X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d7246149631481995a1c71a65c31f1c2b0f0eae7..b7eddc14db9262a51ad3100ade7386d03500ace8:/armsrc/appmain.c?ds=inline

diff --git a/armsrc/appmain.c b/armsrc/appmain.c
index 345b3a30..152f8a3e 100644
--- a/armsrc/appmain.c
+++ b/armsrc/appmain.c
@@ -1,873 +1,1030 @@
-//-----------------------------------------------------------------------------
-// The main application code. This is the first thing called after start.c
-// executes.
-// Jonathan Westhues, Mar 2006
-// Edits by Gerhard de Koning Gans, Sep 2007 (##)
-//-----------------------------------------------------------------------------
-
-#include <proxmark3.h>
-#include <stdlib.h>
-#include "apps.h"
-#include "legicrf.h"
-#ifdef WITH_LCD
-#include "fonts.h"
-#include "LCD.h"
-#endif
-
-#define va_list __builtin_va_list
-#define va_start __builtin_va_start
-#define va_arg __builtin_va_arg
-#define va_end __builtin_va_end
-int kvsprintf(char const *fmt, void *arg, int radix, va_list ap);
-	
-//=============================================================================
-// A buffer where we can queue things up to be sent through the FPGA, for
-// any purpose (fake tag, as reader, whatever). We go MSB first, since that
-// is the order in which they go out on the wire.
-//=============================================================================
-
-BYTE ToSend[256];
-int ToSendMax;
-static int ToSendBit;
-struct common_area common_area __attribute__((section(".commonarea")));
-
-void BufferClear(void)
-{
-	memset(BigBuf,0,sizeof(BigBuf));
-	DbpString("Buffer cleared");
-}
-
-void ToSendReset(void)
-{
-	ToSendMax = -1;
-	ToSendBit = 8;
-}
-
-void ToSendStuffBit(int b)
-{
-	if(ToSendBit >= 8) {
-		ToSendMax++;
-		ToSend[ToSendMax] = 0;
-		ToSendBit = 0;
-	}
-
-	if(b) {
-		ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
-	}
-
-	ToSendBit++;
-
-	if(ToSendBit >= sizeof(ToSend)) {
-		ToSendBit = 0;
-		DbpString("ToSendStuffBit overflowed!");
-	}
-}
-
-//=============================================================================
-// Debug print functions, to go out over USB, to the usual PC-side client.
-//=============================================================================
-
-void DbpString(char *str)
-{
-	/* this holds up stuff unless we're connected to usb */
-	if (!UsbConnected())
-		return;
-
-	UsbCommand c;
-	c.cmd = CMD_DEBUG_PRINT_STRING;
-	c.arg[0] = strlen(str);
-	memcpy(c.d.asBytes, str, c.arg[0]);
-
-	UsbSendPacket((BYTE *)&c, sizeof(c));
-	// TODO fix USB so stupid things like this aren't req'd
-	SpinDelay(50);
-}
-
-#if 0
-void DbpIntegers(int x1, int x2, int x3)
-{
-	/* this holds up stuff unless we're connected to usb */
-	if (!UsbConnected())
-		return;
-
-	UsbCommand c;
-	c.cmd = CMD_DEBUG_PRINT_INTEGERS;
-	c.arg[0] = x1;
-	c.arg[1] = x2;
-	c.arg[2] = x3;
-
-	UsbSendPacket((BYTE *)&c, sizeof(c));
-	// XXX
-	SpinDelay(50);
-}
-#endif
-
-void Dbprintf(const char *fmt, ...) {
-// should probably limit size here; oh well, let's just use a big buffer
-	char output_string[128];
-	va_list ap;
-
-	va_start(ap, fmt);
-	kvsprintf(fmt, output_string, 10, ap);
-	va_end(ap);
- 
-	DbpString(output_string);
-}
-
-//-----------------------------------------------------------------------------
-// Read an ADC channel and block till it completes, then return the result
-// in ADC units (0 to 1023). Also a routine to average 32 samples and
-// return that.
-//-----------------------------------------------------------------------------
-static int ReadAdc(int ch)
-{
-	DWORD d;
-
-	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
-	AT91C_BASE_ADC->ADC_MR =
-		ADC_MODE_PRESCALE(32) |
-		ADC_MODE_STARTUP_TIME(16) |
-		ADC_MODE_SAMPLE_HOLD_TIME(8);
-	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
-
-	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
-	while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
-		;
-	d = AT91C_BASE_ADC->ADC_CDR[ch];
-
-	return d;
-}
-
-static int AvgAdc(int ch)
-{
-	int i;
-	int a = 0;
-
-	for(i = 0; i < 32; i++) {
-		a += ReadAdc(ch);
-	}
-
-	return (a + 15) >> 5;
-}
-
-void MeasureAntennaTuning(void)
-{
-	BYTE *dest = (BYTE *)BigBuf;
-	int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
-	int vLf125 = 0, vLf134 = 0, vHf = 0;	// in mV
-
-	UsbCommand c;
-
-	DbpString("Measuring antenna characteristics, please wait.");
-	memset(BigBuf,0,sizeof(BigBuf));
-
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * read the voltage in the antenna, the result left
- * in the buffer is a graph which should clearly show
- * the resonating frequency of your LF antenna
- * ( hopefully around 95 if it is tuned to 125kHz!)
- */
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	for (i=255; i>19; i--) {
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
-		SpinDelay(20);
-		// Vref = 3.3V, and a 10000:240 voltage divider on the input
-		// can measure voltages up to 137500 mV
-		adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
-		if (i==95) 	vLf125 = adcval; // voltage at 125Khz
-		if (i==89) 	vLf134 = adcval; // voltage at 134Khz
-
-		dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
-		if(dest[i] > peak) {
-			peakv = adcval;
-			peak = dest[i];
-			peakf = i;
-			ptr = i;
-		}
-	}
-
-	// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
-	SpinDelay(20);
-	// Vref = 3300mV, and an 10:1 voltage divider on the input
-	// can measure voltages up to 33000 mV
-	vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
-
-	c.cmd = CMD_MEASURED_ANTENNA_TUNING;
-	c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
-	c.arg[1] = vHf;
-	c.arg[2] = peakf | (peakv << 16);
-	UsbSendPacket((BYTE *)&c, sizeof(c));
-}
-
-void MeasureAntennaTuningHf(void)
-{
-	int vHf = 0;	// in mV
-
-	DbpString("Measuring HF antenna, press button to exit");
-
-	for (;;) {
-		// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
-		SpinDelay(20);
-		// Vref = 3300mV, and an 10:1 voltage divider on the input
-		// can measure voltages up to 33000 mV
-		vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
-	
-		Dbprintf("%d mV",vHf);
-		if (BUTTON_PRESS()) break;
-	}
-	DbpString("cancelled");
-}
-
-
-void SimulateTagHfListen(void)
-{
-	BYTE *dest = (BYTE *)BigBuf;
-	int n = sizeof(BigBuf);
-	BYTE v = 0;
-	int i;
-	int p = 0;
-
-	// We're using this mode just so that I can test it out; the simulated
-	// tag mode would work just as well and be simpler.
