X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d2f487af9cc29122d86ca4f349ba825aaf98748c..85f581c79f0e10f537b2ae9a28a14d96fe255680:/armsrc/iso14443a.c?ds=inline diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index aa97e6e9..5c7367a1 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -20,16 +20,93 @@ #include "iso14443a.h" #include "crapto1.h" #include "mifareutil.h" - +#include "BigBuf.h" static uint32_t iso14a_timeout; -uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; -int traceLen = 0; int rsamples = 0; -int tracing = TRUE; uint8_t trigger = 0; // the block number for the ISO14443-4 PCB static uint8_t iso14_pcb_blocknum = 0; +// +// ISO14443 timing: +// +// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles +#define REQUEST_GUARD_TIME (7000/16 + 1) +// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles +#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) +// bool LastCommandWasRequest = FALSE; + +// +// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) +// +// When the PM acts as reader and is receiving tag data, it takes +// 3 ticks delay in the AD converter +// 16 ticks until the modulation detector completes and sets curbit +// 8 ticks until bit_to_arm is assigned from curbit +// 8*16 ticks for the transfer from FPGA to ARM +// 4*16 ticks until we measure the time +// - 8*16 ticks because we measure the time of the previous transfer +#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) + +// When the PM acts as a reader and is sending, it takes +// 4*16 ticks until we can write data to the sending hold register +// 8*16 ticks until the SHR is transferred to the Sending Shift Register +// 8 ticks until the first transfer starts +// 8 ticks later the FPGA samples the data +// 1 tick to assign mod_sig_coil +#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) + +// When the PM acts as tag and is receiving it takes +// 2 ticks delay in the RF part (for the first falling edge), +// 3 ticks for the A/D conversion, +// 8 ticks on average until the start of the SSC transfer, +// 8 ticks until the SSC samples the first data +// 7*16 ticks to complete the transfer from FPGA to ARM +// 8 ticks until the next ssp_clk rising edge +// 4*16 ticks until we measure the time +// - 8*16 ticks because we measure the time of the previous transfer +#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) + +// The FPGA will report its internal sending delay in +uint16_t FpgaSendQueueDelay; +// the 5 first bits are the number of bits buffered in mod_sig_buf +// the last three bits are the remaining ticks/2 after the mod_sig_buf shift +#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) + +// When the PM acts as tag and is sending, it takes +// 4*16 ticks until we can write data to the sending hold register +// 8*16 ticks until the SHR is transferred to the Sending Shift Register +// 8 ticks until the first transfer starts +// 8 ticks later the FPGA samples the data +// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) +// + 1 tick to assign mod_sig_coil +#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) + +// When the PM acts as sniffer and is receiving tag data, it takes +// 3 ticks A/D conversion +// 14 ticks to complete the modulation detection +// 8 ticks (on average) until the result is stored in to_arm +// + the delays in transferring data - which is the same for +// sniffing reader and tag data and therefore not relevant +#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) + +// When the PM acts as sniffer and is receiving reader data, it takes +// 2 ticks delay in analogue RF receiver (for the falling edge of the +// start bit, which marks the start of the communication) +// 3 ticks A/D conversion +// 8 ticks on average until the data is stored in to_arm. +// + the delays in transferring data - which is the same for +// sniffing reader and tag data and therefore not relevant +#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) + +//variables used for timing purposes: +//these are in ssp_clk cycles: +static uint32_t NextTransferTime; +static uint32_t LastTimeProxToAirStart; +static uint32_t LastProxToAirDuration; + + + // CARD TO READER - manchester // Sequence D: 11110000 modulation with subcarrier during first half // Sequence E: 00001111 modulation with subcarrier during second half @@ -69,19 +146,35 @@ void iso14a_set_trigger(bool enable) { trigger = enable; } -void iso14a_clear_trace() { - memset(trace, 0x44, TRACE_SIZE); - traceLen = 0; -} - -void iso14a_set_tracing(bool enable) { - tracing = enable; -} void iso14a_set_timeout(uint32_t timeout) { iso14a_timeout = timeout; + if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); +} + + +void iso14a_set_ATS_timeout(uint8_t *ats) { + + uint8_t tb1; + uint8_t fwi; + uint32_t fwt; + + if (ats[0] > 1) { // there is a format byte T0 + if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) + if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + tb1 = ats[3]; + } else { + tb1 = ats[2]; + } + fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) + fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + + iso14a_set_timeout(fwt/(8*16)); + } + } } + //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // @@ -91,17 +184,28 @@ byte_t oddparity (const byte_t bt) return OddByteParity[bt]; } -uint32_t GetParity(const uint8_t * pbtCmd, int iLen) +void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) { - int i; - uint32_t dwPar = 0; - - // Generate the parity bits - for (i = 0; i < iLen; i++) { - // and save them to a 32Bit word - dwPar |= ((OddByteParity[pbtCmd[i]]) << i); + uint16_t paritybit_cnt = 0; + uint16_t paritybyte_cnt = 0; + uint8_t parityBits = 0; + + for (uint16_t i = 0; i < iLen; i++) { + // Generate the parity bits + parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); + if (paritybit_cnt == 7) { + par[paritybyte_cnt] = parityBits; // save 8 Bits parity + parityBits = 0; // and advance to next Parity Byte + paritybyte_cnt++; + paritybit_cnt = 0; + } else { + paritybit_cnt++; + } } - return dwPar; + + // save remaining parity bits + par[paritybyte_cnt] = parityBits; + } void AppendCrc14443a(uint8_t* data, int len) @@ -109,275 +213,188 @@ void AppendCrc14443a(uint8_t* data, int len) ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } -// The function LogTrace() is also used by the iClass implementation in iClass.c -int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) -{ - // Return when trace is full - if (traceLen >= TRACE_SIZE) return FALSE; - - // Trace the random, i'm curious - rsamples += iSamples; - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = ((rsamples >> 24) & 0xff); - if (!bReader) { - trace[traceLen - 1] |= 0x80; - } - trace[traceLen++] = ((dwParity >> 0) & 0xff); - trace[traceLen++] = ((dwParity >> 8) & 0xff); - trace[traceLen++] = ((dwParity >> 16) & 0xff); - trace[traceLen++] = ((dwParity >> 24) & 0xff); - trace[traceLen++] = iLen; - memcpy(trace + traceLen, btBytes, iLen); - traceLen += iLen; - return TRUE; -} - -//----------------------------------------------------------------------------- -// The software UART that receives commands from the reader, and its state -// variables. +//============================================================================= +// ISO 14443 Type A - Miller decoder +//============================================================================= +// Basics: +// This decoder is used when the PM3 acts as a tag. +// The reader will generate "pauses" by temporarily switching of the field. +// At the PM3 antenna we will therefore measure a modulated antenna voltage. +// The FPGA does a comparison with a threshold and would deliver e.g.: +// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... +// The Miller decoder needs to identify the following sequences: +// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") +// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") +// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") +// Note 1: the bitstream may start at any time. We therefore need to sync. +// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. //----------------------------------------------------------------------------- static tUart Uart; -static RAMFUNC int MillerDecoding(int bit) -{ - //int error = 0; - int bitright; - - if(!Uart.bitBuffer) { - Uart.bitBuffer = bit ^ 0xFF0; - return FALSE; - } - else { - Uart.bitBuffer <<= 4; - Uart.bitBuffer ^= bit; - } +// Lookup-Table to decide if 4 raw bits are a modulation. +// We accept two or three consecutive "0" in any position with the rest "1" +const bool Mod_Miller_LUT[] = { + TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, + TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE +}; +#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4]) +#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)]) - int EOC = FALSE; +void UartReset() +{ + Uart.state = STATE_UNSYNCD; + Uart.bitCount = 0; + Uart.len = 0; // number of decoded data bytes + Uart.parityLen = 0; // number of decoded parity bytes + Uart.shiftReg = 0; // shiftreg to hold decoded data bits + Uart.parityBits = 0; // holds 8 parity bits + Uart.twoBits = 0x0000; // buffer for 2 Bits + Uart.highCnt = 0; + Uart.startTime = 0; + Uart.endTime = 0; +} - if(Uart.state != STATE_UNSYNCD) { - Uart.posCnt++; +void UartInit(uint8_t *data, uint8_t *parity) +{ + Uart.output = data; + Uart.parity = parity; + UartReset(); +} - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { - bit = 0x00; - } - else { - bit = 0x01; - } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { - bitright = 0x00; - } - else { - bitright = 0x01; - } - if(bit != bitright) { bit = bitright; } +// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time +static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) +{ - if(Uart.posCnt == 1) { - // measurement first half bitperiod - if(!bit) { - Uart.drop = DROP_FIRST_HALF; - } - } - else { - // measurement second half bitperiod - if(!bit & (Uart.drop == DROP_NONE)) { - Uart.drop = DROP_SECOND_HALF; + Uart.twoBits = (Uart.twoBits << 8) | bit; + + if (Uart.state == STATE_UNSYNCD) { // not yet synced + + if (Uart.highCnt < 2) { // wait for a stable unmodulated signal + if (Uart.twoBits == 0xffff) { + Uart.highCnt++; + } else { + Uart.highCnt = 0; } - else if(!bit) { - // measured a drop in first and second half - // which should not be possible - Uart.state = STATE_ERROR_WAIT; - //error = 0x01; + } else { + Uart.syncBit = 0xFFFF; // not set + // we look for a ...1111111100x11111xxxxxx pattern (the start bit) + if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx, + // check for 00x11111 xxxxxxxx + else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1' + else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ... + else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5; + else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4; + else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3; + else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2; + else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1; + if (Uart.syncBit != 0xFFFF) { // found a sync bit + Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); + Uart.startTime -= Uart.syncBit; + Uart.endTime = Uart.startTime; + Uart.state = STATE_START_OF_COMMUNICATION; } + } - Uart.posCnt = 0; - - switch(Uart.state) { - case STATE_START_OF_COMMUNICATION: - Uart.shiftReg = 0; - if(Uart.drop == DROP_SECOND_HALF) { - // error, should not happen in SOC - Uart.state = STATE_ERROR_WAIT; - //error = 0x02; - } - else { - // correct SOC - Uart.state = STATE_MILLER_Z; - } - break; - - case STATE_MILLER_Z: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - // if(Uart.drop == DROP_FIRST_HALF) { - // Uart.state = STATE_MILLER_Z; stay the same - // we see a logic '0' } - if(Uart.drop == DROP_SECOND_HALF) { - // we see a logic '1' - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; - - case STATE_MILLER_X: - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // sequence Y, we see a '0' - Uart.state = STATE_MILLER_Y; - Uart.bitCnt++; - } - if(Uart.drop == DROP_FIRST_HALF) { - // Would be STATE_MILLER_Z - // but Z does not follow X, so error - Uart.state = STATE_ERROR_WAIT; - //error = 0x03; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and stay in state X - Uart.shiftReg |= 0x100; - Uart.bitCnt++; - } - break; + } else { - case STATE_MILLER_Y: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; + if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { + if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error + UartReset(); + } else { // Modulation in first half = Sequence Z = logic "0" + if (Uart.state == STATE_MILLER_X) { // error - must not follow after X + UartReset(); + } else { + Uart.bitCount++; + Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg + Uart.state = STATE_MILLER_Z; + Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // make room for the parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.bitCount = 0; + Uart.shiftReg = 0; + if((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } - if(Uart.drop == DROP_FIRST_HALF) { - // we see a '0' - Uart.state = STATE_MILLER_Z; + } + } + } else { + if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" + Uart.bitCount++; + Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg + Uart.state = STATE_MILLER_X; + Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // make room for the new parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.bitCount = 0; + Uart.shiftReg = 0; + if ((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and go to state X - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; + } + } else { // no modulation in both halves - Sequence Y + if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication + Uart.state = STATE_UNSYNCD; + Uart.bitCount--; // last "0" was part of EOC sequence + Uart.shiftReg <<= 1; // drop it + if(Uart.bitCount > 0) { // if we decoded some bits + Uart.shiftReg >>= (9 - Uart.bitCount); // right align them + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output + Uart.parityBits <<= 1; // add a (void) parity bit + Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it + return TRUE; + } else if (Uart.len & 0x0007) { // there are some parity bits to store + Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them } - break; - - case STATE_ERROR_WAIT: - // That went wrong. Now wait for at least two bit periods - // and try to sync again - if(Uart.drop == DROP_NONE) { - Uart.highCnt = 6; - Uart.state = STATE_UNSYNCD; + if (Uart.len) { + return TRUE; // we are finished with decoding the raw data sequence + } else { + UartReset(); // Nothing received - start over + Uart.highCnt = 1; } - break; - - default: - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - break; - } - - Uart.drop = DROP_NONE; - - // should have received at least one whole byte... - if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { - return TRUE; - } - - if(Uart.bitCnt == 9) { - Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); - Uart.byteCnt++; - - Uart.parityBits <<= 1; - Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); - - if(EOC) { - // when End of Communication received and - // all data bits processed.. - return TRUE; } - Uart.bitCnt = 0; - } - - /*if(error) { - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = error & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - return TRUE; - }*/ - } - - } - else { - bit = Uart.bitBuffer & 0xf0; - bit >>= 4; - bit ^= 0x0F; - if(bit) { - // should have been high or at least (4 * 128) / fc - // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { - // we went low, so this could be start of communication - // it turns out to be safer to choose a less significant - // syncbit... so we check whether the neighbour also represents the drop - Uart.posCnt = 1; // apparently we are busy with our first half bit period - Uart.syncBit = bit & 8; - Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit && (Uart.bitBuffer & 8)) { - Uart.syncBit = 8; - - // the first half bit period is expected in next sample - Uart.posCnt = 0; - Uart.samples = 3; + if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC + UartReset(); + Uart.highCnt = 1; + } else { // a logic "0" + Uart.bitCount++; + Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg + Uart.state = STATE_MILLER_Y; + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // make room for the parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.bitCount = 0; + Uart.shiftReg = 0; + if ((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } - - Uart.syncBit <<= 4; - Uart.state = STATE_START_OF_COMMUNICATION; - Uart.drop = DROP_FIRST_HALF; - Uart.bitCnt = 0; - Uart.byteCnt = 0; - Uart.parityBits = 0; - //error = 0; - } - else { - Uart.highCnt = 0; } } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } - } - } + + } - return FALSE; + return FALSE; // not finished yet, need more data } + + //============================================================================= // ISO 14443 Type A - Manchester decoder //============================================================================= // Basics: +// This decoder is used when the PM3 acts as a reader. // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... @@ -386,161 +403,131 @@ static RAMFUNC int MillerDecoding(int bit) // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 // 8 ticks unmodulated: Sequence F = end of communication // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D -// Note 1: the bitstream may start at any time (either in first or second nibble within the parameter bit). We therefore need to sync. +// Note 1: the bitstream may start at any time. We therefore need to sync. // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) static tDemod Demod; -inline RAMFUNC bool IsModulation(byte_t b) -{ - if (b >= 5 || b == 3) // majority decision: 2 or more bits are set - return true; - else - return false; - -} +// Lookup-Table to decide if 4 raw bits are a modulation. +// We accept three or four "1" in any position +const bool Mod_Manchester_LUT[] = { + FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, + FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE +}; + +#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) +#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) -inline RAMFUNC bool IsModulationNibble1(byte_t b) + +void DemodReset() { - return IsModulation((b & 0xE0) >> 5); + Demod.state = DEMOD_UNSYNCD; + Demod.len = 0; // number of decoded data bytes + Demod.parityLen = 0; + Demod.shiftReg = 0; // shiftreg to hold decoded data bits + Demod.parityBits = 0; // + Demod.collisionPos = 0; // Position of collision bit + Demod.twoBits = 0xffff; // buffer for 2 Bits + Demod.highCnt = 0; + Demod.startTime = 0; + Demod.endTime = 0; } -inline RAMFUNC bool IsModulationNibble2(byte_t b) +void DemodInit(uint8_t *data, uint8_t *parity) { - return IsModulation((b & 0x0E) >> 1); + Demod.output = data; + Demod.parity = parity; + DemodReset(); } -static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset) +// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time +static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { + + Demod.twoBits = (Demod.twoBits << 8) | bit; - switch (Demod.state) { - - case DEMOD_UNSYNCD: // not yet synced - Demod.len = 0; // initialize number of decoded data bytes - Demod.bitCount = offset; // initialize number of decoded data bits - Demod.shiftReg = 0; // initialize shiftreg to hold decoded data bits - Demod.parityBits = 0; // initialize parity bits - Demod.collisionPos = 0; // Position of collision bit - - if (IsModulationNibble1(bit) - && !IsModulationNibble2(bit)) { // this is the start bit - Demod.samples = 8; - if(trigger) LED_A_OFF(); + if (Demod.state == DEMOD_UNSYNCD) { + + if (Demod.highCnt < 2) { // wait for a stable unmodulated signal + if (Demod.twoBits == 0x0000) { + Demod.highCnt++; + } else { + Demod.highCnt = 0; + } + } else { + Demod.syncBit = 0xFFFF; // not set + if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; + else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; + else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; + else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; + else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; + else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; + else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; + else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; + if (Demod.syncBit != 0xFFFF) { + Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); + Demod.startTime -= Demod.syncBit; + Demod.bitCount = offset; // number of decoded data bits Demod.state = DEMOD_MANCHESTER_DATA; - } else if (!IsModulationNibble1(bit) && IsModulationNibble2(bit)) { // this may be the first half of the start bit - Demod.samples = 4; - Demod.state = DEMOD_HALF_SYNCD; } - break; + } + } else { - case DEMOD_HALF_SYNCD: - Demod.samples += 8; - if (IsModulationNibble1(bit)) { // error: this was not a start bit. - Demod.state = DEMOD_UNSYNCD; - } else { - if (IsModulationNibble2(bit)) { // modulation in first half - Demod.state = DEMOD_MOD_FIRST_HALF; - } else { // no modulation in first half - Demod.state = DEMOD_NOMOD_FIRST_HALF; - } - } - break; - - - case DEMOD_MOD_FIRST_HALF: - Demod.samples += 8; - Demod.bitCount++; - if (IsModulationNibble1(bit)) { // modulation in both halfs - collision + if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half + if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision if (!Demod.collisionPos) { Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; } } // modulation in first half only - Sequence D = 1 - Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the parity bit + Demod.bitCount++; + Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg + if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); + Demod.parityBits <<= 1; // make room for the parity bit Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; + if((Demod.len&0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits + Demod.parityBits = 0; + } } - if (IsModulationNibble2(bit)) { // modulation in first half - Demod.state = DEMOD_MOD_FIRST_HALF; - } else { // no modulation in first half - Demod.state = DEMOD_NOMOD_FIRST_HALF; - } - break; - - - case DEMOD_NOMOD_FIRST_HALF: - if (IsModulationNibble1(bit)) { // modulation in second half only - Sequence E = 0 + Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; + } else { // no modulation in first half + if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 Demod.bitCount++; - Demod.samples += 8; - Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg + Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the new parity bit Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); + Demod.parityBits <<= 1; // make room for the new parity bit Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; + if ((Demod.len&0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 + Demod.parityBits = 0; + } } + Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); } else { // no modulation in both halves - End of communication - Demod.samples += 4; - if(Demod.bitCount > 0) { // if we decoded bits - Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output - Demod.output[Demod.len++] = Demod.shiftReg & 0xff; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } - Demod.state = DEMOD_UNSYNCD; // start