X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d5d6f22718903a68bd097b6e276f3eaa33ca3788..00848e096b408a43786ea283d4e77d32189994b9:/armsrc/iclass.c?ds=sidebyside diff --git a/armsrc/iclass.c b/armsrc/iclass.c index 7b4daa36..6a2fd648 100644 --- a/armsrc/iclass.c +++ b/armsrc/iclass.c @@ -12,7 +12,7 @@ //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen -// +// // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // @@ -21,7 +21,7 @@ // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // -// + 22279: : 0c 03 e8 01 +// + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // @@ -31,17 +31,22 @@ // // A correct trace should look like this: // -// + 21112: : 0c 03 e8 01 -// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 +// + 21112: : 0c 03 e8 01 +// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- +#include "iclass.h" + #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" +#include "printf.h" #include "common.h" #include "cmd.h" +#include "iso14443a.h" +#include "iso15693.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) @@ -49,1046 +54,135 @@ #include "iso15693tools.h" #include "protocols.h" #include "optimized_cipher.h" +#include "usb_cdc.h" // for usb_poll_validate_length +#include "fpgaloader.h" -static int timeout = 4096; - - -static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); - -//----------------------------------------------------------------------------- -// The software UART that receives commands from the reader, and its state -// variables. -//----------------------------------------------------------------------------- -static struct { - enum { - STATE_UNSYNCD, - STATE_START_OF_COMMUNICATION, - STATE_RECEIVING - } state; - uint16_t shiftReg; - int bitCnt; - int byteCnt; - int byteCntMax; - int posCnt; - int nOutOfCnt; - int OutOfCnt; - int syncBit; - int samples; - int highCnt; - int swapper; - int counter; - int bitBuffer; - int dropPosition; - uint8_t *output; -} Uart; - -static RAMFUNC int OutOfNDecoding(int bit) -{ - //int error = 0; - int bitright; - - if(!Uart.bitBuffer) { - Uart.bitBuffer = bit ^ 0xFF0; - return FALSE; - } - else { - Uart.bitBuffer <<= 4; - Uart.bitBuffer ^= bit; - } - - /*if(Uart.swapper) { - Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; - Uart.byteCnt++; - Uart.swapper = 0; - if(Uart.byteCnt > 15) { return TRUE; } - } - else { - Uart.swapper = 1; - }*/ - - if(Uart.state != STATE_UNSYNCD) { - Uart.posCnt++; - - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { - bit = 0x00; - } - else { - bit = 0x01; - } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { - bitright = 0x00; - } - else { - bitright = 0x01; - } - if(bit != bitright) { bit = bitright; } - - - // So, now we only have to deal with *bit*, lets see... - if(Uart.posCnt == 1) { - // measurement first half bitperiod - if(!bit) { - // Drop in first half means that we are either seeing - // an SOF or an EOF. - - if(Uart.nOutOfCnt == 1) { - // End of Communication - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - if(Uart.byteCnt == 0) { - // Its not straightforward to show single EOFs - // So just leave it and do not return TRUE - Uart.output[0] = 0xf0; - Uart.byteCnt++; - } - else { - return TRUE; - } - } - else if(Uart.state != STATE_START_OF_COMMUNICATION) { - // When not part of SOF or EOF, it is an error - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - //error = 4; - } - } - } - else { - // measurement second half bitperiod - // Count the bitslot we are in... (ISO 15693) - Uart.nOutOfCnt++; - - if(!bit) { - if(Uart.dropPosition) { - if(Uart.state == STATE_START_OF_COMMUNICATION) { - //error = 1; - } - else { - //error = 7; - } - // It is an error if we already have seen a drop in current frame - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - } - else { - Uart.dropPosition = Uart.nOutOfCnt; - } - } - - Uart.posCnt = 0; - - - if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { - Uart.nOutOfCnt = 0; - - if(Uart.state == STATE_START_OF_COMMUNICATION) { - if(Uart.dropPosition == 4) { - Uart.state = STATE_RECEIVING; - Uart.OutOfCnt = 256; - } - else if(Uart.dropPosition == 3) { - Uart.state = STATE_RECEIVING; - Uart.OutOfCnt = 4; - //Uart.output[Uart.byteCnt] = 0xdd; - //Uart.byteCnt++; - } - else { - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - } - Uart.dropPosition = 0; - } - else { - // RECEIVING DATA - // 1 out of 4 - if(!Uart.dropPosition) { - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - //error = 9; - } - else { - Uart.shiftReg >>= 2; - - // Swap bit order - Uart.dropPosition--; - //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } - //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } - - Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); - Uart.bitCnt += 2; - Uart.dropPosition = 0; - - if(Uart.bitCnt == 8) { - Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); - Uart.byteCnt++; - Uart.bitCnt = 0; - Uart.shiftReg = 0; - } - } - } - } - else if(Uart.nOutOfCnt == Uart.OutOfCnt) { - // RECEIVING DATA - // 1 out of 256 - if(!Uart.dropPosition) { - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - //error = 3; - } - else { - Uart.dropPosition--; - Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); - Uart.byteCnt++; - Uart.bitCnt = 0; - Uart.shiftReg = 0; - Uart.nOutOfCnt = 0; - Uart.dropPosition = 0; - } - } - - /*if(error) { - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = error & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - return TRUE; - }*/ - } - - } - else { - bit = Uart.bitBuffer & 0xf0; - bit >>= 4; - bit ^= 0x0F; // drops become 1s ;-) - if(bit) { - // should have been high or at least (4 * 128) / fc - // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { - // we went low, so this could be start of communication - // it turns out to be safer to choose a less significant - // syncbit... so we check whether the neighbour also represents the drop - Uart.posCnt = 1; // apparently we are busy with our first half bit period - Uart.syncBit = bit & 8; - Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit && (Uart.bitBuffer & 8)) { - Uart.syncBit = 8; - - // the first half bit period is expected in next sample - Uart.posCnt = 0; - Uart.samples = 3; - } - } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } - - Uart.syncBit <<= 4; - Uart.state = STATE_START_OF_COMMUNICATION; - Uart.bitCnt = 0; - Uart.byteCnt = 0; - Uart.nOutOfCnt = 0; - Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 - Uart.dropPosition = 0; - Uart.shiftReg = 0; - //error = 0; - } - else { - Uart.highCnt = 0; - } - } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } - } - } - - return FALSE; -} - -//============================================================================= -// Manchester -//============================================================================= - -static struct { - enum { - DEMOD_UNSYNCD, - DEMOD_START_OF_COMMUNICATION, - DEMOD_START_OF_COMMUNICATION2, - DEMOD_START_OF_COMMUNICATION3, - DEMOD_SOF_COMPLETE, - DEMOD_MANCHESTER_D, - DEMOD_MANCHESTER_E, - DEMOD_END_OF_COMMUNICATION, - DEMOD_END_OF_COMMUNICATION2, - DEMOD_MANCHESTER_F, - DEMOD_ERROR_WAIT - } state; - int bitCount; - int posCount; - int syncBit; - uint16_t shiftReg; - int buffer; - int buffer2; - int buffer3; - int buff; - int samples; - int len; - enum { - SUB_NONE, - SUB_FIRST_HALF, - SUB_SECOND_HALF, - SUB_BOTH - } sub; - uint8_t *output; -} Demod; - -static RAMFUNC int ManchesterDecoding(int v) -{ - int bit; - int modulation; - int error = 0; - - bit = Demod.buffer; - Demod.buffer = Demod.buffer2; - Demod.buffer2 = Demod.buffer3; - Demod.buffer3 = v; - - if(Demod.buff < 3) { - Demod.buff++; - return FALSE; - } - - if(Demod.state==DEMOD_UNSYNCD) { - Demod.output[Demod.len] = 0xfa; - Demod.syncBit = 0; - //Demod.samples = 0; - Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part - - if(bit & 0x08) { - Demod.syncBit = 0x08; - } - - if(bit & 0x04) { - if(Demod.syncBit) { - bit <<= 4; - } - Demod.syncBit = 0x04; - } - - if(bit & 0x02) { - if(Demod.syncBit) { - bit <<= 2; - } - Demod.syncBit = 0x02; - } - - if(bit & 0x01 && Demod.syncBit) { - Demod.syncBit = 0x01; - } - - if(Demod.syncBit) { - Demod.len = 0; - Demod.state = DEMOD_START_OF_COMMUNICATION; - Demod.sub = SUB_FIRST_HALF; - Demod.bitCount = 0; - Demod.shiftReg = 0; - Demod.samples = 0; - if(Demod.posCount) { - //if(trigger) LED_A_OFF(); // Not useful in this case... - switch(Demod.syncBit) { - case 0x08: Demod.samples = 3; break; - case 0x04: Demod.samples = 2; break; - case 0x02: Demod.samples = 1; break; - case 0x01: Demod.samples = 0; break; - } - // SOF must be long burst... otherwise stay unsynced!!! - if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { - Demod.state = DEMOD_UNSYNCD; - } - } - else { - // SOF must be long burst... otherwise stay unsynced!!! - if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { - Demod.state = DEMOD_UNSYNCD; - error = 0x88; - } - - } - error = 0; +// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after +// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period. +// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating. +// 56,64us = 24 ssp_clk_cycles +#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24) +// times in ssp_clk_cycles @ 3,3625MHz when acting as reader +#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER +// times in samples @ 212kHz when acting as reader +#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us +#define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms +#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us - } - } - else { - modulation = bit & Demod.syncBit; - modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; +#define ICLASS_BUFFER_SIZE 34 // we expect max 34 bytes as tag answer (response to READ4) - Demod.samples += 4; - - if(Demod.posCount==0) { - Demod.posCount = 1; - if(modulation) { - Demod.sub = SUB_FIRST_HALF; - } - else { - Demod.sub = SUB_NONE; - } - } - else { - Demod.posCount = 0; - /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { - if(Demod.state!