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
-
-	// We need to listen to the high-frequency, peak-detected path.
-	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
-	FpgaSetupSsc();
-
-	i = 0;
-	for(;;) {
-		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-			AT91C_BASE_SSC->SSC_THR = 0xff;
-		}
-		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-			BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR;
-
-			v <<= 1;
-			if(r & 1) {
-				v |= 1;
-			}
-			p++;
-
-			if(p >= 8) {
-				dest[i] = v;
-				v = 0;
-				p = 0;
-				i++;
-
-				if(i >= n) {
-					break;
-				}
-			}
-		}
-	}
-	DbpString("simulate tag (now type bitsamples)");
-}
-
-void ReadMem(int addr)
-{
-	const DWORD *data = ((DWORD *)addr);
-
-	Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
-		addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
-}
-
-/* osimage version information is linked in */
-extern struct version_information version_information;
-/* bootrom version information is pointed to from _bootphase1_version_pointer */
-extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
-void SendVersion(void)
-{
-	char temp[48]; /* Limited data payload in USB packets */
-	DbpString("Prox/RFID mark3 RFID instrument");
-	
-	/* Try to find the bootrom version information. Expect to find a pointer at 
-	 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
-	 * pointer, then use it.
-	 */
-	char *bootrom_version = *(char**)&_bootphase1_version_pointer;
-	if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
-		DbpString("bootrom version information appears invalid");
-	} else {
-		FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
-		DbpString(temp);
-	}
-	
-	FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
-	DbpString(temp);
-	
-	FpgaGatherVersion(temp, sizeof(temp));
-	DbpString(temp);
-}
-
-#ifdef WITH_LF
-// samy's sniff and repeat routine
-void SamyRun()
-{
-	DbpString("Stand-alone mode! No PC necessary.");
-
-	// 3 possible options? no just 2 for now
-#define OPTS 2
-
-	int high[OPTS], low[OPTS];
-
-	// Oooh pretty -- notify user we're in elite samy mode now
-	LED(LED_RED,	200);
-	LED(LED_ORANGE, 200);
-	LED(LED_GREEN,	200);
-	LED(LED_ORANGE, 200);
-	LED(LED_RED,	200);
-	LED(LED_ORANGE, 200);
-	LED(LED_GREEN,	200);
-	LED(LED_ORANGE, 200);
-	LED(LED_RED,	200);
-
-	int selected = 0;
-	int playing = 0;
-
-	// Turn on selected LED
-	LED(selected + 1, 0);
-
-	for (;;)
-	{
-		UsbPoll(FALSE);
-		WDT_HIT();
-
-		// Was our button held down or pressed?
-		int button_pressed = BUTTON_HELD(1000);
-		SpinDelay(300);
-
-		// Button was held for a second, begin recording
-		if (button_pressed > 0)
-		{
-			LEDsoff();
-			LED(selected + 1, 0);
-			LED(LED_RED2, 0);
-
-			// record
-			DbpString("Starting recording");
-
-			// wait for button to be released
-			while(BUTTON_PRESS())
-				WDT_HIT();
-
-			/* need this delay to prevent catching some weird data */
-			SpinDelay(500);
-
-			CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
-			Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
-
-			LEDsoff();
-			LED(selected + 1, 0);
-			// Finished recording
-
-			// If we were previously playing, set playing off
-			// so next button push begins playing what we recorded
-			playing = 0;
-		}
-
-		// Change where to record (or begin playing)
-		else if (button_pressed)
-		{
-			// Next option if we were previously playing
-			if (playing)
-				selected = (selected + 1) % OPTS;
-			playing = !playing;
-
-			LEDsoff();
-			LED(selected + 1, 0);
-
-			// Begin transmitting
-			if (playing)
-			{
-				LED(LED_GREEN, 0);
-				DbpString("Playing");
-				// wait for button to be released
-				while(BUTTON_PRESS())
-					WDT_HIT();
-				Dbprintf("%x %x %x", selected, high[selected], low[selected]);
-				CmdHIDsimTAG(high[selected], low[selected], 0);
-				DbpString("Done playing");
-				if (BUTTON_HELD(1000) > 0)
-					{
-					DbpString("Exiting");
-					LEDsoff();
-					return;
-					}
-
-				/* We pressed a button so ignore it here with a delay */
-				SpinDelay(300);
-
-				// when done, we're done playing, move to next option
-				selected = (selected + 1) % OPTS;
-				playing = !playing;
-				LEDsoff();
-				LED(selected + 1, 0);
-			}
-			else
-				while(BUTTON_PRESS())
-					WDT_HIT();
-		}
-	}
-}
-#endif
-
-/*
-OBJECTIVE
-Listen and detect an external reader. Determine the best location
-for the antenna.
-
-INSTRUCTIONS:
-Inside the ListenReaderField() function, there is two mode.
-By default, when you call the function, you will enter mode 1.
-If you press the PM3 button one time, you will enter mode 2.
-If you press the PM3 button a second time, you will exit the function.
-
-DESCRIPTION OF MODE 1:
-This mode just listens for an external reader field and lights up green
-for HF and/or red for LF. This is the original mode of the detectreader
-function.