from the beginning - return TRUE; // we are finished with decoding the raw data sequence - } - if (IsModulationNibble2(bit)) { // modulation in first half - Demod.state = DEMOD_MOD_FIRST_HALF; - } else { // no modulation in first half - Demod.state = DEMOD_NOMOD_FIRST_HALF; - } - break; - - - case DEMOD_MANCHESTER_DATA: - Demod.samples += 8; - if (IsModulationNibble1(bit)) { // modulation in first half - if (IsModulationNibble2(bit) & 0x0f) { // ... and in second half = collision - if (!Demod.collisionPos) { - Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; - } - } // modulation in first half only - Sequence D = 1 - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the parity bit - Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); - Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit - Demod.bitCount = 0; - Demod.shiftReg = 0; + if(Demod.bitCount > 0) { // there are some remaining data bits + Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits + Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output + Demod.parityBits <<= 1; // add a (void) parity bit + Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + return TRUE; + } else if (Demod.len & 0x0007) { // there are some parity bits to store + Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them } - } else { // no modulation in first half - if (IsModulationNibble2(bit)) { // and modulation in second half = Sequence E = 0 - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the new parity bit - Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); - Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit - Demod.bitCount = 0; - Demod.shiftReg = 0; - } - } else { // no modulation in both halves - End of communication - if(Demod.bitCount > 0) { // if we decoded bits - Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output - Demod.output[Demod.len++] = Demod.shiftReg & 0xff; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } - Demod.state = DEMOD_UNSYNCD; // start from the beginning + if (Demod.len) { return TRUE; // we are finished with decoding the raw data sequence + } else { // nothing received. Start over + DemodReset(); } } + } } @@ -563,61 +550,56 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // bit 1 - trigger from first reader 7-bit request LEDsoff(); - // init trace buffer - iso14a_clear_trace(); - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - // triggered == FALSE -- to wait first for card - int triggered = !(param & 0x03); + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); + + // Allocate memory from BigBuf for some buffers + // free all previous allocations first + BigBuf_free(); // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); + // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); - - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; + uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); // The DMA buffer, used to stream samples from the FPGA - int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; - int8_t *data = dmaBuf; + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + + // init trace buffer + clear_trace(); + set_tracing(TRUE); + + uint8_t *data = dmaBuf; + uint8_t previous_data = 0; int maxDataLen = 0; int dataLen = 0; - + bool TagIsActive = FALSE; + bool ReaderIsActive = FALSE; + // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - + DemodInit(receivedResponse, receivedResponsePar); + // Set up the demodulator for the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); - Uart.output = receivedCmd; - Uart.byteCntMax = 32; // was 100 (greg)////////////////// - Uart.state = STATE_UNSYNCD; - - // Setup for the DMA. - FpgaSetupSsc(); + UartInit(receivedCmd, receivedCmdPar); + + // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); - - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - rsamples = 0; + + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + // triggered == FALSE -- to wait first for card + bool triggered = !(param & 0x03); + // And now we loop, receiving samples. - while(true) { + for(uint32_t rsamples = 0; TRUE; ) { + if(BUTTON_PRESS()) { DbpString("cancelled by button"); - goto done; + break; } LED_A_ON(); @@ -628,14 +610,14 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if (readBufDataP <= dmaBufDataP){ dataLen = dmaBufDataP - readBufDataP; } else { - dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; + dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; } // test for length of buffer if(dataLen > maxDataLen) { maxDataLen = dataLen; - if(dataLen > 400) { - Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); - goto done; + if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { + Dbprintf("blew circular buffer! dataLen=%d", dataLen); + break; } } if(dataLen < 1) continue; @@ -644,6 +626,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if (!AT91C_BASE_PDC_SSC->PDC_RCR) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; + Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary } // secondary buffer sets as primary, secondary buffer was stopped if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { @@ -653,60 +636,77 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { LED_A_OFF(); - rsamples += 4; - if(MillerDecoding((data[0] & 0xF0) >> 4)) { - LED_C_ON(); - - // check - if there is a short 7bit request from reader - if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE; - - if(triggered) { - if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break; + if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder + + if(!TagIsActive) { // no need to try decoding reader data if the tag is sending + uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); + if (MillerDecoding(readerdata, (rsamples-1)*4)) { + LED_C_ON(); + + // check - if there is a short 7bit request from reader + if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; + + if(triggered) { + if (!LogTrace(receivedCmd, + Uart.len, + Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, + Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, + Uart.parity, + TRUE)) break; + } + /* And ready to receive another command. */ + UartReset(); + /* And also reset the demod code, which might have been */ + /* false-triggered by the commands from the reader. */ + DemodReset(); + LED_B_OFF(); + } + ReaderIsActive = (Uart.state != STATE_UNSYNCD); } - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - /* And also reset the demod code, which might have been */ - /* false-triggered by the commands from the reader. */ - Demod.state = DEMOD_UNSYNCD; - LED_B_OFF(); - } - if(ManchesterDecoding(data[0], 0)) { - LED_B_ON(); + if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time + uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); + if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { + LED_B_ON(); - if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break; + if (!LogTrace(receivedResponse, + Demod.len, + Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + Demod.parity, + FALSE)) break; - if ((!triggered) && (param & 0x01)) triggered = TRUE; + if ((!triggered) && (param & 0x01)) triggered = TRUE; - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); + // And ready to receive another response. + DemodReset(); + LED_C_OFF(); + } + TagIsActive = (Demod.state != DEMOD_UNSYNCD); + } } + previous_data = *data; + rsamples++; data++; - if(data > dmaBuf + DMA_BUFFER_SIZE) { + if(data == dmaBuf + DMA_BUFFER_SIZE) { data = dmaBuf; } } // main cycle DbpString("COMMAND FINISHED"); -done: - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt); - Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + FpgaDisableSscDma(); + Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); + Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); LEDsoff(); } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) +static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) { - int i; - ToSendReset(); // Correction bit, might be removed when not needed @@ -721,13 +721,13 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity // Send startbit ToSend[++ToSendMax] = SEC_D; + LastProxToAirDuration = 8 * ToSendMax - 4; - for(i = 0; i < len; i++) { - int j; + for(uint16_t i = 0; i < len; i++) { uint8_t b = cmd[i]; // Data bits - for(j = 0; j < 8; j++) { + for(uint16_t j = 0; j < 8; j++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; } else { @@ -737,10 +737,12 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity } // Get the parity bit - if ((dwParity >> i) & 0x01) { + if (parity[i>>3] & (0x80>>(i&0x0007))) { ToSend[++ToSendMax] = SEC_D; + LastProxToAirDuration = 8 * ToSendMax - 4; } else { ToSend[++ToSendMax] = SEC_E; + LastProxToAirDuration = 8 * ToSendMax; } } @@ -751,52 +753,14 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity ToSendMax++; } -static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ - CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); +static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) +{ + uint8_t par[MAX_PARITY_SIZE]; + + GetParity(cmd, len, par); + CodeIso14443aAsTagPar(cmd, len, par); } -////----------------------------------------------------------------------------- -//// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 -////----------------------------------------------------------------------------- -//static void CodeStrangeAnswerAsTag() -//{ -// int i; -// -// ToSendReset(); -// -// // Correction bit, might be removed when not needed -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(1); // 1 -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// -// // Send startbit -// ToSend[++ToSendMax] = SEC_D; -// -// // 0 -// ToSend[++ToSendMax] = SEC_E; -// -// // 0 -// ToSend[++ToSendMax] = SEC_E; -// -// // 1 -// ToSend[++ToSendMax] = SEC_D; -// -// // Send stopbit -// ToSend[++ToSendMax] = SEC_F; -// -// // Flush the buffer in FPGA!! -// for(i = 0; i < 5; i++) { -// ToSend[++ToSendMax] = SEC_F; -// } -// -// // Convert from last byte pos to length -// ToSendMax++; -//} static void Code4bitAnswerAsTag(uint8_t cmd) { @@ -821,8 +785,10 @@ static void Code4bitAnswerAsTag(uint8_t cmd) for(i = 0; i < 4; i++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; + LastProxToAirDuration = 8 * ToSendMax - 4; } else { ToSend[++ToSendMax] = SEC_E; + LastProxToAirDuration = 8 * ToSendMax; } b >>= 1; } @@ -830,11 +796,6 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Send stopbit ToSend[++ToSendMax] = SEC_F; - // Flush the buffer in FPGA!! - for(i = 0; i < 5; i++) { - ToSend[++ToSendMax] = SEC_F; - } - // Convert from last byte pos to length ToSendMax++; } @@ -844,7 +805,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- -static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) +static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). @@ -853,56 +814,48 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; + UartInit(received, parity); + + // clear RXRDY: + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(MillerDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - return TRUE; - } - if(MillerDecoding(b & 0x0f)) { - *len = Uart.byteCnt; + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding(b, 0)) { + *len = Uart.len; return TRUE; } - } + } } } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded); -int EmSend4bitEx(uint8_t resp, int correctionNeeded); +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); +int EmSend4bitEx(uint8_t resp, bool correctionNeeded); int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par); -int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par); -int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded); -int EmSendCmd(uint8_t *resp, int