14443a_setup(uint8_t fpga_minor_mode) {
@@ -1789,7 +1891,8 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
 	iso14a_set_timeout(1050); // 10ms default
 }
 
-int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
+	uint8_t parity[MAX_PARITY_SIZE];
 	uint8_t real_cmd[cmd_len+4];
 	real_cmd[0] = 0x0a; //I-Block
 	// put block number into the PCB
@@ -1799,8 +1902,8 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
 	AppendCrc14443a(real_cmd,cmd_len+2);
  
 	ReaderTransmit(real_cmd, cmd_len+4, NULL);
-	size_t len = ReaderReceive(data);
-	uint8_t * data_bytes = (uint8_t *) data;
+	size_t len = ReaderReceive(data, parity);
+	uint8_t *data_bytes = (uint8_t *) data;
 	if (!len)
 		return 0; //DATA LINK ERROR
 	// if we received an I- or R(ACK)-Block with a block number equal to the
@@ -1828,6 +1931,7 @@ void ReaderIso14443a(UsbCommand *c)
 	size_t lenbits = c->arg[2];
 	uint32_t arg0 = 0;
 	byte_t buf[USB_CMD_DATA_SIZE];
+	uint8_t par[MAX_PARITY_SIZE];
   
 	if(param & ISO14A_CONNECT) {
 		iso14a_clear_trace();
@@ -1849,7 +1953,7 @@ void ReaderIso14443a(UsbCommand *c)
 	}
 
 	if(param & ISO14A_SET_TIMEOUT) {
-		iso14a_timeout = c->arg[2];
+		iso14a_set_timeout(c->arg[2]);
 	}
 
 	if(param & ISO14A_APDU) {
@@ -1864,11 +1968,12 @@ void ReaderIso14443a(UsbCommand *c)
 			if (lenbits) lenbits += 16;
 		}
 		if(lenbits>0) {
-			ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
+			GetParity(cmd, lenbits/8, par);
+			ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
 		} else {
 			ReaderTransmit(cmd,len, NULL);
 		}
-		arg0 = ReaderReceive(buf);
+		arg0 = ReaderReceive(buf, par);
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
 	}
 
@@ -1922,23 +2027,27 @@ void ReaderMifare(bool first_try)
 	uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
 	static uint8_t mf_nr_ar3;
 
-	uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+	uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
+	// free eventually allocated BigBuf memory. We want all for tracing.
+	BigBuf_free();
+	
 	iso14a_clear_trace();
 	iso14a_set_tracing(TRUE);
 
 	byte_t nt_diff = 0;
-	byte_t par = 0;
-	//byte_t par_mask = 0xff;
+	uint8_t par[1] = {0};	// maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
 	static byte_t par_low = 0;
 	bool led_on = TRUE;
-	uint8_t uid[10];
+	uint8_t uid[10]  ={0};
 	uint32_t cuid;
 
-	uint32_t nt, previous_nt;
+	uint32_t nt = 0;
+	uint32_t previous_nt = 0;
 	static uint32_t nt_attacked = 0;
-	byte_t par_list[8] = {0,0,0,0,0,0,0,0};
-	byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+	byte_t par_list[8] = {0x00};
+	byte_t ks_list[8] = {0x00};
 
 	static uint32_t sync_time;
 	static uint32_t sync_cycles;
@@ -1947,8 +2056,6 @@ void ReaderMifare(bool first_try)
 	uint16_t consecutive_resyncs = 0;
 	int isOK = 0;
 
-
-
 	if (first_try) { 
 		mf_nr_ar3 = 0;
 		iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
@@ -1956,14 +2063,13 @@ void ReaderMifare(bool first_try)
 		sync_cycles = 65536;									// theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
 		nt_attacked = 0;
 		nt = 0;
-		par = 0;
+		par[0] = 0;
 	}
 	else {
 		// we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
-		// nt_attacked = prng_successor(nt_attacked, 1);
 		mf_nr_ar3++;
 		mf_nr_ar[3] = mf_nr_ar3;
-		par = par_low;
+		par[0] = par_low;
 	}
 
 	LED_A_ON();
@@ -1999,7 +2105,7 @@ void ReaderMifare(bool first_try)
 		ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
 
 		// Receive the (4 Byte) "random" nonce
-		if (!ReaderReceive(receivedAnswer)) {
+		if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
 			if (MF_DBGLEVEL >= 1)	Dbprintf("Mifare: Couldn't receive tag nonce");
 			continue;
 		  }
@@ -2051,19 +2157,19 @@ void ReaderMifare(bool first_try)
 		consecutive_resyncs = 0;
 		
 		// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
-		if (ReaderReceive(receivedAnswer))
+		if (ReaderReceive(receivedAnswer, receivedAnswerPar))
 		{
 			catch_up_cycles = 8; 	// the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
 	
 			if (nt_diff == 0)
 			{
-				par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+				par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
 			}
 
 			led_on = !led_on;
 			if(led_on) LED_B_ON(); else LED_B_OFF();
 