-
-DESCRIPTION OF MODE 2:
-This mode will visually represent, using the LEDs, the actual strength of the
-current compared to the maximum current detected. Basically, once you know
-what kind of external reader is present, it will help you spot the best location to place
-your antenna. You will probably not get some good results if there is a LF and a HF reader
-at the same place! :-)
-
-LIGHT SCHEME USED:
-*/
-static const char LIGHT_SCHEME[] = {
-		0x0, /* ----     | No field detected */
-		0x1, /* X---     | 14% of maximum current detected */
-		0x2, /* -X--     | 29% of maximum current detected */
-		0x4, /* --X-     | 43% of maximum current detected */
-		0x8, /* ---X     | 57% of maximum current detected */
-		0xC, /* --XX     | 71% of maximum current detected */
-		0xE, /* -XXX     | 86% of maximum current detected */
-		0xF, /* XXXX     | 100% of maximum current detected */
-};
-static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
-
-void ListenReaderField(int limit)
-{
-	int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
-	int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0, hf_max;
-	int mode=1, display_val, display_max, i;
-
-#define LF_ONLY		1
-#define HF_ONLY		2
-
-	LEDsoff();
-
-	lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
-
-	if(limit != HF_ONLY) {
-		Dbprintf("LF 125/134 Baseline: %d", lf_av);
-		lf_baseline = lf_av;
-	}
-
-	hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
-
-	if (limit != LF_ONLY) {
-		Dbprintf("HF 13.56 Baseline: %d", hf_av);
-		hf_baseline = hf_av;
-	}
-
-	for(;;) {
-		if (BUTTON_PRESS()) {
-			SpinDelay(500);
-			switch (mode) {
-				case 1:
-					mode=2;
-					DbpString("Signal Strength Mode");
-					break;
-				case 2:
-				default:
-					DbpString("Stopped");
-					LEDsoff();
-					return;
-					break;
-			}
-		}
-		WDT_HIT();
-
-		if (limit != HF_ONLY) {
-			if(mode==1) {
-				if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
-				else                               LED_D_OFF();
-			}
-			
-			++lf_count;
-			lf_av_new= ReadAdc(ADC_CHAN_LF);
-			// see if there's a significant change
-			if(abs(lf_av - lf_av_new) > 10) {
-				Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
-				lf_av = lf_av_new;
-				if (lf_av > lf_max)
-					lf_max = lf_av;
-				lf_count= 0;
-			}
-		}
-
-		if (limit != LF_ONLY) {
-			if (mode == 1){
-				if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
-				else                               LED_B_OFF();
-			}
-			
-			++hf_count;
-			hf_av_new= ReadAdc(ADC_CHAN_HF);
-			// see if there's a significant change
-			if(abs(hf_av - hf_av_new) > 10) {
-				Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
-				hf_av = hf_av_new;
-				if (hf_av > hf_max)
-					hf_max = hf_av;
-				hf_count= 0;
-			}
-		}
-		
-		if(mode == 2) {
-			if (limit == LF_ONLY) {
-				display_val = lf_av;
-				display_max = lf_max;
-			} else if (limit == HF_ONLY) {
-				display_val = hf_av;
-				display_max = hf_max;
-			} else { /* Pick one at random */
-				if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
-					display_val = hf_av;
-					display_max = hf_max;
-				} else {
-					display_val = lf_av;
-					display_max = lf_max;
-				}
-			}
-			for (i=0; i<LIGHT_LEN; i++) {
-				if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
-					if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
-					if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
-					if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
-					if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
-					break;
-				}
-			}
-		}
-	}
-}
-
-void UsbPacketReceived(BYTE *packet, int len)
-{
-	UsbCommand *c = (UsbCommand *)packet;
-
-	switch(c->cmd) {
-#ifdef WITH_LF
-		case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
-			AcquireRawAdcSamples125k(c->arg[0]);
-			break;
-#endif
-
-#ifdef WITH_LF
-		case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
-			ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
-			break;
-#endif
-
-#ifdef WITH_ISO15693
-		case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
-			AcquireRawAdcSamplesIso15693();
-			break;
-#endif
-
-		case CMD_BUFF_CLEAR:
-			BufferClear();
-			break;
-
-#ifdef WITH_ISO15693
-		case CMD_READER_ISO_15693:
-			ReaderIso15693(c->arg[0]);
-			break;
-#endif
-
-		case CMD_READER_LEGIC_RF:
-			LegicRfReader();
-			break;
-
-#ifdef WITH_ISO15693
-		case CMD_SIMTAG_ISO_15693:
-			SimTagIso15693(c->arg[0]);
-			break;
-#endif
-
-#ifdef WITH_ISO14443b
-		case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
-			AcquireRawAdcSamplesIso14443(c->arg[0]);
-			break;
-#endif
-
-#ifdef WITH_ISO14443b
-		case CMD_READ_SRI512_TAG:
-			ReadSRI512Iso14443(c->arg[0]);
-			break;
-               case CMD_READ_SRIX4K_TAG:
-                       ReadSRIX4KIso14443(c->arg[0]);
-                       break;
-#endif
-
-#ifdef WITH_ISO14443a
-		case CMD_READER_ISO_14443a:
-			ReaderIso14443a(c->arg[0]);
-			break;
-#endif
-
-#ifdef WITH_ISO14443a
-		case CMD_READER_MIFARE:
-			ReaderMifare(c->arg[0]);
-			break;
-#endif
-      
-#ifdef WITH_ISO14443b
-		case CMD_SNOOP_ISO_14443:
-			SnoopIso14443();
-			break;
-#endif
-
-#ifdef WITH_ISO14443a
-		case CMD_SNOOP_ISO_14443a:
-			SnoopIso14443a();
-			break;
-#endif
-
-		case CMD_SIMULATE_TAG_HF_LISTEN:
-			SimulateTagHfListen();
-			break;
-
-#ifdef WITH_ISO14443b
-		case CMD_SIMULATE_TAG_ISO_14443:
-			SimulateIso14443Tag();
-			break;
-#endif
-		
-#ifdef WITH_ISO14443a
-		case CMD_SIMULATE_TAG_ISO_14443a:
-			SimulateIso14443aTag(c->arg[0], c->arg[1]);  // ## Simulate iso14443a tag - pass tag type & UID
-			break;
-#endif
-
-		case CMD_MEASURE_ANTENNA_TUNING:
-			MeasureAntennaTuning();
-			break;
-
-		case CMD_MEASURE_ANTENNA_TUNING_HF:
-			MeasureAntennaTuningHf();