=DEMOD_ERROR_WAIT) { - Demod.state = DEMOD_ERROR_WAIT; - Demod.output[Demod.len] = 0xaa; - error = 0x01; - } - }*/ - //else if(modulation) { - if(modulation) { - if(Demod.sub == SUB_FIRST_HALF) { - Demod.sub = SUB_BOTH; - } - else { - Demod.sub = SUB_SECOND_HALF; - } - } - else if(Demod.sub == SUB_NONE) { - if(Demod.state == DEMOD_SOF_COMPLETE) { - Demod.output[Demod.len] = 0x0f; - Demod.len++; - Demod.state = DEMOD_UNSYNCD; -// error = 0x0f; - return TRUE; - } - else { - Demod.state = DEMOD_ERROR_WAIT; - error = 0x33; - } - /*if(Demod.state!=DEMOD_ERROR_WAIT) { - Demod.state = DEMOD_ERROR_WAIT; - Demod.output[Demod.len] = 0xaa; - error = 0x01; - }*/ - } - - switch(Demod.state) { - case DEMOD_START_OF_COMMUNICATION: - if(Demod.sub == SUB_BOTH) { - //Demod.state = DEMOD_MANCHESTER_D; - Demod.state = DEMOD_START_OF_COMMUNICATION2; - Demod.posCount = 1; - Demod.sub = SUB_NONE; - } - else { - Demod.output[Demod.len] = 0xab; - Demod.state = DEMOD_ERROR_WAIT; - error = 0xd2; - } - break; - case DEMOD_START_OF_COMMUNICATION2: - if(Demod.sub == SUB_SECOND_HALF) { - Demod.state = DEMOD_START_OF_COMMUNICATION3; - } - else { - Demod.output[Demod.len] = 0xab; - Demod.state = DEMOD_ERROR_WAIT; - error = 0xd3; - } - break; - case DEMOD_START_OF_COMMUNICATION3: - if(Demod.sub == SUB_SECOND_HALF) { -// Demod.state = DEMOD_MANCHESTER_D; - Demod.state = DEMOD_SOF_COMPLETE; - //Demod.output[Demod.len] = Demod.syncBit & 0xFF; - //Demod.len++; - } - else { - Demod.output[Demod.len] = 0xab; - Demod.state = DEMOD_ERROR_WAIT; - error = 0xd4; - } - break; - case DEMOD_SOF_COMPLETE: - case DEMOD_MANCHESTER_D: - case DEMOD_MANCHESTER_E: - // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) - // 00001111 = 1 (0 in 14443) - if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; - Demod.state = DEMOD_MANCHESTER_D; - } - else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF - Demod.bitCount++; - Demod.shiftReg >>= 1; - Demod.state = DEMOD_MANCHESTER_E; - } - else if(Demod.sub == SUB_BOTH) { - Demod.state = DEMOD_MANCHESTER_F; - } - else { - Demod.state = DEMOD_ERROR_WAIT; - error = 0x55; - } - break; - - case DEMOD_MANCHESTER_F: - // Tag response does not need to be a complete byte! - if(Demod.len > 0 || Demod.bitCount > 0) { - if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF - Demod.shiftReg >>= (9 - Demod.bitCount); // right align data - Demod.output[Demod.len] = Demod.shiftReg & 0xff; - Demod.len++; - } - - Demod.state = DEMOD_UNSYNCD; - return TRUE; - } - else { - Demod.output[Demod.len] = 0xad; - Demod.state = DEMOD_ERROR_WAIT; - error = 0x03; - } - break; - - case DEMOD_ERROR_WAIT: - Demod.state = DEMOD_UNSYNCD; - break; - - default: - Demod.output[Demod.len] = 0xdd; - Demod.state = DEMOD_UNSYNCD; - break; - } - - /*if(Demod.bitCount>=9) { - Demod.output[Demod.len] = Demod.shiftReg & 0xff; - Demod.len++; - - Demod.parityBits <<= 1; - Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); - - Demod.bitCount = 0; - Demod.shiftReg = 0; - }*/ - if(Demod.bitCount>=8) { - Demod.shiftReg >>= 1; - Demod.output[Demod.len] = (Demod.shiftReg & 0xff); - Demod.len++; - Demod.bitCount = 0; - Demod.shiftReg = 0; - } - - if(error) { - Demod.output[Demod.len] = 0xBB; - Demod.len++; - Demod.output[Demod.len] = error & 0xFF; - Demod.len++; - Demod.output[Demod.len] = 0xBB; - Demod.len++; - Demod.output[Demod.len] = bit & 0xFF; - Demod.len++; - Demod.output[Demod.len] = Demod.buffer & 0xFF; - Demod.len++; - // Look harder ;-) - Demod.output[Demod.len] = Demod.buffer2 & 0xFF; - Demod.len++; - Demod.output[Demod.len] = Demod.syncBit & 0xFF; - Demod.len++; - Demod.output[Demod.len] = 0xBB; - Demod.len++; - return TRUE; - } - - } - - } // end (state != UNSYNCED) - - return FALSE; -} //============================================================================= -// Finally, a `sniffer' for iClass communication +// A `sniffer' for iClass communication // Both sides of communication! //============================================================================= - -//----------------------------------------------------------------------------- -// Record the sequence of commands sent by the reader to the tag, with -// triggering so that we start recording at the point that the tag is moved -// near the reader. -//----------------------------------------------------------------------------- -void RAMFUNC SnoopIClass(void) -{ - - - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - //int triggered = FALSE; // FALSE to wait first for card - - // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - #define ICLASS_BUFFER_SIZE 32 - uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; - // The response (tag -> reader) that we're receiving. - uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; - - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - - // free all BigBuf memory - BigBuf_free(); - // The DMA buffer, used to stream samples from the FPGA - uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); - - set_tracing(TRUE); - clear_trace(); - iso14a_set_trigger(FALSE); - - int lastRxCounter; - uint8_t *upTo; - int smpl; - int maxBehindBy = 0; - - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - int samples = 0; - rsamples = 0; - - // Set up the demodulator for tag -> reader responses. - Demod.output = tagToReaderResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - // Setup for the DMA. - FpgaSetupSsc(); - upTo = dmaBuf; - lastRxCounter = DMA_BUFFER_SIZE; - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); - - // And the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); - Uart.output = readerToTagCmd; - Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// - Uart.state = STATE_UNSYNCD; - - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - uint32_t time_0 = GetCountSspClk(); - uint32_t time_start = 0; - uint32_t time_stop = 0; - - int div = 0; - //int div2 = 0; - int decbyte = 0; - int decbyter = 0; - - // And now we loop, receiving samples. - for(;;) { - LED_A_ON(); - WDT_HIT(); - int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & - (DMA_BUFFER_SIZE-1); - if(behindBy > maxBehindBy) { - maxBehindBy = behindBy; - if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) { - Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); - goto done; - } - } - if(behindBy < 1) continue; - - LED_A_OFF(); - smpl = upTo[0]; - upTo++; - lastRxCounter -= 1; - if(upTo - dmaBuf > DMA_BUFFER_SIZE) { - upTo -= DMA_BUFFER_SIZE; - lastRxCounter += DMA_BUFFER_SIZE; - AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; - AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; - } - - //samples += 4; - samples += 1; - - if(smpl & 0xF) { - decbyte ^= (1 << (3 - div)); - } - - // FOR READER SIDE COMMUMICATION... - - decbyter <<= 2; - decbyter ^= (smpl & 0x30); - - div++; - - if((div + 1) % 2 == 0) { - smpl = decbyter; - if(OutOfNDecoding((smpl & 0xF0) >> 4)) { - rsamples = samples - Uart.samples; - time_stop = (GetCountSspClk()-time_0) << 4; - LED_C_ON(); - - //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; - //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; - if(tracing) { - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(Uart.output, Uart.byteCnt, parity); - LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE); - } - - - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - /* And also reset the demod code, which might have been */ - /* false-triggered by the commands from the reader. */ - Demod.state = DEMOD_UNSYNCD; - LED_B_OFF(); - Uart.byteCnt = 0; - }else{ - time_start = (GetCountSspClk()-time_0) << 4; - } - decbyter = 0; - } - - if(div > 3) { - smpl = decbyte; - if(ManchesterDecoding(smpl & 0x0F)) { - time_stop = (GetCountSspClk()-time_0) << 4; - - rsamples = samples - Demod.samples; - LED_B_ON(); - - if(tracing) { - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(Demod.output, Demod.len, parity); - LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE); - } - - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = tagToReaderResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); - }else{ - time_start = (GetCountSspClk()-time_0) << 4; - } - - div = 0; - decbyte = 0x00; - } - //} - - if(BUTTON_PRESS()) { - DbpString("cancelled_a"); - goto done; - } - } - - DbpString("COMMAND FINISHED"); - - Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); - Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); - -done: - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); - Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - LED_D_OFF(); +void SnoopIClass(uint8_t jam_search_len, uint8_t *jam_search_string) { + SnoopIso15693(jam_search_len, jam_search_string); } + void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { - int i; - for(i = 0; i < 8; i++) { + int i; + for (i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } -//----------------------------------------------------------------------------- -// Wait for commands from reader -// Stop when button is pressed -// Or return TRUE when command is captured -//----------------------------------------------------------------------------- -static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) -{ - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; - - for(;;) { - WDT_HIT(); - - if(BUTTON_PRESS()) return FALSE; - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - - if(OutOfNDecoding(b & 0x0f)) { - *len = Uart.byteCnt; - return TRUE; - } - } - } -} - -static uint8_t encode4Bits(const uint8_t b) -{ - uint8_t c = b & 0xF; - // OTA, the least significant bits first - // The columns are - // 1 - Bit value to send - // 2 - Reversed (big-endian) - // 3 - Encoded - // 4 - Hex values - - switch(c){ - // 1 2 3 4 - case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 - case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 - case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 - case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 - case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 - case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 - case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 - case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 - case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 - case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 - case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 - case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 - case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a - case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a - case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a - default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa - - } -} - -//----------------------------------------------------------------------------- -// Prepare tag messages -//----------------------------------------------------------------------------- -static void CodeIClassTagAnswer(const uint8_t *cmd, int len) -{ - - /* - * SOF comprises 3 parts; - * * An unmodulated time of 56.64 us - * * 24 pulses of 423.75 KHz (fc/32) - * * A logic 1, which starts with an unmodulated time of 18.88us - * followed by 8 pulses of 423.75kHz (fc/32) - * - * - * EOF comprises 3 parts: - * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated - * time of 18.88us. - * - 24 pulses of fc/32 - * - An unmodulated time of 56.64 us - * - * - * A logic 0 starts with 8 pulses of fc/32 - * followed by an unmodulated time of 256/fc (~18,88us). - * - * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by - * 8 pulses of fc/32 (also 18.88us) - * - * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, - * works like this. - * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). - * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us - * - * In this mode the SOF can be written as 00011101 = 0x1D - * The EOF can be written as 10111000 = 0xb8 - * A logic 1 is 01 - * A logic 0 is 10 - * - * */ - - int i; +// Encode SOF only +static void CodeIClassTagSOF() { ToSendReset(); - - // Send SOF ToSend[++ToSendMax] = 0x1D; - - for(i = 0; i < len; i++) { - uint8_t b = cmd[i]; - ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half - ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half - } - - // Send EOF - ToSend[++ToSendMax] = 0xB8; - //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end - // Convert from last byte pos to length ToSendMax++; } -// Only SOF -static void CodeIClassTagSOF() -{ - //So far a dummy implementation, not used - //int lastProxToAirDuration =0; - ToSendReset(); - // Send SOF - ToSend[++ToSendMax] = 0x1D; -// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning - - // Convert from last byte pos to length - ToSendMax++; +static void AppendCrc(uint8_t *data, int len) { + ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); } -#define MODE_SIM_CSN 0 -#define MODE_EXIT_AFTER_MAC 1 -#define MODE_FULLSIM 2 - -int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); -/** - * @brief SimulateIClass simulates an iClass card. - * @param arg0 type of simulation - * - 0 uses the first 8 bytes in usb data as CSN - * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified - * in the usb data. This mode collects MAC from the reader, in order to do an offline - * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. - * - Other : Uses the default CSN (031fec8af7ff12e0) - * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) - * @param arg2 - * @param datain - */ -void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) -{ - uint32_t simType = arg0; - uint32_t numberOfCSNS = arg1; - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - - // Enable and clear the trace - set_tracing(TRUE); - clear_trace(); - //Use the emulator memory for SIM - uint8_t *emulator = BigBuf_get_EM_addr(); - - if(simType == 0) { - // Use the CSN from commandline - memcpy(emulator, datain, 8); - doIClassSimulation(MODE_SIM_CSN,NULL); - }else if(simType == 1) - { - //Default CSN - uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; - // Use the CSN from commandline - memcpy(emulator, csn_crc, 8); - doIClassSimulation(MODE_SIM_CSN,NULL); - } - else if(simType == 2) - { - - uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; - Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); - // In this mode, a number of csns are within datain. We'll simulate each one, one at a time - // in order to collect MAC's from the reader. This can later be used in an offlne-attack - // in order to obtain the keys, as in the "dismantling iclass"-paper. - int i = 0; - for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) - { - // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. - - memcpy(emulator, datain+(i*8), 8); - if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) - { - cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); - return; // Button pressed - } - } - cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); - }else if(simType == 3){ - //This is 'full sim' mode, where we use the emulator storage for data. - doIClassSimulation(MODE_FULLSIM, NULL); - } - else{ - // We may want a mode here where we hardcode the csns to use (from proxclone). - // That will speed things up a little, but not required just yet. - Dbprintf("The mode is not implemented, reserved for future use"); - } - Dbprintf("Done..."); - -} -void AppendCrc(uint8_t* data, int len) -{ - ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1); -} /** * @brief Does the actual simulation - * @param csn - csn to use - * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ -int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) -{ +int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { + // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); - State cipher_state; -// State cipher_state_reserve; - uint8_t *csn = BigBuf_get_EM_addr(); - uint8_t *emulator = csn; - uint8_t sof_data[] = { 0x0F} ; + uint16_t page_size = 32 * 8; + uint8_t current_page = 0; + + // maintain cipher states for both credit and debit key for each page + State cipher_state_KC[8]; + State cipher_state_KD[8]; + State *cipher_state = &cipher_state_KD[0]; + + uint8_t *emulator = BigBuf_get_EM_addr(); + uint8_t *csn = emulator; + // CSN followed by two CRC bytes - uint8_t anticoll_data[10] = { 0 }; - uint8_t csn_data[10] = { 0 }; - memcpy(csn_data,csn,sizeof(csn_data)); - Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); + uint8_t anticoll_data[10]; + uint8_t csn_data[10]; + memcpy(csn_data, csn, sizeof(csn_data)); + Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); // Construct anticollision-CSN - rotateCSN(csn_data,anticoll_data); + rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs - ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); - ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); + AppendCrc(anticoll_data, 8); + AppendCrc(csn_data, 8); + + uint8_t diversified_key_d[8] = { 0x00 }; + uint8_t diversified_key_c[8] = { 0x00 }; + uint8_t *diversified_key = diversified_key_d; + + // configuration block + uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; - uint8_t diversified_key[8] = { 0 }; // e-Purse - uint8_t card_challenge_data[8] = { 0x00 }; - if(simulationMode == MODE_FULLSIM) - { - //The diversified key should be stored on block 3 - //Get the diversified key from emulator memory - memcpy(diversified_key, emulator+(8*3),8); + uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; + + if (simulationMode == ICLASS_SIM_MODE_FULL) { + // initialize from page 0 + memcpy(conf_block, emulator + 8 * 1, 8); + memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse + memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd + memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc + } - //Card challenge, a.k.a e-purse is on block 2 - memcpy(card_challenge_data,emulator + (8 * 2) , 8); - //Precalculate the cipher state, feeding it the CC - cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key); + AppendCrc(conf_block, 8); + + // save card challenge for sim2,4 attack + if (reader_mac_buf != NULL) { + memcpy(reader_mac_buf, card_challenge_data, 8); + } + if (conf_block[5] & 0x80) { + page_size = 256 * 8; + } + + // From PicoPass DS: + // When the page is in personalization mode this bit is equal to 1. + // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0: + // the page is then "in application mode". + bool personalization_mode = conf_block[7] & 0x80; + + // chip memory may be divided in 8 pages + uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7; + + // Precalculate the cipher states, feeding it the CC + cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); + cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); + if (simulationMode == ICLASS_SIM_MODE_FULL) { + for (int i = 1; i < max_page; i++) { + uint8_t *epurse = emulator + i*page_size + 8*2; + uint8_t *Kd = emulator + i*page_size + 8*3; + uint8_t *Kc = emulator + i*page_size + 8*4; + cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd); + cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc); + } } int exitLoop = 0; @@ -1101,769 +195,717 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) uint8_t *modulated_response; int modulated_response_size = 0; - uint8_t* trace_data = NULL; + uint8_t *trace_data = NULL; int trace_data_size = 0; - // Respond SOF -- takes 1 bytes - uint8_t *resp_sof = BigBuf_malloc(2); + uint8_t *resp_sof = BigBuf_malloc(1); int resp_sof_Len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) - uint8_t *resp_anticoll = BigBuf_malloc(28); + uint8_t *resp_anticoll = BigBuf_malloc(22); int resp_anticoll_len; - // CSN + // CSN (block 0) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) - uint8_t *resp_csn = BigBuf_malloc(30); + uint8_t *resp_csn = BigBuf_malloc(22); int resp_csn_len; - // e-Purse + // configuration (block 1) picopass 2ks + uint8_t *resp_conf = BigBuf_malloc(22); + int resp_conf_len; + + // e-Purse (block 2) // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) - uint8_t *resp_cc = BigBuf_malloc(20); + uint8_t *resp_cc = BigBuf_malloc(18); int resp_cc_len; + // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only + uint8_t *resp_ff = BigBuf_malloc(22); + int resp_ff_len; + uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; + AppendCrc(ff_data, 8); + + // Application Issuer Area (block 5) + uint8_t *resp_aia = BigBuf_malloc(22); + int resp_aia_len; + uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; + AppendCrc(aia_data, 8); + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); - memset(receivedCmd, 0x44, MAX_FRAME_SIZE); int len; // Prepare card messages - ToSendMax = 0; - // First card answer: SOF + // First card answer: SOF only CodeIClassTagSOF(); - memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; + memcpy(resp_sof, ToSend, ToSendMax); + resp_sof_Len = ToSendMax; // Anticollision CSN - CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); - memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; - - // CSN - CodeIClassTagAnswer(csn_data, sizeof(csn_data)); - memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; - - // e-Purse - CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); - memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; + CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); + memcpy(resp_anticoll, ToSend, ToSendMax); + resp_anticoll_len = ToSendMax; + + // CSN (block 0) + CodeIso15693AsTag(csn_data, sizeof(csn_data)); + memcpy(resp_csn, ToSend, ToSendMax); + resp_csn_len = ToSendMax; + + // Configuration (block 1) + CodeIso15693AsTag(conf_block, sizeof(conf_block)); + memcpy(resp_conf, ToSend, ToSendMax); + resp_conf_len = ToSendMax; + + // e-Purse (block 2) + CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); + memcpy(resp_cc, ToSend, ToSendMax); + resp_cc_len = ToSendMax; + + // Kd, Kc (blocks 3 and 4) + CodeIso15693AsTag(ff_data, sizeof(ff_data)); + memcpy(resp_ff, ToSend, ToSendMax); + resp_ff_len = ToSendMax; + + // Application Issuer Area (block 5) + CodeIso15693AsTag(aia_data, sizeof(aia_data)); + memcpy(resp_aia, ToSend, ToSendMax); + resp_aia_len = ToSendMax; //This is used for responding to READ-block commands or other data which is dynamically generated - //First the 'trace'-data, not encoded for FPGA - uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer - //Then storage for the modulated data - //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) - uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2); - - // Start from off (no field generated) - //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - //SpinDelay(200); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - SpinDelay(100); - StartCountSspClk(); - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); - - // To control where we are in the protocol - int cmdsRecvd = 0; - uint32_t time_0 = GetCountSspClk(); - uint32_t t2r_time =0; - uint32_t r2t_time =0; + uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer + uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2); - LED_A_ON(); bool buttonPressed = false; - uint8_t response_delay = 1; - while(!exitLoop) { - response_delay = 1; - LED_B_OFF(); - //Signal tracer - // Can be used to get a trigger for an oscilloscope.. - LED_C_OFF(); - - if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { + enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; + + while (!exitLoop) { + WDT_HIT(); + + uint32_t reader_eof_time = 0; + len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); + if (len < 0) { buttonPressed = true; break; } - r2t_time = GetCountSspClk(); - //Signal tracer - LED_C_ON(); - - // Okay, look at the command now. - if(receivedCmd[0] == ICLASS_CMD_ACTALL ) { - // Reader in anticollission phase - modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; - trace_data = sof_data; - trace_data_size = sizeof(sof_data); - } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { - // Reader asks for anticollission CSN - modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; - trace_data = anticoll_data; - trace_data_size = sizeof(anticoll_data); - //DbpString("Reader requests anticollission CSN:"); - } else if(receivedCmd[0] == ICLASS_CMD_SELECT) { - // Reader selects anticollission CSN. + + // Now look at the reader command and provide appropriate responses + // default is no response: + modulated_response = NULL; + modulated_response_size = 0; + trace_data = NULL; + trace_data_size = 0; + + if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) { + // Reader in anticollision phase + if (chip_state != HALTED) { + modulated_response = resp_sof; + modulated_response_size = resp_sof_Len; + chip_state = ACTIVATED; + } + + } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify + // Reader asks for anticollision CSN + if (chip_state == SELECTED || chip_state == ACTIVATED) { + modulated_response = resp_anticoll; + modulated_response_size = resp_anticoll_len; + trace_data = anticoll_data; + trace_data_size = sizeof(anticoll_data); + } + + } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) { + // Reader selects anticollision CSN. // Tag sends the corresponding real CSN - modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; - trace_data = csn_data; - trace_data_size = sizeof(csn_data); - //DbpString("Reader selects anticollission CSN:"); - } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { - // Read e-purse (88 02) - modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; - trace_data = card_challenge_data; - trace_data_size = sizeof(card_challenge_data); - LED_B_ON(); - } else if(receivedCmd[0] == ICLASS_CMD_CHECK) { + if (chip_state == ACTIVATED || chip_state == SELECTED) { + if (!memcmp(receivedCmd+1, anticoll_data, 8)) { + modulated_response = resp_csn; + modulated_response_size = resp_csn_len; + trace_data = csn_data; + trace_data_size = sizeof(csn_data); + chip_state = SELECTED; + } else { + chip_state = IDLE; + } + } else if (chip_state == HALTED) { + // RESELECT with CSN + if (!memcmp(receivedCmd+1, csn_data, 8)) { + modulated_response = resp_csn; + modulated_response_size = resp_csn_len; + trace_data = csn_data; + trace_data_size = sizeof(csn_data); + chip_state = SELECTED; + } + } + + } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block + uint16_t blockNo = receivedCmd[1]; + if (chip_state == SELECTED) { + if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { + // provide defaults for blocks 0 ... 