-			par_list[nt_diff] = par;
+			par_list[nt_diff] = SwapBits(par[0], 8);
 			ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
 
 			// Test if the information is complete
@@ -2074,13 +2180,13 @@ void ReaderMifare(bool first_try)
 
 			nt_diff = (nt_diff + 1) & 0x07;
 			mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
-			par = par_low;
+			par[0] = par_low;
 		} else {
 			if (nt_diff == 0 && first_try)
 			{
-				par++;
+				par[0]++;
 			} else {
-				par = (((par >> 3) + 1) << 3) | par_low;
+				par[0] = ((par[0] & 0x1F) + 1) | par_low;
 			}
 		}
 	}
@@ -2122,8 +2228,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	int res;
 	uint32_t selTimer = 0;
 	uint32_t authTimer = 0;
-	uint32_t par = 0;
-	int len = 0;
+	uint16_t len = 0;
 	uint8_t cardWRBL = 0;
 	uint8_t cardAUTHSC = 0;
 	uint8_t cardAUTHKEY = 0xff;  // no authentication
@@ -2137,8 +2242,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	struct Crypto1State *pcs;
 	pcs = &mpcs;
 	uint32_t numReads = 0;//Counts numer of times reader read a block
-	uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
-	uint8_t *response = eml_get_bigbufptr_sendbuf();
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
+	uint8_t response[MAX_MIFARE_FRAME_SIZE];
+	uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
 	
 	uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
 	uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
@@ -2155,6 +2262,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
 	uint8_t ar_nr_collected = 0;
 
+	// free eventually allocated BigBuf memory but keep Emulator Memory
+	BigBuf_free_keep_EM();
 	// clear trace
     iso14a_clear_trace();
 	iso14a_set_tracing(TRUE);
@@ -2205,9 +2314,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 	if (MF_DBGLEVEL >= 1)	{
 		if (!_7BUID) {
-			Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
+			Dbprintf("4B UID: %02x%02x%02x%02x", 
+				rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
 		} else {
-			Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
+			Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
+				rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
+				rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
 		}
 	}
 
@@ -2229,7 +2341,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 		//Now, get data
 
-		res = EmGetCmd(receivedCmd, &len);
+		res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
 		if (res == 2) { //Field is off!
 			cardSTATE = MFEMUL_NOFIELD;
 			LEDsoff();
@@ -2256,8 +2368,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 			case MFEMUL_NOFIELD:
 			case MFEMUL_HALTED:
 			case MFEMUL_IDLE:{
-				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-				LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 				break;
 			}
 			case MFEMUL_SELECT1:{
@@ -2275,7 +2386,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				// select card
 				if (len == 9 && 
 						(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
-					EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK));
+					EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
 					cuid = bytes_to_num(rUIDBCC1, 4);
 					if (!_7BUID) {
 						cardSTATE = MFEMUL_WORK;
@@ -2292,12 +2403,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				if( len != 8)
 				{
 					cardSTATE_TO_IDLE();
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				uint32_t ar = bytes_to_num(receivedCmd, 4);
-				uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
+				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
 				//Collect AR/NR
 				if(ar_nr_collected < 2){
@@ -2317,13 +2427,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 				// test if auth OK
 				if (cardRr != prng_successor(nonce, 64)){
-					if (MF_DBGLEVEL >= 2)	Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
+					if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+							cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+							cardRr, prng_successor(nonce, 64));
 					// Shouldn't we respond anything here?
 					// Right now, we don't nack or anything, which causes the
 					// reader to do a WUPA after a while. /Martin
+					// -- which is the correct response. /piwi
 					cardSTATE_TO_IDLE();
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 
@@ -2334,13 +2446,14 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
 				LED_C_ON();
 				cardSTATE = MFEMUL_WORK;
-				if (MF_DBGLEVEL >= 4)	Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+				if (MF_DBGLEVEL >= 4)	Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", 
+					cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
+					GetTickCount() - authTimer);
 				break;
 			}
 			case MFEMUL_SELECT2:{
 				if (!len) { 
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
@@ -2361,8 +2474,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				
 				// i guess there is a command). go into the work state.
 				if (len != 4) {
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				cardSTATE = MFEMUL_WORK;
@@ -2372,8 +2484,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 			case MFEMUL_WORK:{
 				if (len == 0) {
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				
@@ -2392,12 +2503,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
 
 					if (!encrypted_data) { // first authentication
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY  );
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY  );
 
 						crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
 						num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
 					} else { // nested authentication
-						if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
+						if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
 						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
 						num_to_bytes(ans, 4, rAUTH_AT);
 					}
@@ -2421,16 +2532,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				}
 				