-			break;
-
-		case CMD_LISTEN_READER_FIELD:
-			ListenReaderField(c->arg[0]);
-			break;
-
-#ifdef WITH_LF
-		case CMD_HID_DEMOD_FSK:
-			CmdHIDdemodFSK(0, 0, 0, 1);				// Demodulate HID tag
-			break;
-#endif
-
-#ifdef WITH_LF
-		case CMD_HID_SIM_TAG:
-			CmdHIDsimTAG(c->arg[0], c->arg[1], 1);					// Simulate HID tag by ID
-			break;
-#endif
-
-		case CMD_FPGA_MAJOR_MODE_OFF:		// ## FPGA Control
-			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-			SpinDelay(200);
-			LED_D_OFF(); // LED D indicates field ON or OFF
-			break;
-
-#ifdef WITH_LF
-		case CMD_READ_TI_TYPE:
-			ReadTItag();
-			break;
-#endif
-
-#ifdef WITH_LF
-		case CMD_WRITE_TI_TYPE:
-			WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
-			break;
-#endif
-
-		case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
-			UsbCommand n;
-			if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
-				n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
-			} else {
-				n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
-			}
-			n.arg[0] = c->arg[0];
-			memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD));
-			UsbSendPacket((BYTE *)&n, sizeof(n));
-			break;
-		}
-
-		case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
-			BYTE *b = (BYTE *)BigBuf;
-			memcpy(b+c->arg[0], c->d.asBytes, 48);
-			break;
-		}
-
-#ifdef WITH_LF
-		case CMD_SIMULATE_TAG_125K:
-			LED_A_ON();
-			SimulateTagLowFrequency(c->arg[0], 1);
-			LED_A_OFF();
-			break;
-#endif
-
-		case CMD_READ_MEM:
-			ReadMem(c->arg[0]);
-			break;
-
-		case CMD_SET_LF_DIVISOR:
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
-			break;
-
-		case CMD_SET_ADC_MUX:
-			switch(c->arg[0]) {
-				case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
-				case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
-				case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
-				case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
-			}
-			break;
-
-		case CMD_VERSION:
-			SendVersion();
-			break;
-
-#ifdef WITH_LF
-		case CMD_LF_SIMULATE_BIDIR:
-			SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
-			break;
-#endif
-
-#ifdef WITH_LCD
-		case CMD_LCD_RESET:
-			LCDReset();
-			break;
-		case CMD_LCD:
-			LCDSend(c->arg[0]);
-			break;
-#endif
-		case CMD_SETUP_WRITE:
-		case CMD_FINISH_WRITE:
-		case CMD_HARDWARE_RESET:
-			USB_D_PLUS_PULLUP_OFF();
-			SpinDelay(1000);
-			SpinDelay(1000);
-			AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
-			for(;;) {
-				// We're going to reset, and the bootrom will take control.
-			}
-			break;
-
-		case CMD_START_FLASH:
-			if(common_area.flags.bootrom_present) {
-				common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
-			}
-			USB_D_PLUS_PULLUP_OFF();
-			AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
-			for(;;);
-			break;
-			
-		case CMD_DEVICE_INFO: {
-			UsbCommand c;
-			c.cmd = CMD_DEVICE_INFO;
-			c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
-			if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
-			UsbSendPacket((BYTE*)&c, sizeof(c));
-		}
-			break;
-		default:
-			DbpString("unknown command");
-			break;
-	}
-}
-
-void  __attribute__((noreturn)) AppMain(void)
-{
-	SpinDelay(100);
-	
-	if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
-		/* Initialize common area */
-		memset(&common_area, 0, sizeof(common_area));
-		common_area.magic = COMMON_AREA_MAGIC;
-		common_area.version = 1;
-	}
-	common_area.flags.osimage_present = 1;
-
-	LED_D_OFF();
-	LED_C_OFF();
-	LED_B_OFF();
-	LED_A_OFF();
-
-	UsbStart();
-
-	// The FPGA gets its clock from us from PCK0 output, so set that up.
-	AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
-	AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
-	AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
-	// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
-	AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
-		AT91C_PMC_PRES_CLK_4;
-	AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
-
-	// Reset SPI
-	AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
-	// Reset SSC
-	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
-
-	// Load the FPGA image, which we have stored in our flash.
-	FpgaDownloadAndGo();
-
-#ifdef WITH_LCD
-
-	LCDInit();
-
-	// test text on different colored backgrounds
-	LCDString(" The quick brown fox  ",	(char *)&FONT6x8,1,1+8*0,WHITE  ,BLACK );
-	LCDString("  jumped over the     ",	(char *)&FONT6x8,1,1+8*1,BLACK  ,WHITE );
-	LCDString("     lazy dog.        ",	(char *)&FONT6x8,1,1+8*2,YELLOW ,RED   );
-	LCDString(" AaBbCcDdEeFfGgHhIiJj ",	(char *)&FONT6x8,1,1+8*3,RED    ,GREEN );
-	LCDString(" KkLlMmNnOoPpQqRrSsTt ",	(char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE  );
-	LCDString("UuVvWwXxYyZz0123456789",	(char *)&FONT6x8,1,1+8*5,BLUE   ,YELLOW);
-	LCDString("`-=[]_;',./~!@#$%^&*()",	(char *)&FONT6x8,1,1+8*6,BLACK  ,CYAN  );
-	LCDString("     _+{}|:\\\"<>?     ",(char *)&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);
-
-	// color bands
-	LCDFill(0, 1+8* 8, 132, 8, BLACK);
-	LCDFill(0, 1+8* 9, 132, 8, WHITE);
-	LCDFill(0, 1+8*10, 132, 8, RED);
-	LCDFill(0, 1+8*11, 132, 8, GREEN);
-	LCDFill(0, 1+8*12, 132, 8, BLUE);
-	LCDFill(0, 1+8*13, 132, 8, YELLOW);
-	LCDFill(0, 1+8*14, 132, 8, CYAN);
-	LCDFill(0, 1+8*15, 132, 8, MAGENTA);
-
-#endif
-
-	for(;;) {
-		UsbPoll(FALSE);
-		WDT_HIT();
-
-#ifdef WITH_LF
-		if (BUTTON_HELD(1000) > 0)
-			SamyRun();
-#endif
-	}
-}
+//-----------------------------------------------------------------------------
+// Jonathan Westhues, Mar 2006
+// Edits by Gerhard de Koning Gans, Sep 2007 (##)
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// The main application code. This is the first thing called after start.c
+// executes.