respLen); -int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par); +int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); +int EmSendCmd(uint8_t *resp, uint16_t respLen); +int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); -static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); +static uint8_t* free_buffer_pointer; typedef struct { uint8_t* response; size_t response_n; uint8_t* modulation; size_t modulation_n; + uint32_t ProxToAirDuration; } tag_response_info_t; -void reset_free_buffer() { - free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); -} - bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { - // Exmaple response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes + // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence // 144 data bits (18 * 8) // 18 parity bits @@ -912,7 +865,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // ----------- + // 166 bytes, since every bit that needs to be send costs us a byte // - + + // Prepare the tag modulation bits from the message CodeIso14443aAsTag(response_info->response,response_info->response_n); @@ -926,21 +880,29 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // Copy the byte array, used for this modulation to the buffer position memcpy(response_info->modulation,ToSend,ToSendMax); - // Store the number of bytes that were used for encoding/modulation + // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them response_info->modulation_n = ToSendMax; + response_info->ProxToAirDuration = LastProxToAirDuration; return true; } + +// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. +// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) +// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits +// -> need 273 bytes buffer +#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 + bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Retrieve and store the current buffer index response_info->modulation = free_buffer_pointer; // Determine the maximum size we can use from our buffer - size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer; + size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; // Forward the prepare tag modulation function to the inner function - if (prepare_tag_modulation(response_info,max_buffer_size)) { + if (prepare_tag_modulation(response_info, max_buffer_size)) { // Update the free buffer offset free_buffer_pointer += ToSendMax; return true; @@ -955,11 +917,6 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { //----------------------------------------------------------------------------- void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) { - // Enable and clear the trace - tracing = TRUE; - iso14a_clear_trace(); - - // This function contains the tag emulation uint8_t sak; // The first response contains the ATQA (note: bytes are transmitted in reverse order). @@ -990,6 +947,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response1[1] = 0x00; sak = 0x28; } break; + case 5: { // MIFARE TNP3XXX + // Says: I am a toy + response1[0] = 0x01; + response1[1] = 0x0f; + sak = 0x01; + } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); return; @@ -997,10 +960,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) } // The second response contains the (mandatory) first 24 bits of the UID - uint8_t response2[5]; + uint8_t response2[5] = {0x00}; // Check if the uid uses the (optional) part - uint8_t response2a[5]; + uint8_t response2a[5] = {0x00}; + if (uid_2nd) { response2[0] = 0x88; num_to_bytes(uid_1st,3,response2+1); @@ -1021,54 +985,68 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; // Prepare the mandatory SAK (for 4 and 7 byte UID) - uint8_t response3[3]; + uint8_t response3[3] = {0x00}; response3[0] = sak; ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit - uint8_t response3a[3]; + uint8_t response3a[3] = {0x00}; response3a[0] = sak & 0xFB; ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS + uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: + // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, + // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 + // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) + // TC(1) = 0x02: CID supported, NAD not supported ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); - #define TAG_RESPONSE_COUNT 7 - tag_response_info_t responses[TAG_RESPONSE_COUNT] = { - { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type - { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid - { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked - { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 - { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 - { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) - { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS - }; - - // Allocate 512 bytes for the dynamic modulation, created when the reader querries for it - // Such a response is less time critical, so we can prepare them on the fly - #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 - #define DYNAMIC_MODULATION_BUFFER_SIZE 512 - uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; - uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; - tag_response_info_t dynamic_response_info = { - .response = dynamic_response_buffer, - .response_n = 0, - .modulation = dynamic_modulation_buffer, - .modulation_n = 0 - }; + #define TAG_RESPONSE_COUNT 7 + tag_response_info_t responses[TAG_RESPONSE_COUNT] = { + { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type + { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid + { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked + { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 + { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 + { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) + { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS + }; + + // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it + // Such a response is less time critical, so we can prepare them on the fly + #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 + #define DYNAMIC_MODULATION_BUFFER_SIZE 512 + uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; + uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; + tag_response_info_t dynamic_response_info = { + .response = dynamic_response_buffer, + .response_n = 0, + .modulation = dynamic_modulation_buffer, + .modulation_n = 0 + }; - // Reset the offset pointer of the free buffer - reset_free_buffer(); - - // Prepare the responses of the anticollision phase + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + BigBuf_free_keep_EM(); + + // allocate buffers: + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); + free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); + + // clear trace + clear_trace(); + set_tracing(TRUE); + + // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA - for (size_t i=0; i 0) { - // Copy the CID from the reader query - dynamic_response_info.response[1] = receivedCmd[1]; + if (dynamic_response_info.response_n > 0) { + // Copy the CID from the reader query + dynamic_response_info.response[1] = receivedCmd[1]; - // Add CRC bytes, always used in ISO 14443A-4 compliant cards - AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); - dynamic_response_info.response_n += 2; + // Add CRC bytes, always used in ISO 14443A-4 compliant cards + AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); + dynamic_response_info.response_n += 2; - if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { - Dbprintf("Error preparing tag response"); - break; - } - p_response = &dynamic_response_info; - } + if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { + Dbprintf("Error preparing tag response"); + if (tracing) { + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + } + break; + } + p_response = &dynamic_response_info; + } } // Count number of wakeups received after a halt @@ -1200,12 +1185,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // Count number of other messages after a halt if(order != 6 && lastorder == 5) { happened2++; } - // Look at last parity bit to determine timing of answer - if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { - // 1236, so correction bit needed - //i = 0; - } - if(cmdsRecvd > 999) { DbpString("1000 commands later..."); break; @@ -1213,19 +1192,32 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) cmdsRecvd++; if (p_response != NULL) { - EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); - if (tracing) { - LogTrace(p_response->response,p_response->response_n,0,SwapBits(GetParity(p_response->response,p_response->response_n),p_response->response_n),FALSE); - if(traceLen > TRACE_SIZE) { - DbpString("Trace full"); -// break; - } - } - } - } + EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); + // do the tracing for the previous reader request and this tag answer: + uint8_t par[MAX_PARITY_SIZE]; + GetParity(p_response->response, p_response->response_n, par); + + EmLogTrace(Uart.output, + Uart.len, + Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.parity, + p_response->response, + p_response->response_n, + LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, + (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, + par); + } + + if (!tracing) { + Dbprintf("Trace Full. Simulation stopped."); + break; + } + } Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); LED_A_OFF(); + BigBuf_free_keep_EM(); } @@ -1242,7 +1234,7 @@ void PrepareDelayedTransfer(uint16_t delay) for (uint16_t i = 0; i < delay; i++) { bitmask |= (0x01 << i); } - ToSend[++ToSendMax] = 0x00; + ToSend[ToSendMax++] = 0x00; for (uint16_t i = 0; i < ToSendMax; i++) { bits_to_shift = ToSend[i] & bitmask; ToSend[i] = ToSend[i] >> delay; @@ -1252,38 +1244,41 @@ void PrepareDelayedTransfer(uint16_t delay) } } -//----------------------------------------------------------------------------- + +//------------------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. // Parameter timing: -// if NULL: ignored -// if == 0: return time of transfer +// if NULL: transfer at next possible time, taking into account +// request guard time and frame delay time +// if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified -//----------------------------------------------------------------------------- -static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) +//------------------------------------------------------------------------------------- +static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { - int c; - + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + uint32_t ThisTransferTime = 0; if (timing) { if(*timing == 0) { // Measure time - *timing = (GetCountMifare() + 8) & 0xfffffff8; + *timing = (GetCountSspClk() + 8) & 0xfffffff8; } else { PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) } - if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); - while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) - } - - for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission?) - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - c++; - } + if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); + while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) + LastTimeProxToAirStart = *timing; + } else { + ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); + while(GetCountSspClk() < ThisTransferTime); + LastTimeProxToAirStart = ThisTransferTime; } - c = 0; + // clear TXRDY + AT91C_BASE_SSC->SSC_THR = SEC_Y; + + uint16_t c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; @@ -1293,104 +1288,107 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) } } } - + + NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); } + //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity) +void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { - int i, j; - int last; - uint8_t b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - ToSend[++ToSendMax] = SEC_Z; - last = 0; - - size_t bytecount = nbytes(bits); - // Generate send structure for the data bits - for (i = 0; i < bytecount; i++) { - // Get the current byte to send - b = cmd[i]; - size_t bitsleft = MIN((bits-(i*8)),8); - - for (j = 0; j < bitsleft; j++) { - if (b & 1) { - // Sequence X - ToSend[++ToSendMax] = SEC_X; - last = 1; - } else { - if (last == 0) { - // Sequence Z - ToSend[++ToSendMax] = SEC_Z; - } else { - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; - last = 0; - } - } - b >>= 1; - } + int i, j; + int last; + uint8_t b; - // Only transmit (last) parity bit if we transmitted a complete byte - if (j == 8) { - // Get the parity bit - if ((dwParity >> i) & 0x01) { - // Sequence X - ToSend[++ToSendMax] = SEC_X; - last = 1; - } else { - if (last == 0) { - // Sequence Z - ToSend[++ToSendMax] = SEC_Z; - } else { - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; - last = 0; - } - } - } - } + ToSendReset(); - // End of Communication - if (last == 0) { - // Sequence Z - ToSend[++ToSendMax] = SEC_Z; - } else { - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; - last = 0; - } - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; + // Start of Communication (Seq. Z) + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + last = 0; + + size_t bytecount = nbytes(bits); + // Generate send structure for the data bits + for (i = 0; i < bytecount; i++) { + // Get the current byte to send + b = cmd[i]; + size_t bitsleft = MIN((bits-(i*8)),8); + + for (j = 0; j < bitsleft; j++) { + if (b & 1) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + LastProxToAirDuration = 8 * (ToSendMax+1) - 2; + last = 1; + } else { + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + b >>= 1; + } + + // Only transmit parity bit if we transmitted a complete byte + if (j == 8) { + // Get the parity bit + if (parity[i>>3] & (0x80 >> (i&0x0007))) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + LastProxToAirDuration = 8 * (ToSendMax+1) - 2; + last = 1; + } else { + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + } + } - // Just to be sure! - ToSend[++ToSendMax] = SEC_Y; - ToSend[++ToSendMax] = SEC_Y; - ToSend[++ToSendMax] = SEC_Y; + // End of Communication: Logic 0 followed by Sequence Y + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + ToSend[++ToSendMax] = SEC_Y; - // Convert from last character reference to length - ToSendMax++; + // Convert to length of command: + ToSendMax++; } //----------------------------------------------------------------------------- // Prepare reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) +void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) { - CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity); + CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); } + //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, int *len, int maxLen) +static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { *len = 0; @@ -1407,18 +1405,19 @@ static int EmGetCmd(uint8_t *received, int *len, int maxLen) // Set ADC to read field strength AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(32) | - ADC_MODE_STARTUP_TIME(16) | - ADC_MODE_SAMPLE_HOLD_TIME(8); + ADC_MODE_PRESCALE(63) | + ADC_MODE_STARTUP_TIME(1) | + ADC_MODE_SAMPLE_HOLD_TIME(15); AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); // start ADC AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // Now run a 'software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; + UartInit(received, parity); + // Clear RXRDY: + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + for(;;) { WDT_HIT(); @@ -1430,7 +1429,7 @@ static int EmGetCmd(uint8_t *received, int *len, int maxLen) analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; if (analogCnt >= 32) { - if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { + if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { vtime = GetTickCount(); if (!timer) timer = vtime; // 50ms no field --> card to idle state @@ -1441,98 +1440,158 @@ static int EmGetCmd(uint8_t *received, int *len, int maxLen) analogAVG = 0; } } - // transmit none - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } + // receive and test the miller decoding - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(MillerDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); - return 0; - } - if(MillerDecoding(b & 0x0f)) { - *len = Uart.byteCnt; - if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding(b, 0)) { + *len = Uart.len; return 0; } - } + } + } } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded) -{ - int i, u = 0; - uint8_t b = 0; +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) +{ + uint8_t b; + uint16_t i = 0; + uint32_t ThisTransferTime; + // Modulate Manchester FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - - // include correction bit - i = 1; - if((Uart.parityBits & 0x01) || correctionNeeded) { + + // include correction bit if necessary + if (Uart.parityBits & 0x01) { + correctionNeeded = TRUE; + } + if(correctionNeeded) { // 1236, so correction bit needed i = 0; + } else { + i = 1; } + + // clear receiving shift register and holding register + while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) + for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never + while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + if (AT91C_BASE_SSC->SSC_RHR) break; + } + + while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); + + // Clear TXRDY: + AT91C_BASE_SSC->SSC_THR = SEC_F; + // send cycle - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - (void)b; - } + for(; i < respLen; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - if(i > respLen) { - b = 0xff; // was 0x00 - u++; - } else { - b = resp[i]; - i++; - } - AT91C_BASE_SSC->SSC_THR = b; - - if(u > 4) break; + AT91C_BASE_SSC->SSC_THR = resp[i++]; + FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; } + if(BUTTON_PRESS()) { break; } } + // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + for (i = 0; i <= fpga_queued_bits/8 + 1; ) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = SEC_F; + FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + } + } + + LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); + return 0; } -int EmSend4bitEx(uint8_t resp, int correctionNeeded){ - Code4bitAnswerAsTag(resp); +int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ + Code4bitAnswerAsTag(resp); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); - if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE); + // do the tracing for the previous reader request and this tag answer: + uint8_t par[1]; + GetParity(&resp, 1, par); + EmLogTrace(Uart.output, + Uart.len, + Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.parity, + &resp, + 1, + LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, + (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, + par); return res; } int EmSend4bit(uint8_t resp){ - return EmSend4bitEx(resp, 0); + return EmSend4bitEx(resp, false); } -int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){ - CodeIso14443aAsTagPar(resp, respLen, par); +int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ + CodeIso14443aAsTagPar(resp, respLen, par); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); - if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE); + // do the tracing for the previous reader request and this tag answer: + EmLogTrace(Uart.output, + Uart.len, + Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.parity, + resp, + respLen, + LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, + (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, + par); return res; } -int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){ - return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ + uint8_t par[MAX_PARITY_SIZE]; + GetParity(resp, respLen, par); + return EmSendCmdExPar(resp, respLen, correctionNeeded, par); +} + +int EmSendCmd(uint8_t *resp, uint16_t respLen){ + uint8_t par[MAX_PARITY_SIZE]; + GetParity(resp, respLen, par); + return EmSendCmdExPar(resp, respLen, false, par); } -int EmSendCmd(uint8_t *resp, int respLen){ - return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen)); +int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ + return EmSendCmdExPar(resp, respLen, false, par); } -int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ - return EmSendCmdExPar(resp, respLen, 0, par); +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) +{ + if (tracing) { + // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from + // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. + // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_EndTime = tag_StartTime - exact_fdt; + reader_StartTime = reader_EndTime - reader_modlen; + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { + return FALSE; + } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); + } else { + return TRUE; + } } //----------------------------------------------------------------------------- @@ -1540,9 +1599,9 @@ int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen, int *samples) +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { - int c; + uint32_t c; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). @@ -1551,245 +1610,252 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; + DemodInit(receivedResponse, receivedResponsePar); - uint8_t b; + // clear RXRDY: + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; c = 0; for(;;) { WDT_HIT(); - // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! - // if (elapsed) (*elapsed)++; - // } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - if(c < iso14a_timeout) { c++; } else { return FALSE; } b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(ManchesterDecoding(b, offset)) { - *samples = Demod.samples; + if(ManchesterDecoding(b, offset, 0)) { + NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); return TRUE; + } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { + return FALSE; } } } } -void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing) +void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { - - CodeIso14443aBitsAsReaderPar(frame,bits,par); + CodeIso14443aBitsAsReaderPar(frame, bits, par); - // Send command to tag - TransmitFor14443a(ToSend, ToSendMax, timing); - if(trigger) - LED_A_ON(); + // Send command to tag + TransmitFor14443a(ToSend, ToSendMax, timing); + if(trigger) + LED_A_ON(); - // Log reader command in trace buffer - if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE); + // Log reader command in trace buffer + if (tracing) { + LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); + } } -void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing) +void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { - ReaderTransmitBitsPar(frame,len*8,par, timing); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing) +void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect - ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing); + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len/8, par); + ReaderTransmitBitsPar(frame, len, par, timing); } -void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing) +void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect - ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing); + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len, par); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset) +int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { - int samples = 0; - if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160,&samples)) return