X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/c99dc845b1057be4ba2e535730345b4e6e8bfc58..refs/pull/565/head:/armsrc/optimized_cipher.c diff --git a/armsrc/optimized_cipher.c b/armsrc/optimized_cipher.c index 067e9022..b1f33737 100644 --- a/armsrc/optimized_cipher.c +++ b/armsrc/optimized_cipher.c @@ -22,7 +22,7 @@ * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation. + * by the Free Software Foundation, or, at your option, any later version. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of @@ -61,27 +61,9 @@ **/ #include "optimized_cipher.h" -#include -#include -#include +#include #include #include -#include - -/** -* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 -* consisting of the following four components: -* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; -* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; -* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . -* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . -**/ -typedef struct { - uint8_t l; - uint8_t r; - uint8_t b; - uint16_t t; -} State; #define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t)) @@ -118,7 +100,7 @@ uint8_t xopt__select(bool x, bool y, uint8_t r) } */ -void opt_successor(uint8_t* k, State *s, bool y, State* successor) +void opt_successor(const uint8_t* k, State *s, bool y, State* successor) { uint8_t Tt = 1 & opt_T(s); @@ -134,12 +116,12 @@ void opt_successor(uint8_t* k, State *s, bool y, State* successor) } -void opt_suc(uint8_t* k,State* s, uint8_t *in) +void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes) { State x2; int i; uint8_t head = 0; - for(i =0 ; i < 12 ; i++) + for(i =0 ; i < length ; i++) { head = 1 & (in[i] >> 7); opt_successor(k,s,head,&x2); @@ -166,10 +148,16 @@ void opt_suc(uint8_t* k,State* s, uint8_t *in) opt_successor(k,&x2,head,s); } - + //For tag MAC, an additional 32 zeroes + if(add32Zeroes) + for(i =0 ; i < 16 ; i++) + { + opt_successor(k,s,0,&x2); + opt_successor(k,&x2,0,s); + } } -void opt_output(uint8_t* k,State* s, uint8_t *buffer) +void opt_output(const uint8_t* k,State* s, uint8_t *buffer) { uint8_t times = 0; uint8_t bout = 0; @@ -207,7 +195,7 @@ void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out) 0xE012 // t }; - opt_suc(k,&_init,input); + opt_suc(k,&_init,input,12, false); //printf("\noutp "); opt_output(k,&_init, out); } @@ -224,16 +212,74 @@ void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len) dest[i] = rev_byte(src[i]); } -void opt_doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) +void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) { - static uint8_t cc_nr[13]; - static uint8_t div_key[8]; + static uint8_t cc_nr[12]; opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12); - memcpy(div_key,div_key_p,8); uint8_t dest []= {0,0,0,0,0,0,0,0}; - opt_MAC(div_key,cc_nr, dest); + opt_MAC(div_key_p,cc_nr, dest); + //The output MAC must also be reversed + opt_reverse_arraybytecpy(mac, dest,4); + return; +} +void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) +{ + static uint8_t cc_nr[8+4+4]; + opt_reverse_arraybytecpy(cc_nr, cc_p,12); + State _init = { + ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; + opt_suc(div_key_p,&_init,cc_nr, 12,true); + uint8_t dest []= {0,0,0,0}; + opt_output(div_key_p,&_init, dest); + //The output MAC must also be reversed + opt_reverse_arraybytecpy(mac, dest,4); + return; + +} +/** + * The tag MAC can be divided (both can, but no point in dividing the reader mac) into + * two functions, since the first 8 bytes are known, we can pre-calculate the state + * reached after feeding CC to the cipher. + * @param cc_p + * @param div_key_p + * @return the cipher state + */ +State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) +{ + static uint8_t cc_nr[8]; + opt_reverse_arraybytecpy(cc_nr, cc_p,8); + State _init = { + ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; + opt_suc(div_key_p,&_init,cc_nr, 8,false); + return _init; +} +/** + * The second part of the tag MAC calculation, since the CC is already calculated into the state, + * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag + * MAC response. + * @param _init - precalculated cipher state + * @param nr - the reader challenge + * @param mac - where to store the MAC + * @param div_key_p - the key to use + */ +void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p) +{ + static uint8_t _nr [4]; + opt_reverse_arraybytecpy(_nr, nr, 4); + opt_suc(div_key_p,&_init,_nr, 4, true); + //opt_suc(div_key_p,&_init,nr, 4, false); + uint8_t dest []= {0,0,0,0}; + opt_output(div_key_p,&_init, dest); //The output MAC must also be reversed - opt_reverse_arraybytecpy(mac, dest,12); + opt_reverse_arraybytecpy(mac, dest,4); return; }