+//-----------------------------------------------------------------------------
+
+#include "usb_cdc.h"
+#include "cmd.h"
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "printf.h"
+#include "string.h"
+
+#include <stdarg.h>
+
+#include "legicrf.h"
+#include <hitag2.h>
+#include "lfsampling.h"
+#include "BigBuf.h"
+#ifdef WITH_LCD
+ #include "LCD.h"
+#endif
+
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
+
+//=============================================================================
+// A buffer where we can queue things up to be sent through the FPGA, for
+// any purpose (fake tag, as reader, whatever). We go MSB first, since that
+// is the order in which they go out on the wire.
+//=============================================================================
+
+#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2)  // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits 
+uint8_t ToSend[TOSEND_BUFFER_SIZE];
+int ToSendMax;
+static int ToSendBit;
+struct common_area common_area __attribute__((section(".commonarea")));
+
+void ToSendReset(void)
+{
+	ToSendMax = -1;
+	ToSendBit = 8;
+}
+
+void ToSendStuffBit(int b)
+{
+	if(ToSendBit >= 8) {
+		ToSendMax++;
+		ToSend[ToSendMax] = 0;
+		ToSendBit = 0;
+	}
+
+	if(b) {
+		ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
+	}
+
+	ToSendBit++;
+
+	if(ToSendMax >= sizeof(ToSend)) {
+		ToSendBit = 0;
+		DbpString("ToSendStuffBit overflowed!");
+	}
+}
+
+//=============================================================================
+// Debug print functions, to go out over USB, to the usual PC-side client.
+//=============================================================================
+
+void DbpString(char *str)
+{
+  byte_t len = strlen(str);
+  cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
+}
+
+#if 0
+void DbpIntegers(int x1, int x2, int x3)
+{
+  cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
+}
+#endif
+
+void Dbprintf(const char *fmt, ...) {
+// should probably limit size here; oh well, let's just use a big buffer
+	char output_string[128];
+	va_list ap;
+
+	va_start(ap, fmt);
+	kvsprintf(fmt, output_string, 10, ap);
+	va_end(ap);
+
+	DbpString(output_string);
+}
+
+// prints HEX & ASCII
+void Dbhexdump(int len, uint8_t *d, bool bAsci) {
+	int l=0,i;
+	char ascii[9];
+    
+	while (len>0) {
+		if (len>8) l=8;
+		else l=len;
+		
+		memcpy(ascii,d,l);
+		ascii[l]=0;
+		
+		// filter safe ascii
+		for (i=0;i<l;i++)
+			if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
+        
+		if (bAsci) {
+			Dbprintf("%-8s %*D",ascii,l,d," ");
+		} else {
+			Dbprintf("%*D",l,d," ");
+		}
+        
+		len-=8;
+		d+=8;		
+	}
+}
+
+//-----------------------------------------------------------------------------
+// Read an ADC channel and block till it completes, then return the result
+// in ADC units (0 to 1023). Also a routine to average 32 samples and
+// return that.
+//-----------------------------------------------------------------------------
+static int ReadAdc(int ch)
+{
+	uint32_t d;
+
+	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+	AT91C_BASE_ADC->ADC_MR =
+		ADC_MODE_PRESCALE(63  /* was 32 */) |							// ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+		ADC_MODE_STARTUP_TIME(1  /* was 16 */) |						// Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us     Note: must be > 20us
+		ADC_MODE_SAMPLE_HOLD_TIME(15  /* was 8 */); 					// Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
+
+	// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. 
+	// Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+	// of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. 
+	// 
+	// The maths are:
+	// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
+	//
+	//       v_cap = v_in * (1 - exp(-RC/SHTIM))  =   v_in * (1 - exp(-3))  =  v_in * 0,95                   (i.e. an error of 5%)
+	// 
+	// Note: with the "historic" values in the comments above, the error was 34%  !!!
+	
+	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+
+	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
+	while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
+		;
+	d = AT91C_BASE_ADC->ADC_CDR[ch];
+
+	return d;
+}
+
+int AvgAdc(int ch) // was static - merlok
+{
+	int i;
+	int a = 0;
+
+	for(i = 0; i < 32; i++) {
+		a += ReadAdc(ch);
+	}
+
+	return (a + 15) >> 5;
+}
+
+void MeasureAntennaTuning(void)
+{
+	uint8_t LF_Results[256];
+	int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 
+	int vLf125 = 0, vLf134 = 0, vHf = 0;	// in mV
+
+	LED_B_ON();
+
+/*
+ * Sweeps the useful LF range of the proxmark from
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
+  
+  	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	for (i=255; i>=19; i--) {
+    WDT_HIT();
+		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
+		SpinDelay(20);
+		adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+		if (i==95) 	vLf125 = adcval; // voltage at 125Khz
+		if (i==89) 	vLf134 = adcval; // voltage at 134Khz
+
+		LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+		if(LF_Results[i] > peak) {
+			peakv = adcval;
+			peak = LF_Results[i];
+			peakf = i;
+			//ptr = i;
+		}
+	}
+
+	for (i=18; i >= 0; i--) LF_Results[i] = 0;
+	
+	LED_A_ON();
+	// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+  	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+	SpinDelay(20);
+	vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+	cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LED_A_OFF();
+	LED_B_OFF();
+	return;
+}
+
+void MeasureAntennaTuningHf(void)
+{
+	int vHf = 0;	// in mV
+
+	DbpString("Measuring HF antenna, press button to exit");
+
+	// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+	for (;;) {
+		SpinDelay(20);
+		vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+		Dbprintf("%d mV",vHf);
+		if (BUTTON_PRESS()) break;
+	}
+	DbpString("cancelled");
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+}
+
+
+void ReadMem(int addr)
+{
+	const uint8_t *data = ((uint8_t *)addr);
+
+	Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
+		addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
+}
+
+/* osimage version information is linked in */
+extern struct version_information version_information;
+/* bootrom version information is pointed to from _bootphase1_version_pointer */
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
+void SendVersion(void)
+{
+	char temp[512]; /* Limited data payload in USB packets */
+	DbpString("Prox/RFID mark3 RFID instrument");
+
+	/* Try to find the bootrom version information. Expect to find a pointer at
+	 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
+	 * pointer, then use it.