FALSE; - if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); - if(samples == 0) return FALSE; + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; + if (tracing) { + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); + } return Demod.len; } -int ReaderReceive(uint8_t* receivedAnswer) -{ - return ReaderReceiveOffset(receivedAnswer, 0); -} - -int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr) +int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { - int samples = 0; - if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160,&samples)) return FALSE; - if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); - *parptr = Demod.parityBits; - if(samples == 0) return FALSE; + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; + if (tracing) { + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); + } return Demod.len; } /* performs iso14443a anticollision procedure * fills the uid pointer unless NULL * fills resp_data unless NULL */ -int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) { - uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP - uint8_t sel_all[] = { 0x93,0x20 }; - uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; - uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes - byte_t uid_resp[4]; - size_t uid_resp_len; - - uint8_t sak = 0x04; // cascade uid - int cascade_level = 0; - int len; - - // Broadcast for a card, WUPA (0x52) will force response from all cards in the field +int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { + uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; + uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 + uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE]; + byte_t uid_resp[4]; + size_t uid_resp_len; + + uint8_t sak = 0x04; // cascade uid + int cascade_level = 0; + int len; + + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field ReaderTransmitBitsPar(wupa,7,0, NULL); - // Receive the ATQA - if(!ReaderReceive(resp)) return 0; - // Dbprintf("atqa: %02x %02x",resp[0],resp[1]); - - if(p_hi14a_card) { - memcpy(p_hi14a_card->atqa, resp, 2); - p_hi14a_card->uidlen = 0; - memset(p_hi14a_card->uid,0,10); - } + + // Receive the ATQA + if(!ReaderReceive(resp, resp_par)) return 0; - // clear uid - if (uid_ptr) { - memset(uid_ptr,0,10); - } + if(p_hi14a_card) { + memcpy(p_hi14a_card->atqa, resp, 2); + p_hi14a_card->uidlen = 0; + memset(p_hi14a_card->uid,0,10); + } + + // clear uid + if (uid_ptr) { + memset(uid_ptr,0,10); + } - // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in - // which case we need to make a cascade 2 request and select - this is a long UID - // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. - for(; sak & 0x04; cascade_level++) { - // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) - sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; - - // SELECT_ALL - ReaderTransmit(sel_all,sizeof(sel_all), NULL); - if (!ReaderReceive(resp)) return 0; - - if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit - memset(uid_resp, 0, 4); - uint16_t uid_resp_bits = 0; - uint16_t collision_answer_offset = 0; - // anti-collision-loop: - while (Demod.collisionPos) { - Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); - for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point - uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; - uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8); + // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in + // which case we need to make a cascade 2 request and select - this is a long UID + // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. + for(; sak & 0x04; cascade_level++) { + // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) + sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; + + // SELECT_ALL + ReaderTransmit(sel_all, sizeof(sel_all), NULL); + if (!ReaderReceive(resp, resp_par)) return 0; + + if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit + memset(uid_resp, 0, 4); + uint16_t uid_resp_bits = 0; + uint16_t collision_answer_offset = 0; + // anti-collision-loop: + while (Demod.collisionPos) { + Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); + for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point + uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; + uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + } + uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position + uid_resp_bits++; + // construct anticollosion command: + sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits + for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { + sel_uid[2+i] = uid_resp[i]; + } + collision_answer_offset = uid_resp_bits%8; + ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); + if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; } - uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position - uid_resp_bits++; - // construct anticollosion command: - sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits - for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { - sel_uid[2+i] = uid_resp[i]; + // finally, add the last bits and BCC of the UID + for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { + uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; + uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); } - collision_answer_offset = uid_resp_bits%8; - ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0; + + } else { // no collision, use the response to SELECT_ALL as current uid + memcpy(uid_resp, resp, 4); } - // finally, add the last bits and BCC of the UID - for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { - uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; - uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); + uid_resp_len = 4; + + // calculate crypto UID. Always use last 4 Bytes. + if(cuid_ptr) { + *cuid_ptr = bytes_to_num(uid_resp, 4); } - } else { // no collision, use the response to SELECT_ALL as current uid - memcpy(uid_resp,resp,4); - } - uid_resp_len = 4; - // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]); + // Construct SELECT UID command + sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) + memcpy(sel_uid+2, uid_resp, 4); // the UID + sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC + AppendCrc14443a(sel_uid, 7); // calculate and add CRC + ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); + + // Receive the SAK + if (!ReaderReceive(resp, resp_par)) return 0; + sak = resp[0]; + + // Test if more parts of the uid are coming + if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { + // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: + // http://www.nxp.com/documents/application_note/AN10927.pdf + uid_resp[0] = uid_resp[1]; + uid_resp[1] = uid_resp[2]; + uid_resp[2] = uid_resp[3]; + + uid_resp_len = 3; + } - // calculate crypto UID. Always use last 4 Bytes. - if(cuid_ptr) { - *cuid_ptr = bytes_to_num(uid_resp, 4); - } + if(uid_ptr) { + memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); + } - // Construct SELECT UID command - sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) - memcpy(sel_uid+2,uid_resp,4); // the UID - sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC - AppendCrc14443a(sel_uid,7); // calculate and add CRC - ReaderTransmit(sel_uid,sizeof(sel_uid), NULL); - - // Receive the SAK - if (!ReaderReceive(resp)) return 0; - sak = resp[0]; - - // Test if more parts of the uid are comming - if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { - // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: - // http://www.nxp.com/documents/application_note/AN10927.pdf - memcpy(uid_resp, uid_resp + 1, 3); - uid_resp_len = 3; - } + if(p_hi14a_card) { + memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); + p_hi14a_card->uidlen += uid_resp_len; + } + } - if(uid_ptr) { - memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); - } + if(p_hi14a_card) { + p_hi14a_card->sak = sak; + p_hi14a_card->ats_len = 0; + } - if(p_hi14a_card) { - memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); - p_hi14a_card->uidlen += uid_resp_len; - } - } + // non iso14443a compliant tag + if( (sak & 0x20) == 0) return 2; - if(p_hi14a_card) { - p_hi14a_card->sak = sak; - p_hi14a_card->ats_len = 0; - } + // Request for answer to select + AppendCrc14443a(rats, 2); + ReaderTransmit(rats, sizeof(rats), NULL); - if( (sak & 0x20) == 0) { - return 2; // non iso14443a compliant tag - } + if (!(len = ReaderReceive(resp, resp_par))) return 0; - // Request for answer to select - AppendCrc14443a(rats, 2); - ReaderTransmit(rats, sizeof(rats), NULL); + + if(p_hi14a_card) { + memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); + p_hi14a_card->ats_len = len; + } - if (!(len = ReaderReceive(resp))) return 0; + // reset the PCB block number + iso14_pcb_blocknum = 0; - if(p_hi14a_card) { - memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); - p_hi14a_card->ats_len = len; - } + // set default timeout based on ATS + iso14a_set_ATS_timeout(resp); - // reset the PCB block number - iso14_pcb_blocknum = 0; - return 1; + return 1; } -void iso14443a_setup() { +void iso14443a_setup(uint8_t fpga_minor_mode) { + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Set up the synchronous serial port FpgaSetupSsc(); - // Start from off (no field generated) - // Signal field is off with the appropriate LED -// LED_D_OFF(); -// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - // SpinDelay(50); - + // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - // Now give it time to spin up. // Signal field is on with the appropriate LED - LED_D_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(7); // iso14443-3 specifies 5ms max. + if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD + || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { + LED_D_ON(); + } else { + LED_D_OFF(); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); - Demod.state = DEMOD_UNSYNCD; - iso14a_timeout = 2048; //default + // Start the timer + StartCountSspClk(); + + DemodReset(); + UartReset(); + NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; + iso14a_set_timeout(1050); // 10ms default } -int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { +int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { + uint8_t parity[MAX_PARITY_SIZE]; uint8_t real_cmd[cmd_len+4]; real_cmd[0] = 0x0a; //I-Block // put block number into the PCB @@ -1799,8 +1865,8 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { AppendCrc14443a(real_cmd,cmd_len+2); ReaderTransmit(real_cmd, cmd_len+4, NULL); - size_t len = ReaderReceive(data); - uint8_t * data_bytes = (uint8_t *) data; + size_t len = ReaderReceive(data, parity); + uint8_t *data_bytes = (uint8_t *) data; if (!len) return 0; //DATA LINK ERROR // if we received an I- or R(ACK)-Block with a block number equal to the @@ -1820,27 +1886,29 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { // Read an ISO 14443a tag. Send out commands and store answers. // //----------------------------------------------------------------------------- -void ReaderIso14443a(UsbCommand * c) +void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; - uint8_t * cmd = c->d.asBytes; - size_t len = c->arg[1]; - size_t lenbits = c->arg[2]; + uint8_t *cmd = c->d.asBytes; + size_t len = c->arg[1] & 0xffff; + size_t lenbits = c->arg[1] >> 16; + uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; byte_t buf[USB_CMD_DATA_SIZE]; + uint8_t par[MAX_PARITY_SIZE]; if(param & ISO14A_CONNECT) { - iso14a_clear_trace(); + clear_trace(); } - iso14a_set_tracing(true); + set_tracing(TRUE); if(param & ISO14A_REQUEST_TRIGGER) { - iso14a_set_trigger(1); + iso14a_set_trigger(TRUE); } if(param & ISO14A_CONNECT) { - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; arg0 = iso14443a_select_card(NULL,card,NULL); @@ -1849,11 +1917,7 @@ void ReaderIso14443a(UsbCommand * c) } if(param & ISO14A_SET_TIMEOUT) { - iso14a_timeout = c->arg[2]; - } - - if(param & ISO14A_SET_TIMEOUT) { - iso14a_timeout = c->arg[2]; + iso14a_set_timeout(timeout); } if(param & ISO14A_APDU) { @@ -1865,18 +1929,20 @@ void ReaderIso14443a(UsbCommand * c) if(param & ISO14A_APPEND_CRC) { AppendCrc14443a(cmd,len); len += 2; + if (lenbits) lenbits += 16; } if(lenbits>0) { - ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL); + GetParity(cmd, lenbits/8, par); + ReaderTransmitBitsPar(cmd, lenbits, par, NULL); } else { ReaderTransmit(cmd,len, NULL); } - arg0 = ReaderReceive(buf); + arg0 = ReaderReceive(buf, par); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } if(param & ISO14A_REQUEST_TRIGGER) { - iso14a_set_trigger(0); + iso14a_set_trigger(FALSE); } if(param & ISO14A_NO_DISCONNECT) { @@ -1905,7 +1971,7 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i; nttmp2 = prng_successor(nttmp2, 1); - if (nttmp2 == nt1) return -i; + if (nttmp2 == nt1) return -i; } return(-99999); // either nt1 or nt2 are invalid nonces @@ -1925,22 +1991,31 @@ void ReaderMifare(bool first_try) uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; static uint8_t mf_nr_ar3; - uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); - iso14a_clear_trace(); - tracing = false; + uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; + + if (first_try) { + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + } + + // free eventually allocated BigBuf memory. We want all for tracing. + BigBuf_free(); + + clear_trace(); + set_tracing(TRUE); byte_t nt_diff = 0; - byte_t par = 0; - //byte_t par_mask = 0xff; + uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough static byte_t par_low = 0; bool led_on = TRUE; - uint8_t uid[10]; + uint8_t uid[10] ={0}; uint32_t cuid; - uint32_t nt, previous_nt; + uint32_t nt = 0; + uint32_t previous_nt = 0; static uint32_t nt_attacked = 0; - byte_t par_list[8] = {0,0,0,0,0,0,0,0}; - byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; + byte_t par_list[8] = {0x00}; + byte_t ks_list[8] = {0x00}; static uint32_t sync_time; static uint32_t sync_cycles; @@ -1949,25 +2024,19 @@ void ReaderMifare(bool first_try) uint16_t consecutive_resyncs = 0; int isOK = 0; - - if (first_try) { - StartCountMifare(); mf_nr_ar3 = 0; - iso14443a_setup(); - while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up" - sync_time = GetCountMifare() & 0xfffffff8; + sync_time = GetCountSspClk() & 0xfffffff8; sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). nt_attacked = 0; nt = 0; - par = 0; + par[0] = 0; } else { // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) - // nt_attacked = prng_successor(nt_attacked, 1); mf_nr_ar3++; mf_nr_ar[3] = mf_nr_ar3; - par = par_low; + par[0] = par_low; } LED_A_ON(); @@ -1975,30 +2044,30 @@ void ReaderMifare(bool first_try) LED_C_OFF(); + #define DARKSIDE_MAX_TRIES 32 // number of tries to sync on PRNG cycle. Then give up. + uint16_t unsuccessfull_tries = 0; + for(uint16_t i = 0; TRUE; i++) { + LED_C_ON(); WDT_HIT(); // Test if the action was cancelled if(BUTTON_PRESS()) { + isOK = -1; break; } - LED_C_ON(); - if(!iso14443a_select_card(uid, NULL, &cuid)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); continue; } - //keep the card active - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; catch_up_cycles = 0; // if we missed the sync time already, advance to the next nonce repeat - while(GetCountMifare() > sync_time) { + while(GetCountSspClk() > sync_time) { sync_time = (sync_time & 0xfffffff8) + sync_cycles; } @@ -2006,7 +2075,7 @@ void ReaderMifare(bool first_try) ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); // Receive the (4 Byte) "random" nonce - if (!ReaderReceive(receivedAnswer)) { + if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); continue; } @@ -2023,8 +2092,14 @@ void ReaderMifare(bool first_try) nt_attacked = nt; } else { - if (nt_distance == -99999) { // invalid nonce received, try again - continue; + if (nt_distance == -99999) { // invalid nonce received + unsuccessfull_tries++; + if (!nt_attacked && unsuccessfull_tries > DARKSIDE_MAX_TRIES) { + isOK = -3; // Card has an unpredictable PRNG. Give up + break; + } else { + continue; // continue trying... + } } sync_cycles = (sync_cycles - nt_distance); if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); @@ -2058,19 +2133,19 @@ void ReaderMifare(bool first_try) consecutive_resyncs = 0; // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding - if (ReaderReceive(receivedAnswer)) + if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer if (nt_diff == 0) { - par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change + par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change } led_on = !led_on; if(led_on) LED_B_ON(); else LED_B_OFF(); - par_list[nt_diff] = par; + par_list[nt_diff] = SwapBits(par[0], 8); ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // Test if the information is complete @@ -2081,20 +2156,21 @@ void ReaderMifare(bool first_try) nt_diff = (nt_diff + 1) & 0x07; mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); - par = par_low; + par[0] = par_low; } else { if (nt_diff == 0 && first_try) { - par++; + par[0]++; + if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. + isOK = -2; + break; + } } else { - par = (((par >> 3) + 1) << 3) | par_low; + par[0] = ((par[0] & 0x1F) + 1) | par_low; } } } - LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE); - LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE); - LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE); mf_nr_ar[3] &= 0x1F; @@ -2105,12 +2181,13 @@ void ReaderMifare(bool first_try) memcpy(buf + 16, ks_list, 8); memcpy(buf + 24, mf_nr_ar, 4); - cmd_send(CMD_ACK,isOK,0,0,buf,28); + cmd_send(CMD_ACK, isOK, 0, 0, buf, 28); // Thats it... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - tracing = TRUE; + + set_tracing(FALSE); } /** @@ -2131,8 +2208,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * int res; uint32_t selTimer = 0; uint32_t authTimer = 0; - uint32_t par = 0; - int len = 0; + uint16_t len = 0; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = 0xff; // no authentication @@ -2146,8 +2222,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); - uint8_t *response = eml_get_bigbufptr_sendbuf(); + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; + uint8_t response[MAX_MIFARE_FRAME_SIZE]; + uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; @@ -2157,39 +2235,31 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - + //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 // This can be used in a reader-only attack. // (it can also be retrieved via 'hf 14a list', but hey... uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; uint8_t ar_nr_collected = 0; - // clear trace - iso14a_clear_trace(); - - tracing = true; - - // Authenticate response - nonce + // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); - + //-- Determine the UID // Can be set from emulator memory, incoming data // and can be 7 or 4 bytes long - if(flags & FLAG_4B_UID_IN_DATA) + if (flags & FLAG_4B_UID_IN_DATA) { // 4B uid comes from data-portion of packet memcpy(rUIDBCC1,datain,4); rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - }else if(flags & FLAG_7B_UID_IN_DATA) - { + } else if (flags & FLAG_7B_UID_IN_DATA) { // 7B uid comes from data-portion of packet memcpy(&rUIDBCC1[1],datain,3); memcpy(rUIDBCC2, datain+3, 4); _7BUID = true; - } - else - { + } else { // get UID from emul memory emlGetMemBt(receivedCmd, 7, 1); _7BUID = !(receivedCmd[0] == 0x00); @@ -2200,48 +2270,48 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * emlGetMemBt(rUIDBCC2, 3, 4); } } + /* * Regardless of what method was used to set the UID, set fifth byte and modify * the ATQA for 4 or 7-byte UID */ - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - if(_7BUID) - { + if (_7BUID) { rATQA[0] = 0x44; rUIDBCC1[0] = 0x88; + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; } - // start mkseconds counter - StartCountUS(); - - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - SpinDelay(200); - if (MF_DBGLEVEL >= 1) { if (!_7BUID) { - Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]); - }else - { - Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]); + Dbprintf("4B UID: %02x%02x%02x%02x", + rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); + } else { + Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", + rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], + rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); } } - // calibrate mkseconds counter - GetDeltaCountUS(); - bool finished = false; + + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // free eventually allocated BigBuf memory but keep Emulator Memory + BigBuf_free_keep_EM(); + + // clear trace + clear_trace(); + set_tracing(TRUE); + + + bool finished = FALSE; while (!BUTTON_PRESS() && !finished) { WDT_HIT(); // find reader field - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV if (cardSTATE == MFEMUL_NOFIELD) { - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { cardSTATE_TO_IDLE(); LED_A_ON(); @@ -2251,14 +2321,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * //Now, get data - res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout) + res = EmGetCmd(receivedCmd, &len, receivedCmd_par); if (res == 2) { //Field is off! cardSTATE = MFEMUL_NOFIELD; LEDsoff(); continue; - }else if(res == 1) break;//return value 1 means button press - - + } else if (res == 1) { + break; //return value 1 means button press + } + // REQ or WUP request in ANY state and WUP in HALTED state if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { selTimer = GetTickCount(); @@ -2272,11 +2343,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardAUTHKEY = 0xff; continue; } - + switch (cardSTATE) { case MFEMUL_NOFIELD: case MFEMUL_HALTED: case MFEMUL_IDLE:{ + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } case MFEMUL_SELECT1:{ @@ -2294,12 +2366,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // select card if (len == 9 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - - if (!_7BUID) - EmSendCmd(rSAK, sizeof(rSAK)); - else - EmSendCmd(rSAK1, sizeof(rSAK1)); - + EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); cuid = bytes_to_num(rUIDBCC1, 4); if (!