5 + switch (blockNo) { + case 0: // csn (block 00) + modulated_response = resp_csn; + modulated_response_size = resp_csn_len; + trace_data = csn_data; + trace_data_size = sizeof(csn_data); + break; + case 1: // configuration (block 01) + modulated_response = resp_conf; + modulated_response_size = resp_conf_len; + trace_data = conf_block; + trace_data_size = sizeof(conf_block); + break; + case 2: // e-purse (block 02) + modulated_response = resp_cc; + modulated_response_size = resp_cc_len; + trace_data = card_challenge_data; + trace_data_size = sizeof(card_challenge_data); + // set epurse of sim2,4 attack + if (reader_mac_buf != NULL) { + memcpy(reader_mac_buf, card_challenge_data, 8); + } + break; + case 3: + case 4: // Kd, Kc, always respond with 0xff bytes + modulated_response = resp_ff; + modulated_response_size = resp_ff_len; + trace_data = ff_data; + trace_data_size = sizeof(ff_data); + break; + case 5: // Application Issuer Area (block 05) + modulated_response = resp_aia; + modulated_response_size = resp_aia_len; + trace_data = aia_data; + trace_data_size = sizeof(aia_data); + break; + // default: don't respond + } + } else if (simulationMode == ICLASS_SIM_MODE_FULL) { + if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes + modulated_response = resp_ff; + modulated_response_size = resp_ff_len; + trace_data = ff_data; + trace_data_size = sizeof(ff_data); + } else { // use data from emulator memory + memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8); + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIso15693AsTag(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + } + } + } + + } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD + || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) { + // Read e-purse (88 02 || 18 02) + if (chip_state == SELECTED) { + if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){ + cipher_state = &cipher_state_KD[current_page]; + diversified_key = diversified_key_d; + } else { + cipher_state = &cipher_state_KC[current_page]; + diversified_key = diversified_key_c; + } + modulated_response = resp_cc; + modulated_response_size = resp_cc_len; + trace_data = card_challenge_data; + trace_data_size = sizeof(card_challenge_data); + } + + } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC + || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) { // Reader random and reader MAC!!! - if(simulationMode == MODE_FULLSIM) - { - //NR, from reader, is in receivedCmd +1 - opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); + if (chip_state == SELECTED) { + if (simulationMode == ICLASS_SIM_MODE_FULL) { + //NR, from reader, is in receivedCmd+1 + opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key); + trace_data = data_generic_trace; + trace_data_size = 4; + CodeIso15693AsTag(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + //exitLoop = true; + } else { // Not fullsim, we don't respond + // We do not know what to answer, so lets keep quiet + if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { + if (reader_mac_buf != NULL) { + // save NR and MAC for sim 2,4 + memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); + } + exitLoop = true; + } + } + } + + } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { + if (chip_state == SELECTED) { + // Reader ends the session + modulated_response = resp_sof; + modulated_response_size = resp_sof_Len; + chip_state = HALTED; + } + } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 + //Read 4 blocks + if (chip_state == SELECTED) { + uint8_t blockNo = receivedCmd[1]; + memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4); + AppendCrc(data_generic_trace, 8 * 4); trace_data = data_generic_trace; - trace_data_size = 4; - CodeIClassTagAnswer(trace_data , trace_data_size); + trace_data_size = 8 * 4 + 2; + CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; - response_delay = 0;//We need to hurry here... - //exitLoop = true; - }else - { //Not fullsim, we don't respond - // We do not know what to answer, so lets keep quiet - modulated_response = resp_sof; modulated_response_size = 0; - trace_data = NULL; - trace_data_size = 0; - if (simulationMode == MODE_EXIT_AFTER_MAC){ - // dbprintf:ing ... - Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" - ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); - Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, - receivedCmd[0], receivedCmd[1], receivedCmd[2], - receivedCmd[3], receivedCmd[4], receivedCmd[5], - receivedCmd[6], receivedCmd[7], receivedCmd[8]); - if (reader_mac_buf != NULL) - { - memcpy(reader_mac_buf,receivedCmd+1,8); + } + + } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { + // We're expected to respond with the data+crc, exactly what's already in the receivedCmd + // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b + if (chip_state == SELECTED) { + uint8_t blockNo = receivedCmd[1]; + if (blockNo == 2) { // update e-purse + memcpy(card_challenge_data, receivedCmd+2, 8); + CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); + memcpy(resp_cc, ToSend, ToSendMax); + resp_cc_len = ToSendMax; + cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); + cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); + if (simulationMode == ICLASS_SIM_MODE_FULL) { + memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8); } - exitLoop = true; + } else if (blockNo == 3) { // update Kd + for (int i = 0; i < 8; i++) { + if (personalization_mode) { + diversified_key_d[i] = receivedCmd[2 + i]; + } else { + diversified_key_d[i] ^= receivedCmd[2 + i]; + } + } + cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); + if (simulationMode == ICLASS_SIM_MODE_FULL) { + memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8); + } + } else if (blockNo == 4) { // update Kc + for (int i = 0; i < 8; i++) { + if (personalization_mode) { + diversified_key_c[i] = receivedCmd[2 + i]; + } else { + diversified_key_c[i] ^= receivedCmd[2 + i]; + } + } + cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); + if (simulationMode == ICLASS_SIM_MODE_FULL) { + memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8); + } + } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block + memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8); } + memcpy(data_generic_trace, receivedCmd + 2, 8); + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIso15693AsTag(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; } - } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { - // Reader ends the session - modulated_response = resp_sof; modulated_response_size = 0; //order = 0; - trace_data = NULL; - trace_data_size = 0; - } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ - //Read block - uint16_t blk = receivedCmd[1]; - //Take the data... - memcpy(data_generic_trace, emulator+(blk << 3),8); - //Add crc - AppendCrc(data_generic_trace, 8); - trace_data = data_generic_trace; - trace_data_size = 10; - CodeIClassTagAnswer(trace_data , trace_data_size); - memcpy(data_response, ToSend, ToSendMax); - modulated_response = data_response; - modulated_response_size = ToSendMax; - }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) - {//Probably the reader wants to update the nonce. Let's just ignore that for now. - // OBS! If this is implemented, don't forget to regenerate the cipher_state - //We're expected to respond with the data+crc, exactly what's already in the receivedcmd - //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| - - //Take the data... - memcpy(data_generic_trace, receivedCmd+2,8); - //Add crc - AppendCrc(data_generic_trace, 8); - trace_data = data_generic_trace; - trace_data_size = 10; - CodeIClassTagAnswer(trace_data , trace_data_size); - memcpy(data_response, ToSend, ToSendMax); - modulated_response = data_response; - modulated_response_size = ToSendMax; - } - else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) - {//Pagesel - //Pagesel enables to select a page in the selected chip memory and return its configuration block - //Chips with a single page will not answer to this command - // It appears we're fine ignoring this. - //Otherwise, we should answer 8bytes (block) + 2bytes CRC - } - else { - //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 - // Never seen this command before - Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", - len, - receivedCmd[0], receivedCmd[1], receivedCmd[2], - receivedCmd[3], receivedCmd[4], receivedCmd[5], - receivedCmd[6], receivedCmd[7], receivedCmd[8]); + } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) { + // Pagesel + // Chips with a single page will not answer to this command + // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC + if (chip_state == SELECTED) { + if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) { + current_page = receivedCmd[1]; + memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8); + memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8); + memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8); + cipher_state = &cipher_state_KD[current_page]; + personalization_mode = data_generic_trace[7] & 0x80; + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIso15693AsTag(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + } + } + + } else if (receivedCmd[0] == 0x26 && len == 5) { + // standard ISO15693 INVENTORY command. Ignore. + + } else { + // don't know how to handle this command + char debug_message[250]; // should be enough + sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len); + for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) { + sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]); + } + Dbprintf("%s", debug_message); // Do not respond - modulated_response = resp_sof; modulated_response_size = 0; //order = 0; - trace_data = NULL; - trace_data_size = 0; } - if(cmdsRecvd > 100) { - //DbpString("100 commands later..."); - //break; - } - else { - cmdsRecvd++; - } /** - A legit tag has about 380us delay between reader EOT and tag SOF. + A legit tag has about 273,4us delay between reader EOT and tag SOF. **/ - if(modulated_response_size > 0) { - SendIClassAnswer(modulated_response, modulated_response_size, response_delay); - t2r_time = GetCountSspClk(); + if (modulated_response_size > 0) { + uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM; + TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); + LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false); } - if (tracing) { - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(receivedCmd, len, parity); - LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE); - - if (trace_data != NULL) { - GetParity(trace_data, trace_data_size, parity); - LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE); - } - if(!tracing) { - DbpString("Trace full"); - //break; - } - - } - memset(receivedCmd, 0x44, MAX_FRAME_SIZE); } - //Dbprintf("%x", cmdsRecvd); - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - - if(buttonPressed) + if (buttonPressed) { DbpString("Button pressed"); } return buttonPressed; } -static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) -{ - int i = 0, d=0;//, u = 0, d = 0; - uint8_t b = 0; - - //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); - - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - while(!BUTTON_PRESS()) { - if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ - b = AT91C_BASE_SSC->SSC_RHR; (void) b; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ - b = 0x00; - if(d < delay) { - d++; - } - else { - if( i < respLen){ - b = resp[i]; - //Hack - //b = 0xAC; - } - i++; - } - AT91C_BASE_SSC->SSC_THR = b; - } - -// if (i > respLen +4) break; - if (i > respLen +1) break; - } +/** + * @brief SimulateIClass simulates an iClass card. + * @param arg0 type of simulation + * - 0 uses the first 8 bytes in usb data as CSN + * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified + * in the usb data. This mode collects MAC from the reader, in order to do an offline + * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. + * - Other : Uses the default CSN (031fec8af7ff12e0) + * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) + * @param arg2 + * @param datain + */ +void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { - return 0; -} + LED_A_ON(); -/// THE READER CODE + uint32_t simType = arg0; + uint32_t numberOfCSNS = arg1; -//----------------------------------------------------------------------------- -// Transmit the command (to the tag) that was placed in ToSend[]. -//----------------------------------------------------------------------------- -static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) -{ - int c; - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - - if (wait) - { - if(*wait < 10) *wait = 10; - - for(c = 0; c < *wait;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! - c++; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - - } - - - uint8_t sendbyte; - bool firstpart = TRUE; - c = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - - // DOUBLE THE SAMPLES! - if(firstpart) { - sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); - } - else { - sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); - c++; - } - if(sendbyte == 0xff) { - sendbyte = 0xfe; - } - AT91C_BASE_SSC->SSC_THR = sendbyte; - firstpart = !firstpart; - - if(c >= len) { - break; - } - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - if (samples) *samples = (c + *wait) << 3; -} + // setup hardware for simulation: + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); + LED_D_OFF(); + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); + StartCountSspClk(); + // Enable and clear the trace + set_tracing(true); + clear_trace(); + //Use the emulator memory for SIM + uint8_t *emulator = BigBuf_get_EM_addr(); -//----------------------------------------------------------------------------- -// Prepare iClass reader command to send to FPGA -//----------------------------------------------------------------------------- -void CodeIClassCommand(const uint8_t * cmd, int len) -{ - int i, j, k; - uint8_t b; - - ToSendReset(); - - // Start of Communication: 1 out of 4 - ToSend[++ToSendMax] = 0xf0; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x0f; - ToSend[++ToSendMax] = 0x00; - - // Modulate the bytes - for (i = 0; i < len; i++) { - b = cmd[i]; - for(j = 0; j < 4; j++) { - for(k = 0; k < 4; k++) { - if(k == (b & 3)) { - ToSend[++ToSendMax] = 0x0f; - } - else { - ToSend[++ToSendMax] = 0x00; + if (simType == ICLASS_SIM_MODE_CSN) { + // Use the CSN from commandline + memcpy(emulator, datain, 8); + doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); + } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) { + //Default CSN + uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; + // Use the CSN from commandline + memcpy(emulator, csn_crc, 8); + doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); + } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) { + uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; + Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); + // In this mode, a number of csns are within datain. We'll simulate each one, one at a time + // in order to collect MAC's from the reader. This can later be used in an offline-attack + // in order to obtain the keys, as in the "dismantling iclass"-paper. + int i; + for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) { + // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response). + memcpy(emulator, datain+(i*8), 8); + if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) { + // Button pressed + break; } - } - b >>= 2; - } - } - - // End of Communication - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xf0; - ToSend[++ToSendMax] = 0x00; - - // Convert from last character reference to length - ToSendMax++; -} - -void ReaderTransmitIClass(uint8_t* frame, int len) -{ - int wait = 0; - int samples = 0; - - // This is tied to other size changes - CodeIClassCommand(frame,len); - - // Select the card - TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); - if(trigger) - LED_A_ON(); - - // Store reader command in buffer - if (tracing) { - uint8_t par[MAX_PARITY_SIZE]; - GetParity(frame, len, par); - LogTrace(frame, len, rsamples, rsamples, par, TRUE); + Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", + datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3], + datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]); + Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x", + mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11], + mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]); + SpinDelay(100); // give the reader some time to prepare for next CSN + } + cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16); + } else if (simType == ICLASS_SIM_MODE_FULL) { + //This is 'full sim' mode, where we use the emulator storage for data. + doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL); + } else { + // We may want a mode here where we hardcode the csns to use (from proxclone). + // That will speed things up a little, but not required just yet. + Dbprintf("The mode is not implemented, reserved for future use"); } -} - -//----------------------------------------------------------------------------- -// Wait a certain time for tag response -// If a response is captured return TRUE -// If it takes too long return FALSE -//----------------------------------------------------------------------------- -static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer -{ - // buffer needs to be 512 bytes - int c; - - // Set FPGA mode to "reader listen mode", no modulation (listen - // only, since we are receiving, not transmitting). - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); - - // Now get the answer from the card - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - uint8_t b; - if (elapsed) *elapsed = 0; - bool skip = FALSE; - - c = 0; - for(;;) { - WDT_HIT(); - - if(BUTTON_PRESS()) return FALSE; + Dbprintf("Done..."); - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! - if (elapsed) (*elapsed)++; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - if(c < timeout) { c++; } else { return FALSE; } - b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - skip = !skip; - if(skip) continue; - - if(ManchesterDecoding(b & 0x0f)) { - *samples = c << 3; - return TRUE; - } - } - } + LED_A_OFF(); } -int ReaderReceiveIClass(uint8_t* receivedAnswer) -{ - int samples = 0; - if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; - rsamples += samples; - if (tracing) { - uint8_t parity[MAX_PARITY_SIZE]; - GetParity(receivedAnswer, Demod.len, parity); - LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE); - } - if(samples == 0) return FALSE; - return Demod.len; -} -void setupIclassReader() -{ - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - // Reset trace buffer - set_tracing(TRUE); - clear_trace(); +/// THE READER CODE - // Setup SSC - FpgaSetupSsc(); - // Start from off (no field generated) - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); +static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) { - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + CodeIso15693AsReader(frame, len); - // Now give it time to spin up. - // Signal field is on with the appropriate LED - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(200); - LED_A_ON(); + TransmitTo15693Tag(ToSend, ToSendMax, start_time); + uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF + LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true); } -size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) -{ - while(retries-- > 0) - { - ReaderTransmitIClass(command, cmdsize); - if(expected_size == ReaderReceiveIClass(resp)){ - return 0; + +static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size, + uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t timeout, uint32_t *eof_time) { + while (retries-- > 0) { + ReaderTransmitIClass(command, cmdsize, &start_time); + if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) { + return true; } } - return 1;//Error + return false;//Error } /** - * @brief Talks to an iclass tag, sends the commands to get CSN and CC. - * @param card_data where the CSN and CC are stored for return - * @return 0 = fail - * 1 = Got CSN - * 2 = Got CSN and CC + * @brief Selects an iclass tag + * @param card_data where the CSN is stored for return + * @return false = fail + * true = success */ -uint8_t handshakeIclassTag(uint8_t *card_data) -{ - static uint8_t act_all[] = { 0x0a }; - static uint8_t identify[] = { 0x0c }; - static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; - - - static uint8_t readcheck_cc[]= { 0x88, 0x02,}; +static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) { + uint8_t act_all[] = { 0x0a }; + uint8_t identify[] = { 0x0c }; + uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; - uint8_t read_status = 0; + uint32_t start_time = GetCountSspClk(); // Send act_all - ReaderTransmitIClass(act_all, 1); + ReaderTransmitIClass(act_all, 1, &start_time); // Card present? - if(!ReaderReceiveIClass(resp)) return read_status;//Fail + if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false;//Fail + //Send Identify - ReaderTransmitIClass(identify, 1); + start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + ReaderTransmitIClass(identify, 1, &start_time); //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC - uint8_t len = ReaderReceiveIClass(resp); - if(len != 10) return read_status;//Fail + uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); + if (len != 10) return false;//Fail //Copy the Anti-collision CSN to our select-packet - memcpy(&select[1],resp,8); + memcpy(&select[1], resp, 8); //Select the card - ReaderTransmitIClass(select, sizeof(select)); + start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + ReaderTransmitIClass(select, sizeof(select), &start_time); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC - len = ReaderReceiveIClass(resp); - if(len != 10) return read_status;//Fail + len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); + if (len != 10) return false;//Fail - //Success - level 1, we got CSN + //Success - we got CSN //Save CSN in response data - memcpy(card_data,resp,8); + memcpy(card_data, resp, 8); - //Flag that we got to at least stage 1, read CSN - read_status = 1; - - // Card selected, now read e-purse (cc) - ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); - if(ReaderReceiveIClass(resp) == 8) { - //Save CC (e-purse) in response data - memcpy(card_data+8,resp,8); - read_status++; - } - - return read_status; + return true; } -// Reader iClass Anticollission -void ReaderIClass(uint8_t arg0) { +// Select an iClass tag and read all blocks which are always readable without authentication +void ReaderIClass(uint8_t flags) { - uint8_t card_data[6 * 8]={0xFF}; - uint8_t last_csn[8]={0}; - - //Read conf block CRC(0x01) => 0xfa 0x22 - uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22}; - //Read conf block CRC(0x05) => 0xde 0x64 - uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64}; + LED_A_ON(); + uint8_t card_data[6 * 8] = {0}; + memset(card_data, 0xFF, sizeof(card_data)); + uint8_t resp[ICLASS_BUFFER_SIZE]; + //Read conf block CRC(0x01) => 0xfa 0x22 + uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; + //Read e-purse block CRC(0x02) => 0x61 0x10 + uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10}; + //Read App Issuer Area block CRC(0x05) => 0xde 0x64 + uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; - int read_status= 0; uint8_t result_status = 0; - bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; - set_tracing(TRUE); - setupIclassReader(); + if (flags & FLAG_ICLASS_READER_INIT) { + Iso15693InitReader(); + } + + if (flags & FLAG_ICLASS_READER_CLEARTRACE) { + set_tracing(true); + clear_trace(); + StartCountSspClk(); + } - while(!BUTTON_PRESS()) - { + uint32_t start_time = 0; + uint32_t eof_time = 0; - if(!tracing) { - DbpString("Trace full"); - break; + if (selectIclassTag(resp, &eof_time)) { + result_status = FLAG_ICLASS_READER_CSN; + memcpy(card_data, resp, 8); + } + + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + + //Read block 1, config + if (flags & FLAG_ICLASS_READER_CONF) { + if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { + result_status |= FLAG_ICLASS_READER_CONF; + memcpy(card_data+8, resp, 8); + } else { + Dbprintf("Failed to read config block"); } - WDT_HIT(); + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + } - read_status = handshakeIclassTag(card_data); - - if(read_status == 0) continue; - if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN; - if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC; - - // handshakeIclass returns CSN|CC, but the actual block - // layout is CSN|CONFIG|CC, so here we reorder the data, - // moving CC forward 8 bytes - memcpy(card_data+16,card_data+8, 8); - //Read block 1, config - if(arg0 & FLAG_ICLASS_READER_CONF) - { - if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf),card_data+8, 10, 10)) - { - Dbprintf("Failed to dump config block"); - }else - { - result_status |= FLAG_ICLASS_READER_CONF; - } + //Read block 2, e-purse + if (flags & FLAG_ICLASS_READER_CC) { + if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { + result_status |= FLAG_ICLASS_READER_CC; + memcpy(card_data + (8*2), resp, 8); + } else { + Dbprintf("Failed to read e-purse"); } + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + } - //Read block 5, AA - if(arg0 & FLAG_ICLASS_READER_AA){ - if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA),card_data+(8*4), 10, 10)) - { -// Dbprintf("Failed to dump AA block"); - }else - { - result_status |= FLAG_ICLASS_READER_AA; - } + //Read block 5, AA + if (flags & FLAG_ICLASS_READER_AA) { + if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { + result_status |= FLAG_ICLASS_READER_AA; + memcpy(card_data + (8*5), resp, 8); + } else { + Dbprintf("Failed to read AA block"); } + } - // 0 : CSN - // 1 : Configuration - // 2 : e-purse - // (3,4 write-only, kc and kd) - // 5 Application issuer area - // - //Then we can 'ship' back the 8 * 5 bytes of data, - // with 0xFF:s in block 3 and 4. - - LED_B_ON(); - //Send back to client, but don't bother if we already sent this - if(memcmp(last_csn, card_data, 8) != 0) - { - // If caller requires that we get CC, continue until we got it - if( (arg0 & read_status & FLAG_ICLASS_READER_CC) || !(arg0 & FLAG_ICLASS_READER_CC)) - { - cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data)); - if(abort_after_read) { - LED_A_OFF(); - return; - } - //Save that we already sent this.... - memcpy(last_csn, card_data, 8); - } + cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); - } - LED_B_OFF(); - } - cmd_send(CMD_ACK,0,0,0,card_data, 0); - LED_A_OFF(); + LED_A_OFF(); } + void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { + LED_A_ON(); + + bool use_credit_key = false; uint8_t card_data[USB_CMD_DATA_SIZE]={0}; uint16_t block_crc_LUT[255] = {0}; - {//Generate a lookup table for block crc - for(int block = 0; block < 255; block++){ - char bl = block; - block_crc_LUT[block] = iclass_crc16(&bl ,1); - } + //Generate a lookup table for block crc + for (int block = 0; block < 255; block++){ + char bl = block; + block_crc_LUT[block] = iclass_crc16(&bl ,1); } //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); + uint8_t readcheck_cc[] = { ICLASS_CMD_READCHECK_KD, 0x02 }; + if (use_credit_key) + readcheck_cc[0] = ICLASS_CMD_READCHECK_KC; uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; - - uint16_t crc = 0; - uint8_t cardsize=0; - uint8_t mem=0; - - static struct memory_t{ - int k16; - int book; - int k2; - int lockauth; - int keyaccess; + + uint16_t crc = 0; + uint8_t cardsize = 0; + uint8_t mem = 0; + + static struct memory_t { + int k16; + int book; + int k2; + int lockauth; + int keyaccess; } memory; - + uint8_t resp[ICLASS_BUFFER_SIZE]; - - setupIclassReader(); - set_tracing(TRUE); - while(!BUTTON_PRESS()) { - + set_tracing(true); + clear_trace(); + Iso15693InitReader(); + + StartCountSspClk(); + uint32_t start_time = 0; + uint32_t eof_time = 0; + + while (!BUTTON_PRESS()) { + WDT_HIT(); - if(!tracing) { + if (!get_tracing()) { DbpString("Trace full"); break; } - - uint8_t read_status = handshakeIclassTag(card_data); - if(read_status < 2) continue; - //for now replay captured auth (as cc not updated) - memcpy(check+5,MAC,4); + if (!selectIclassTag(card_data, &eof_time)) continue; + + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + if (!sendCmdGetResponseWithRetries(readcheck_cc, sizeof(readcheck_cc), resp, sizeof(resp), 8, 3, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) continue; + + // replay captured auth (cc must not have been updated) + memcpy(check+5, MAC, 4); - if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) - { + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { Dbprintf("Error: Authentication Fail!"); continue; } //first get configuration block (block 1) crc = block_crc_LUT[1]; - read[1]=1; + read[1] = 1; read[2] = crc >> 8; read[3] = crc & 0xff; - if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) - { + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; Dbprintf("Dump config (block 1) failed"); continue; } - mem=resp[5]; - memory.k16= (mem & 0x80); - memory.book= (mem & 0x20); - memory.k2= (mem & 0x8); - memory.lockauth= (mem & 0x2); - memory.keyaccess= (mem & 0x1); + mem = resp[5]; + memory.k16 = (mem & 0x80); + memory.book = (mem & 0x20); + memory.k2 = (mem & 0x8); + memory.lockauth = (mem & 0x2); + memory.keyaccess = (mem & 0x1); cardsize = memory.k16 ? 