+	 */
+	char *bootrom_version = *(char**)&_bootphase1_version_pointer;
+	if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
+		DbpString("bootrom version information appears invalid");
+	} else {
+		FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
+		DbpString(temp);
+	}
+
+	FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
+	DbpString(temp);
+
+	FpgaGatherVersion(temp, sizeof(temp));
+	DbpString(temp);
+	// Send Chip ID
+	cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
+}
+
+#ifdef WITH_LF
+// samy's sniff and repeat routine
+void SamyRun()
+{
+	DbpString("Stand-alone mode! No PC necessary.");
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+	// 3 possible options? no just 2 for now
+#define OPTS 2
+
+	int high[OPTS], low[OPTS];
+
+	// Oooh pretty -- notify user we're in elite samy mode now
+	LED(LED_RED,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_GREEN,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_RED,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_GREEN,	200);
+	LED(LED_ORANGE, 200);
+	LED(LED_RED,	200);
+
+	int selected = 0;
+	int playing = 0;
+	int cardRead = 0;
+
+	// Turn on selected LED
+	LED(selected + 1, 0);
+
+	for (;;)
+	{
+		usb_poll();
+    WDT_HIT();
+
+		// Was our button held down or pressed?
+		int button_pressed = BUTTON_HELD(1000);
+		SpinDelay(300);
+
+		// Button was held for a second, begin recording
+		if (button_pressed > 0 && cardRead == 0)
+		{
+			LEDsoff();
+			LED(selected + 1, 0);
+			LED(LED_RED2, 0);
+
+			// record
+			DbpString("Starting recording");
+
+			// wait for button to be released
+			while(BUTTON_PRESS())
+				WDT_HIT();
+
+			/* need this delay to prevent catching some weird data */
+			SpinDelay(500);
+
+			CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+			Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
+
+			LEDsoff();
+			LED(selected + 1, 0);
+			// Finished recording
+
+			// If we were previously playing, set playing off
+			// so next button push begins playing what we recorded
+			playing = 0;
+			
+			cardRead = 1;
+	
+		}
+
+		else if (button_pressed > 0 && cardRead == 1)
+		{
+					LEDsoff();
+					LED(selected + 1, 0);
+					LED(LED_ORANGE, 0);
+
+					// record
+					Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
+
+					// wait for button to be released
+					while(BUTTON_PRESS())
+						WDT_HIT();
+
+					/* need this delay to prevent catching some weird data */
+					SpinDelay(500);
+
+					CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
+					Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
+
+					LEDsoff();
+					LED(selected + 1, 0);
+					// Finished recording
+
+					// If we were previously playing, set playing off
+					// so next button push begins playing what we recorded
+					playing = 0;
+					
+					cardRead = 0;
+			
+		}
+
+		// Change where to record (or begin playing)
+		else if (button_pressed)
+		{
+			// Next option if we were previously playing
+			if (playing)
+				selected = (selected + 1) % OPTS;
+			playing = !playing;
+
+			LEDsoff();
+			LED(selected + 1, 0);
+
+			// Begin transmitting
+			if (playing)
+			{
+				LED(LED_GREEN, 0);
+				DbpString("Playing");
+				// wait for button to be released
+				while(BUTTON_PRESS())
+					WDT_HIT();
+				Dbprintf("%x %x %x", selected, high[selected], low[selected]);
+				CmdHIDsimTAG(high[selected], low[selected], 0);
+				DbpString("Done playing");
+				if (BUTTON_HELD(1000) > 0)
+					{
+					DbpString("Exiting");
+					LEDsoff();
+					return;
+					}
+
+				/* We pressed a button so ignore it here with a delay */
+				SpinDelay(300);
+
+				// when done, we're done playing, move to next option
+				selected = (selected + 1) % OPTS;
+				playing = !playing;
+				LEDsoff();
+				LED(selected + 1, 0);
+			}
+			else
+				while(BUTTON_PRESS())
+					WDT_HIT();
+		}
+	}
+}
+#endif
+
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+		0x0, /* ----     | No field detected */
+		0x1, /* X---     | 14% of maximum current detected */
+		0x2, /* -X--     | 29% of maximum current detected */
+		0x4, /* --X-     | 43% of maximum current detected */
+		0x8, /* ---X     | 57% of maximum current detected */
+		0xC, /* --XX     | 71% of maximum current detected */
+		0xE, /* -XXX     | 86% of maximum current detected */
+		0xF, /* XXXX     | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
+{
+	int lf_av, lf_av_new, lf_baseline= 0, lf_max;
+	int hf_av, hf_av_new,  hf_baseline= 0, hf_max;
+	int mode=1, display_val, display_max, i;
+
+#define LF_ONLY						1
+#define HF_ONLY						2
+#define REPORT_CHANGE			 	10    // report new values only if they have changed at least by REPORT_CHANGE
+
+
+	// switch off FPGA - we don't want to measure our own signal
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+	LEDsoff();
+
+	lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
+
+	if(limit != HF_ONLY) {
+		Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
+		lf_baseline = lf_av;
+	}
+
+	hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
+
+	if (limit != LF_ONLY) {
+		Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
+		hf_baseline = hf_av;
+	}
+
+	for(;;) {
+		if (BUTTON_PRESS()) {
+			SpinDelay(500);
+			switch (mode) {
+				case 1:
+					mode=2;
+					DbpString("Signal Strength Mode");
+					break;
+				case 2:
+				default:
+					DbpString("Stopped");
+					LEDsoff();
+					return;
+					break;
+			}
+		}
+		WDT_HIT();
+
+		if (limit != HF_ONLY) {
+			if(mode == 1) {
+				if (abs(lf_av - lf_baseline) > REPORT_CHANGE) 
+					LED_D_ON();
+				else
+					LED_D_OFF();
+			}
+
+			lf_av_new = AvgAdc(ADC_CHAN_LF);
+			// see if there's a significant change
+			if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
+				Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
+				lf_av = lf_av_new;
+				if (lf_av > lf_max)
+					lf_max = lf_av;
+			}
+		}
+
+		if (limit != LF_ONLY) {
+			if (mode == 1){
+				if (abs(hf_av - hf_baseline) > REPORT_CHANGE) 	
+					LED_B_ON();
+				else
+					LED_B_OFF();
+			}
+
+			hf_av_new = AvgAdc(ADC_CHAN_HF);
+			// see if there's a significant change
+			if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