 				if(len != 4) {
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 
 				if(receivedCmd[0] == 0x30 // read block
 						|| receivedCmd[0] == 0xA0 // write block
-						|| receivedCmd[0] == 0xC0
-						|| receivedCmd[0] == 0xC1
-						|| receivedCmd[0] == 0xC2 // inc dec restore
+						|| receivedCmd[0] == 0xC0 // inc
+						|| receivedCmd[0] == 0xC1 // dec
+						|| receivedCmd[0] == 0xC2 // restore
 						|| receivedCmd[0] == 0xB0) { // transfer
 					if (receivedCmd[1] >= 16 * 4) {
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
@@ -2446,13 +2556,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				}
 				// read block
 				if (receivedCmd[0] == 0x30) {
-					if (MF_DBGLEVEL >= 2) {
+					if (MF_DBGLEVEL >= 4) {
 						Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
 					}
 					emlGetMem(response, receivedCmd[1], 1);
 					AppendCrc14443a(response, 16);
-					mf_crypto1_encrypt(pcs, response, 18, &par);
-					EmSendCmdPar(response, 18, par);
+					mf_crypto1_encrypt(pcs, response, 18, response_par);
+					EmSendCmdPar(response, 18, response_par);
 					numReads++;
 					if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
 						Dbprintf("%d reads done, exiting", numReads);
@@ -2462,7 +2572,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				}
 				// write block
 				if (receivedCmd[0] == 0xA0) {
-					if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
+					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
 					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
 					cardSTATE = MFEMUL_WRITEBL2;
 					cardWRBL = receivedCmd[1];
@@ -2470,7 +2580,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				}
 				// increment, decrement, restore
 				if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
-					if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 					if (emlCheckValBl(receivedCmd[1])) {
 						if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
@@ -2488,7 +2598,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 				}
 				// transfer
 				if (receivedCmd[0] == 0xB0) {
-					if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
+					if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
 					if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
 						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
 					else
@@ -2501,8 +2611,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					LED_C_OFF();
 					cardSTATE = MFEMUL_HALTED;
 					if (MF_DBGLEVEL >= 4)	Dbprintf("--> HALTED. Selected time: %d ms",  GetTickCount() - selTimer);
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
 				// RATS
@@ -2523,8 +2632,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					cardSTATE = MFEMUL_WORK;
 				} else {
 					cardSTATE_TO_IDLE();
-					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-					LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 				}
 				break;
 			}
@@ -2537,8 +2645,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					cardSTATE_TO_IDLE();
 					break;
 				} 
-				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-				LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 				cardINTREG = cardINTREG + ans;
 				cardSTATE = MFEMUL_WORK;
 				break;
@@ -2551,8 +2658,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					cardSTATE_TO_IDLE();
 					break;
 				}
-				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-				LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 				cardINTREG = cardINTREG - ans;
 				cardSTATE = MFEMUL_WORK;
 				break;
@@ -2565,8 +2671,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					cardSTATE_TO_IDLE();
 					break;
 				}
-				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
-				LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
+				LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 				cardSTATE = MFEMUL_WORK;
 				break;
 			}
@@ -2623,21 +2728,26 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// C(red) A(yellow) B(green)
 	LEDsoff();
 	// init trace buffer
-    iso14a_clear_trace();
+	iso14a_clear_trace();
+	iso14a_set_tracing(TRUE);
 
 	// The command (reader -> tag) that we're receiving.
 	// The length of a received command will in most cases be no more than 18 bytes.
 	// So 32 should be enough!
-	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+	uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
 	// The response (tag -> reader) that we're receiving.
-	uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+	uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
+	uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
 
 	// As we receive stuff, we copy it from receivedCmd or receivedResponse
 	// into trace, along with its length and other annotations.
 	//uint8_t *trace = (uint8_t *)BigBuf;
 	
-	// The DMA buffer, used to stream samples from the FPGA
-	uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	// free eventually allocated BigBuf memory
+	BigBuf_free();
+	// allocate the DMA buffer, used to stream samples from the FPGA
+	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
 	int maxDataLen = 0;
@@ -2648,10 +2758,10 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
 
 	// Set up the demodulator for tag -> reader responses.
-	Demod.output = receivedResponse;
+	DemodInit(receivedResponse, receivedResponsePar);
 
 	// Set up the demodulator for the reader -> tag commands
-	Uart.output = receivedCmd;
+	UartInit(receivedCmd, receivedCmdPar);
 
 	// Setup for the DMA.
 	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
@@ -2696,7 +2806,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 		// test for length of buffer
 		if(dataLen > maxDataLen) {					// we are more behind than ever...
 			maxDataLen = dataLen;					
-			if(dataLen > 400) {
+			if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
 				Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
 				break;
 			}
@@ -2723,7 +2833,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 				uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
 				if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
 					LED_C_INV();
-					if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
+					if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
 
 					/* And ready to receive another command. */
 					UartReset();
@@ -2739,7 +2849,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 				if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
 					LED_C_INV();
 
-					if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+					if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
 
 					// And ready to receive another response.
 					DemodReset();