_7BUID) { cardSTATE = MFEMUL_WORK; @@ -2308,30 +2375,30 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } else { cardSTATE = MFEMUL_SELECT2; - break; } } - break; } case MFEMUL_AUTH1:{ if( len != 8) { cardSTATE_TO_IDLE(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } + uint32_t ar = bytes_to_num(receivedCmd, 4); - uint32_t nr= bytes_to_num(&receivedCmd[4], 4); + uint32_t nr = bytes_to_num(&receivedCmd[4], 4); //Collect AR/NR if(ar_nr_collected < 2){ - if(ar_nr_responses[ar_nr_collected*4+2] != ar) - {// Avoid duplicates - ar_nr_collected++; + if(ar_nr_responses[2] != ar) + {// Avoid duplicates... probably not necessary, ar should vary. ar_nr_responses[ar_nr_collected*4] = cuid; ar_nr_responses[ar_nr_collected*4+1] = nonce; ar_nr_responses[ar_nr_collected*4+2] = ar; ar_nr_responses[ar_nr_collected*4+3] = nr; + ar_nr_collected++; } } @@ -2341,11 +2408,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // test if auth OK if (cardRr != prng_successor(nonce, 64)){ - if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64)); - //Shouldn't we respond anything here? + if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + cardRr, prng_successor(nonce, 64)); + // Shouldn't we respond anything here? // Right now, we don't nack or anything, which causes the // reader to do a WUPA after a while. /Martin + // -- which is the correct response. /piwi cardSTATE_TO_IDLE(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } @@ -2356,12 +2427,16 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); LED_C_ON(); cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer); + if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + GetTickCount() - authTimer); break; } case MFEMUL_SELECT2:{ - if (!len) break; - + if (!len) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; + } if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); break; @@ -2371,7 +2446,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (len == 9 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { EmSendCmd(rSAK, sizeof(rSAK)); - cuid = bytes_to_num(rUIDBCC2, 4); cardSTATE = MFEMUL_WORK; LED_B_ON(); @@ -2380,22 +2454,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // i guess there is a command). go into the work state. - if (len != 4) break; + if (len != 4) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; + } cardSTATE = MFEMUL_WORK; //goto lbWORK; //intentional fall-through to the next case-stmt } - case MFEMUL_WORK:{ - if (len == 0) break; + case MFEMUL_WORK:{ + if (len == 0) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; + } + bool encrypted_data = (cardAUTHKEY != 0xFF) ; - if(encrypted_data) - { + if(encrypted_data) { // decrypt seqence mf_crypto1_decrypt(pcs, receivedCmd, len); } - + if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { authTimer = GetTickCount(); cardAUTHSC = receivedCmd[1] / 4; // received block num @@ -2404,22 +2484,22 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); if (!encrypted_data) { // first authentication - if (MF_DBGLEVEL >= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce - } - else{ // nested authentication - if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); + } else { // nested authentication + if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); cardSTATE = MFEMUL_AUTH1; break; } - + // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued // BUT... ACK --> NACK if (len == 1 && receivedCmd[0] == CARD_ACK) { @@ -2433,42 +2513,40 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } - if(len != 4) break; + if(len != 4) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; + } if(receivedCmd[0] == 0x30 // read block || receivedCmd[0] == 0xA0 // write block - || receivedCmd[0] == 0xC0 - || receivedCmd[0] == 0xC1 - || receivedCmd[0] == 0xC2 // inc dec restore - || receivedCmd[0] == 0xB0) // transfer - { - if (receivedCmd[1] >= 16 * 4) - { - + || receivedCmd[0] == 0xC0 // inc + || receivedCmd[0] == 0xC1 // dec + || receivedCmd[0] == 0xC2 // restore + || receivedCmd[0] == 0xB0) { // transfer + if (receivedCmd[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); break; } - if (receivedCmd[1] / 4 != cardAUTHSC) - { + if (receivedCmd[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); + if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); break; } } // read block if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 2) { + if (MF_DBGLEVEL >= 4) { Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); } emlGetMem(response, receivedCmd[1], 1); AppendCrc14443a(response, 16); - mf_crypto1_encrypt(pcs, response, 18, &par); - EmSendCmdPar(response, 18, par); + mf_crypto1_encrypt(pcs, response, 18, response_par); + EmSendCmdPar(response, 18, response_par); numReads++; - if(exitAfterNReads > 0 && numReads == exitAfterNReads) - { + if(exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); finished = true; } @@ -2476,18 +2554,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // write block if (receivedCmd[0] == 0xA0) { - if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); - + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - //nextCycleTimeout = 50; cardSTATE = MFEMUL_WRITEBL2; cardWRBL = receivedCmd[1]; break; - } + } // increment, decrement, restore if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { - if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); if (emlCheckValBl(receivedCmd[1])) { if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); @@ -2501,28 +2576,24 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (receivedCmd[0] == 0xC2) cardSTATE = MFEMUL_INTREG_REST; cardWRBL = receivedCmd[1]; - break; } - // transfer if (receivedCmd[0] == 0xB0) { - if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - break; } - // halt if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } // RATS @@ -2530,12 +2601,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } - // command not allowed if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - - // case break break; } case MFEMUL_WRITEBL2:{ @@ -2544,10 +2612,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * emlSetMem(receivedCmd, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardSTATE = MFEMUL_WORK; - break; } else { cardSTATE_TO_IDLE(); - break; + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } break; } @@ -2559,7 +2626,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; - } + } + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardINTREG = cardINTREG + ans; cardSTATE = MFEMUL_WORK; break; @@ -2572,6 +2640,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; break; @@ -2584,6 +2653,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardSTATE = MFEMUL_WORK; break; } @@ -2593,33 +2663,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - // add trace trailer - memset(rAUTH_NT, 0x44, 4); - LogTrace(rAUTH_NT, 4, 0, 0, TRUE); if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK { //May just aswell send the collected ar_nr in the response aswell cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4); } + if(flags & FLAG_NR_AR_ATTACK) { - if(ar_nr_collected > 1) - { + if(ar_nr_collected > 1) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); - Dbprintf("../tools/mfcrack32 %08x %08x %08x %08x", - ar_nr_responses[0], // UID + Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", + ar_nr_responses[0], // UID ar_nr_responses[1], //NT ar_nr_responses[2], //AR1 ar_nr_responses[3], //NR1 ar_nr_responses[6], //AR2 ar_nr_responses[7] //NR2 ); - }else - { + } else { Dbprintf("Failed to obtain two AR/NR pairs!"); - if(ar_nr_collected >0) - { - Dbprintf("Only got these: UID=%08d, nonce=%08d, AR1=%08d, NR1=%08d", + if(ar_nr_collected >0) { + Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", ar_nr_responses[0], // UID ar_nr_responses[1], //NT ar_nr_responses[2], //AR1 @@ -2628,7 +2693,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } } - if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); + if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + } @@ -2645,85 +2711,88 @@ void RAMFUNC SniffMifare(uint8_t param) { // C(red) A(yellow) B(green) LEDsoff(); // init trace buffer - iso14a_clear_trace(); + clear_trace(); + set_tracing(TRUE); // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); + uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; - - // The DMA buffer, used to stream samples from the FPGA - int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; - int8_t *data = dmaBuf; + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); + + // free eventually allocated BigBuf memory + BigBuf_free(); + // allocate the DMA buffer, used to stream samples from the FPGA + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + uint8_t *data = dmaBuf; + uint8_t previous_data = 0; int maxDataLen = 0; int dataLen = 0; + bool ReaderIsActive = FALSE; + bool TagIsActive = FALSE; // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; + DemodInit(receivedResponse, receivedResponsePar); // Set up the demodulator for the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); - Uart.output = receivedCmd; - Uart.byteCntMax = 32; // was 100 (greg)////////////////// - Uart.state = STATE_UNSYNCD; + UartInit(receivedCmd, receivedCmdPar); // Setup for the DMA. - FpgaSetupSsc(); - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // init sniffer MfSniffInit(); - int sniffCounter = 0; // And now we loop, receiving samples. - while(true) { + for(uint32_t sniffCounter = 0; TRUE; ) { + if(BUTTON_PRESS()) { DbpString("cancelled by button"); - goto done; + break; } LED_A_ON(); WDT_HIT(); - if (++sniffCounter > 65) { - if (MfSniffSend(2000)) { - FpgaEnableSscDma(); + if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time + // check if a transaction is completed (timeout after 2000ms). + // if yes, stop the DMA transfer and send what we have so far to the client + if (MfSniffSend(2000)) { + // Reset everything - we missed some sniffed data anyway while the DMA was stopped + sniffCounter = 0; + data = dmaBuf; + maxDataLen = 0; + ReaderIsActive = FALSE; + TagIsActive = FALSE; + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. } - sniffCounter = 0; } - - int register readBufDataP = data - dmaBuf; - int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; - if (readBufDataP <= dmaBufDataP){ - dataLen = dmaBufDataP - readBufDataP; - } else { - dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; + + int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far + int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred + if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred + dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed + } else { + dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed } // test for length of buffer - if(dataLen > maxDataLen) { - maxDataLen = dataLen; - if(dataLen > 400) { + if(dataLen > maxDataLen) { // we are more behind than ever... + maxDataLen = dataLen; + if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); - goto done; + break; } } if(dataLen < 1) continue; - // primary buffer was stopped( <-- we lost data! + // primary buffer was stopped ( <-- we lost data! if (!AT91C_BASE_PDC_SSC->PDC_RCR) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; @@ -2737,44 +2806,51 @@ void RAMFUNC SniffMifare(uint8_t param) { LED_A_OFF(); - if(MillerDecoding((data[0] & 0xF0) >> 4)) { - LED_C_INV(); - // check - if there is a short 7bit request from reader - if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break; - - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - - /* And also reset the demod code */ - Demod.state = DEMOD_UNSYNCD; - } + if (sniffCounter & 0x01) { - if(ManchesterDecoding(data[0], 0)) { - LED_C_INV(); + if(!TagIsActive) { // no need to try decoding tag data if the reader is sending + uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); + if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { + LED_C_INV(); + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; - if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; + /* And ready to receive another command. */ + UartReset(); + + /* And also reset the demod code */ + DemodReset(); + } + ReaderIsActive = (Uart.state != STATE_UNSYNCD); + } + + if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending + uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); + if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { + LED_C_INV(); - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; - Demod.state = DEMOD_UNSYNCD; + if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; - /* And also reset the uart code */ - Uart.state = STATE_UNSYNCD; + // And ready to receive another response. + DemodReset(); + } + TagIsActive = (Demod.state != DEMOD_UNSYNCD); + } } + previous_data = *data; + sniffCounter++; data++; - if(data > dmaBuf + DMA_BUFFER_SIZE) { + if(data == dmaBuf + DMA_BUFFER_SIZE) { data = dmaBuf; } + } // main cycle DbpString("COMMAND FINISHED"); -done: FpgaDisableSscDma(); MfSniffEnd(); - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax); + Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); LEDsoff(); }