+				Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
+				hf_av = hf_av_new;
+				if (hf_av > hf_max)
+					hf_max = hf_av;
+			}
+		}
+
+		if(mode == 2) {
+			if (limit == LF_ONLY) {
+				display_val = lf_av;
+				display_max = lf_max;
+			} else if (limit == HF_ONLY) {
+				display_val = hf_av;
+				display_max = hf_max;
+			} else { /* Pick one at random */
+				if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+					display_val = hf_av;
+					display_max = hf_max;
+				} else {
+					display_val = lf_av;
+					display_max = lf_max;
+				}
+			}
+			for (i=0; i<LIGHT_LEN; i++) {
+				if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+					if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+					if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+					if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+					if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
+					break;
+				}
+			}
+		}
+	}
+}
+
+void UsbPacketReceived(uint8_t *packet, int len)
+{
+	UsbCommand *c = (UsbCommand *)packet;
+
+//  Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
+  
+	switch(c->cmd) {
+#ifdef WITH_LF
+		case CMD_SET_LF_SAMPLING_CONFIG:
+			setSamplingConfig((sample_config *) c->d.asBytes);
+			break;
+		case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
+			cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
+			break;
+		case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
+			ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+			break;
+		case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
+			cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
+			break;
+		case CMD_HID_DEMOD_FSK:
+			CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
+			break;
+		case CMD_HID_SIM_TAG:
+			CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
+			break;
+		case CMD_FSK_SIM_TAG:
+			CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_ASK_SIM_TAG:
+			CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_PSK_SIM_TAG:
+			CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_HID_CLONE_TAG:
+			CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+			break;
+		case CMD_IO_DEMOD_FSK:
+			CmdIOdemodFSK(c->arg[0], 0, 0, 1);
+			break;
+		case CMD_IO_CLONE_TAG:
+			CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
+			break;
+		case CMD_EM410X_DEMOD:
+			CmdEM410xdemod(c->arg[0], 0, 0, 1);
+			break;
+		case CMD_EM410X_WRITE_TAG:
+			WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
+			break;
+		case CMD_READ_TI_TYPE:
+			ReadTItag();
+			break;
+		case CMD_WRITE_TI_TYPE:
+			WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
+			break;
+		case CMD_SIMULATE_TAG_125K:
+			LED_A_ON();
+			SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
+			LED_A_OFF();
+			break;
+		case CMD_LF_SIMULATE_BIDIR:
+			SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
+			break;
+		case CMD_INDALA_CLONE_TAG:
+			CopyIndala64toT55x7(c->arg[0], c->arg[1]);					
+			break;
+		case CMD_INDALA_CLONE_TAG_L:
+			CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
+			break;
+		case CMD_T55XX_READ_BLOCK:
+			T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
+			break;
+		case CMD_T55XX_WRITE_BLOCK:
+			T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+			break;
+		case CMD_T55XX_READ_TRACE:
+			T55xxReadTrace();
+			break;
+		case CMD_PCF7931_READ:
+			ReadPCF7931();
+			cmd_send(CMD_ACK,0,0,0,0,0);
+			break;
+		case CMD_EM4X_READ_WORD:
+			EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
+			break;
+		case CMD_EM4X_WRITE_WORD:
+			EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+			break;
+#endif
+
+#ifdef WITH_HITAG
+		case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
+			SnoopHitag(c->arg[0]);
+			break;
+		case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
+			SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+			break;
+		case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
+			ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+			break;
+#endif
+
+#ifdef WITH_ISO15693
+		case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
+			AcquireRawAdcSamplesIso15693();
+			break;
+		case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
+			RecordRawAdcSamplesIso15693();
+			break;
+			
+		case CMD_ISO_15693_COMMAND:
+			DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+			break;
+					
+		case CMD_ISO_15693_FIND_AFI:
+			BruteforceIso15693Afi(c->arg[0]);
+			break;	
+			
+		case CMD_ISO_15693_DEBUG:
+			SetDebugIso15693(c->arg[0]);
+			break;
+
+		case CMD_READER_ISO_15693:
+			ReaderIso15693(c->arg[0]);
+			break;
+		case CMD_SIMTAG_ISO_15693:
+			SimTagIso15693(c->arg[0], c->d.asBytes);
+			break;
+#endif
+
+#ifdef WITH_LEGICRF
+		case CMD_SIMULATE_TAG_LEGIC_RF:
+			LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+			break;
+
+		case CMD_WRITER_LEGIC_RF:
+			LegicRfWriter(c->arg[1], c->arg[0]);
+			break;
+
+		case CMD_READER_LEGIC_RF:
+			LegicRfReader(c->arg[0], c->arg[1]);
+			break;
+#endif
+
+#ifdef WITH_ISO14443b
+		case CMD_READ_SRI512_TAG:
+			ReadSTMemoryIso14443b(0x0F);
+			break;
+		case CMD_READ_SRIX4K_TAG:
+			ReadSTMemoryIso14443b(0x7F);
+			break;
+		case CMD_SNOOP_ISO_14443B:
+			SnoopIso14443b();
+			break;
+		case CMD_SIMULATE_TAG_ISO_14443B:
+			SimulateIso14443bTag();
+			break;
+		case CMD_ISO_14443B_COMMAND:
+			SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+			break;
+#endif
+
+#ifdef WITH_ISO14443a
+		case CMD_SNOOP_ISO_14443a:
+			SnoopIso14443a(c->arg[0]);
+			break;
+		case CMD_READER_ISO_14443a:
+			ReaderIso14443a(c);
+			break;
+		case CMD_SIMULATE_TAG_ISO_14443a:
+			SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);  // ## Simulate iso14443a tag - pass tag type & UID
+			break;
+			
+		case CMD_EPA_PACE_COLLECT_NONCE:
+			EPA_PACE_Collect_Nonce(c);
+			break;
+		case CMD_EPA_PACE_REPLAY:
+			EPA_PACE_Replay(c);
+			break;
+			
+		case CMD_READER_MIFARE:
+			ReaderMifare(c->arg[0]);
+			break;
+		case CMD_MIFARE_READBL:
+			MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFAREU_READBL:
+			MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
+			break;
+		case CMD_MIFAREUC_AUTH:
+			MifareUC_Auth(c->arg[0],c->d.asBytes);
+			break;