255 : 32; WDT_HIT(); //Set card_data to all zeroes, we'll fill it with data - memset(card_data,0x0,USB_CMD_DATA_SIZE); - uint8_t failedRead =0; - uint32_t stored_data_length =0; + memset(card_data, 0x0, USB_CMD_DATA_SIZE); + uint8_t failedRead = 0; + uint32_t stored_data_length = 0; //then loop around remaining blocks - for(int block=0; block < cardsize; block++){ - - read[1]= block; + for (int block = 0; block < cardsize; block++) { + read[1] = block; crc = block_crc_LUT[block]; read[2] = crc >> 8; read[3] = crc & 0xff; - if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) - { + start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; + if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) { Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", - block, resp[0], resp[1], resp[2], + block, resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); //Fill up the buffer - memcpy(card_data+stored_data_length,resp,8); + memcpy(card_data+stored_data_length, resp, 8); stored_data_length += 8; - if(stored_data_length +8 > USB_CMD_DATA_SIZE) - {//Time to send this off and start afresh + if (stored_data_length +8 > USB_CMD_DATA_SIZE) { + //Time to send this off and start afresh cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? @@ -1874,21 +916,21 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { failedRead = 0; } - }else{ + } else { failedRead = 1; - stored_data_length +=8;//Otherwise, data becomes misaligned + stored_data_length += 8;//Otherwise, data becomes misaligned Dbprintf("Failed to dump block %d", block); } } //Send off any remaining data - if(stored_data_length > 0) - { + if (stored_data_length > 0) { cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM - card_data, stored_data_length); + card_data, + stored_data_length); } //If we got here, let's break break; @@ -1898,135 +940,155 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { 0,//data length 0,//Failed blocks? 0,//Not used ATM - card_data, 0); + card_data, + 0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); LED_A_OFF(); } -//2. Create Read method (cut-down from above) based off responses from 1. -// Since we have the MAC could continue to use replay function. -//3. Create Write method -/* -void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) { - uint8_t act_all[] = { 0x0a }; - uint8_t identify[] = { 0x0c }; - uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; - uint8_t readcheck_cc[]= { 0x88, 0x02 }; - uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; - uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; - uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; - - uint16_t crc = 0; - - uint8_t* resp = (((uint8_t *)BigBuf) + 3560); - - // Reset trace buffer - memset(trace, 0x44, RECV_CMD_OFFSET); - traceLen = 0; - - // Setup SSC - FpgaSetupSsc(); - // Start from off (no field generated) - // Signal field is off with the appropriate LED - LED_D_OFF(); + +void iClass_Check(uint8_t *MAC) { + uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00}; + uint8_t resp[4]; + memcpy(check+5, MAC, 4); + uint32_t eof_time; + bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time); + cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp)); +} + + +void iClass_Readcheck(uint8_t block, bool use_credit_key) { + uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block}; + if (use_credit_key) { + readcheck[0] = ICLASS_CMD_READCHECK_KC; + } + uint8_t resp[8]; + uint32_t eof_time; + bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 6, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time); + cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp)); +} + + +static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { + uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? + char bl = blockNo; + uint16_t rdCrc = iclass_crc16(&bl, 1); + readcmd[2] = rdCrc >> 8; + readcmd[3] = rdCrc & 0xff; + uint8_t resp[10]; + uint32_t eof_time; + + bool isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time); + memcpy(readdata, resp, sizeof(resp)); + + return isOK; +} + + +void iClass_ReadBlk(uint8_t blockno) { + + LED_A_ON(); + + uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = iClass_ReadBlock(blockno, readblockdata); + cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); + LED_D_OFF(); + + LED_A_OFF(); +} - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - // Now give it time to spin up. - // Signal field is on with the appropriate LED - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(200); +void iClass_Dump(uint8_t startblock, uint8_t numblks) { LED_A_ON(); - for(int i=0;i<1;i++) { - - if(traceLen > TRACE_SIZE) { - DbpString("Trace full"); + uint8_t readblockdata[USB_CMD_DATA_SIZE+2] = {0}; + bool isOK = false; + uint16_t blkCnt = 0; + + if (numblks > USB_CMD_DATA_SIZE / 8) { + numblks = USB_CMD_DATA_SIZE / 8; + } + + for (blkCnt = 0; blkCnt < numblks; blkCnt++) { + isOK = iClass_ReadBlock(startblock+blkCnt, readblockdata+8*blkCnt); + if (!isOK) { + Dbprintf("Block %02X failed to read", startblock+blkCnt); break; } - - if (BUTTON_PRESS()) break; - - // Send act_all - ReaderTransmitIClass(act_all, 1); - // Card present? - if(ReaderReceiveIClass(resp)) { - ReaderTransmitIClass(identify, 1); - if(ReaderReceiveIClass(resp) == 10) { - // Select card - memcpy(&select[1],resp,8); - ReaderTransmitIClass(select, sizeof(select)); - - if(ReaderReceiveIClass(resp) == 10) { - Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", - resp[0], resp[1], resp[2], - resp[3], resp[4], resp[5], - resp[6], resp[7]); - } - // Card selected - Dbprintf("Readcheck on Sector 2"); - ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); - if(ReaderReceiveIClass(resp) == 8) { - Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x", - resp[0], resp[1], resp[2], - resp[3], resp[4], resp[5], - resp[6], resp[7]); - }else return; - Dbprintf("Authenticate"); - //for now replay captured auth (as cc not updated) - memcpy(check+5,MAC,4); - Dbprintf(" AA: %02x %02x %02x %02x", - check[5], check[6], check[7],check[8]); - ReaderTransmitIClass(check, sizeof(check)); - if(ReaderReceiveIClass(resp) == 4) { - Dbprintf(" AR: %02x %02x %02x %02x", - resp[0], resp[1], resp[2],resp[3]); - }else { - Dbprintf("Error: Authentication Fail!"); - return; - } - Dbprintf("Write Block"); - - //read configuration for max block number - read_success=false; - read[1]=1; - uint8_t *blockno=&read[1]; - crc = iclass_crc16((char *)blockno,1); - read[2] = crc >> 8; - read[3] = crc & 0xff; - while(!read_success){ - ReaderTransmitIClass(read, sizeof(read)); - if(ReaderReceiveIClass(resp) == 10) { - read_success=true; - mem=resp[5]; - memory.k16= (mem & 0x80); - memory.book= (mem & 0x20); - memory.k2= (mem & 0x8); - memory.lockauth= (mem & 0x2); - memory.keyaccess= (mem & 0x1); - - } - } - if (memory.k16){ - cardsize=255; - }else cardsize=32; - //check card_size - - memcpy(write+1,blockNo,1); - memcpy(write+2,data,8); - memcpy(write+10,mac,4); - while(!send_success){ - ReaderTransmitIClass(write, sizeof(write)); - if(ReaderReceiveIClass(resp) == 10) { - write_success=true; - } - }// + } + + cmd_send(CMD_ACK, isOK, blkCnt, 0, readblockdata, blkCnt*8); + + LED_A_OFF(); +} + + +static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { + + uint8_t write[16] = {ICLASS_CMD_UPDATE, blockNo}; + memcpy(write+2, data, 12); // data + mac + AppendCrc(write+1, 13); + uint8_t resp[10]; + bool isOK = false; + uint32_t eof_time = 0; + + isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, ICLASS_READER_TIMEOUT_UPDATE, &eof_time); + if (isOK && blockNo != 3 && blockNo != 4 && memcmp(write+2, resp, 8)) { // check response + isOK = false; + } + + return isOK; +} + + +void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { + + LED_A_ON(); + + bool isOK = iClass_WriteBlock_ext(blockNo, data); + if (isOK) { + Dbprintf("Write block [%02x] successful", blockNo); + } else { + Dbprintf("Write block [%02x] failed", blockNo); + } + cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + + LED_A_OFF(); +} + + +void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { + int i; + int written = 0; + int total_block = (endblock - startblock) + 1; + for (i = 0; i < total_block; i++) { + // block number + if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ + Dbprintf("Write block [%02x] successful", i + startblock); + written++; + } else { + if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ + Dbprintf("Write block [%02x] successful", i + startblock); + written++; + } else { + Dbprintf("Write block [%02x] failed", i + startblock); + } } - WDT_HIT(); } - + if (written == total_block) + Dbprintf("Clone complete"); + else + Dbprintf("Clone incomplete"); + + cmd_send(CMD_ACK, 1, 0, 0, 0, 0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); LED_A_OFF(); -}*/ +}