+		case CMD_MIFAREU_READCARD:
+			MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFAREUC_SETPWD: 
+			MifareUSetPwd(c->arg[0], c->d.asBytes);
+			break;
+		case CMD_MIFARE_READSC:
+			MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_WRITEBL:
+			MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		//case CMD_MIFAREU_WRITEBL_COMPAT:
+			//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
+			//break;
+		case CMD_MIFAREU_WRITEBL:
+			MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
+			break;
+		case CMD_MIFARE_NESTED:
+			MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_CHKKEYS:
+			MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_SIMULATE_MIFARE_CARD:
+			Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		
+		// emulator
+		case CMD_MIFARE_SET_DBGMODE:
+			MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_MEMCLR:
+			MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_MEMSET:
+			MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_MEMGET:
+			MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_EML_CARDLOAD:
+			MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+			
+		// Work with "magic Chinese" card
+		case CMD_MIFARE_CSETBLOCK:
+			MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_CGETBLOCK:
+			MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_MIFARE_CIDENT:
+			MifareCIdent();
+			break;
+			
+		// mifare sniffer
+		case CMD_MIFARE_SNIFFER:
+			SniffMifare(c->arg[0]);
+			break;
+
+#endif
+
+#ifdef WITH_ICLASS
+		// Makes use of ISO14443a FPGA Firmware
+		case CMD_SNOOP_ICLASS:
+			SnoopIClass();
+			break;
+		case CMD_SIMULATE_TAG_ICLASS:
+			SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+			break;
+		case CMD_READER_ICLASS:
+			ReaderIClass(c->arg[0]);
+			break;
+		case CMD_READER_ICLASS_REPLAY:
+		    ReaderIClass_Replay(c->arg[0], c->d.asBytes);
+			break;
+	case CMD_ICLASS_EML_MEMSET:
+			emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
+			break;
+#endif
+
+		case CMD_BUFF_CLEAR:
+			BigBuf_Clear();
+			break;
+
+		case CMD_MEASURE_ANTENNA_TUNING:
+			MeasureAntennaTuning();
+			break;
+
+		case CMD_MEASURE_ANTENNA_TUNING_HF:
+			MeasureAntennaTuningHf();
+			break;
+
+		case CMD_LISTEN_READER_FIELD:
+			ListenReaderField(c->arg[0]);
+			break;
+
+		case CMD_FPGA_MAJOR_MODE_OFF:		// ## FPGA Control
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+			SpinDelay(200);
+			LED_D_OFF(); // LED D indicates field ON or OFF
+			break;
+
+		case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
+
+			LED_B_ON();
+			uint8_t *BigBuf = BigBuf_get_addr();
+			for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
+				size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
+				cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
+			}
+			// Trigger a finish downloading signal with an ACK frame
+			cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
+			LED_B_OFF();
+			break;
+
+		case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
+			uint8_t *b = BigBuf_get_addr();
+			memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
+			cmd_send(CMD_ACK,0,0,0,0,0);
+			break;
+		}	
+		case CMD_READ_MEM:
+			ReadMem(c->arg[0]);
+			break;
+
+		case CMD_SET_LF_DIVISOR:
+		  	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
+			break;
+
+		case CMD_SET_ADC_MUX:
+			switch(c->arg[0]) {
+				case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
+				case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
+				case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
+				case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
+			}
+			break;
+
+		case CMD_VERSION:
+			SendVersion();
+			break;
+
+#ifdef WITH_LCD
+		case CMD_LCD_RESET:
+			LCDReset();
+			break;
+		case CMD_LCD:
+			LCDSend(c->arg[0]);
+			break;
+#endif
+		case CMD_SETUP_WRITE:
+		case CMD_FINISH_WRITE:
+		case CMD_HARDWARE_RESET:
+			usb_disable();
+			SpinDelay(1000);
+			SpinDelay(1000);
+			AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+			for(;;) {
+				// We're going to reset, and the bootrom will take control.
+			}
+			break;
+
+		case CMD_START_FLASH:
+			if(common_area.flags.bootrom_present) {
+				common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
+			}
+			usb_disable();
+			AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+			for(;;);
+			break;
+
+		case CMD_DEVICE_INFO: {
+			uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
+			if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
+			cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);	
+			break;
+		}
+		default:
+			Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
+			break;
+	}
+}
+
+void  __attribute__((noreturn)) AppMain(void)
+{
+	SpinDelay(100);
+	clear_trace();
+	if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
+		/* Initialize common area */
+		memset(&common_area, 0, sizeof(common_area));
+		common_area.magic = COMMON_AREA_MAGIC;
+		common_area.version = 1;
+	}
+	common_area.flags.osimage_present = 1;
+
+	LED_D_OFF();
+	LED_C_OFF();
+	LED_B_OFF();
+	LED_A_OFF();
+
+	// Init USB device
+  usb_enable();
+
+	// The FPGA gets its clock from us from PCK0 output, so set that up.
+	AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
+	AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
+	AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
+	// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
+	AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
+		AT91C_PMC_PRES_CLK_4;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
+
+	// Reset SPI
+	AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
+	// Reset SSC
+	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+
+	// Load the FPGA image, which we have stored in our flash.
+	// (the HF version by default)
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+	StartTickCount();
+  	
+#ifdef WITH_LCD
+	LCDInit();
+#endif
+
+  byte_t rx[sizeof(UsbCommand)];
+	size_t rx_len;
+  
+	for(;;) {
+    if (usb_poll()) {
+      rx_len = usb_read(rx,sizeof(UsbCommand));
+      if (rx_len) {
+        UsbPacketReceived(rx,rx_len);
+      }
+    }
+		WDT_HIT();
+
+#ifdef WITH_LF
+		if (BUTTON_HELD(1000) > 0)
+			SamyRun();
+#endif
+	}
+}