X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/e30c654b196a87a13ae7f7d4ced930b296c038ec..90e278d3daf11b501043d7ae628a25aeb0227420:/armsrc/lfops.c diff --git a/armsrc/lfops.c b/armsrc/lfops.c index e4ebacb0..74f04913 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -1,40 +1,30 @@ //----------------------------------------------------------------------------- +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- // Miscellaneous routines for low frequency tag operations. // Tags supported here so far are Texas Instruments (TI), HID // Also routines for raw mode reading/simulating of LF waveform -// //----------------------------------------------------------------------------- + #include "proxmark3.h" #include "apps.h" +#include "util.h" #include "hitag2.h" #include "crc16.h" +#include "string.h" -void AcquireRawAdcSamples125k(BOOL at134khz) -{ - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - // Now call the acquisition routine - DoAcquisition125k(); -} - -// split into two routines so we can avoid timing issues after sending commands // -void DoAcquisition125k(void) +/** +* Does the sample acquisition. If threshold is specified, the actual sampling +* is not commenced until the threshold has been reached. +* @param trigger_threshold - the threshold +* @param silent - is true, now outputs are made. If false, dbprints the status +*/ +void DoAcquisition125k_internal(int trigger_threshold,bool silent) { - BYTE *dest = (BYTE *)BigBuf; + uint8_t *dest = (uint8_t *)BigBuf; int n = sizeof(BigBuf); int i; @@ -46,39 +36,96 @@ void DoAcquisition125k(void) LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR; - i++; + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; LED_D_OFF(); - if (i >= n) break; + if (trigger_threshold != -1 && dest[i] < trigger_threshold) + continue; + else + trigger_threshold = -1; + if (++i >= n) break; } } - Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", - dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); + if(!silent) + { + Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", + dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); + + } +} +/** +* Perform sample aquisition. +*/ +void DoAcquisition125k(int trigger_threshold) +{ + DoAcquisition125k_internal(trigger_threshold, false); +} + +/** +* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream +* if not already loaded, sets divisor and starts up the antenna. +* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz +* 0 or 95 ==> 125 KHz +* +**/ +void LFSetupFPGAForADC(int divisor, bool lf_field) +{ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + else if (divisor == 0) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + else + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); + + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Give it a bit of time for the resonant antenna to settle. + SpinDelay(50); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); +} +/** +* Initializes the FPGA, and acquires the samples. +**/ +void AcquireRawAdcSamples125k(int divisor) +{ + LFSetupFPGAForADC(divisor, true); + // Now call the acquisition routine + DoAcquisition125k_internal(-1,false); +} +/** +* Initializes the FPGA for snoop-mode, and acquires the samples. +**/ + +void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) +{ + LFSetupFPGAForADC(divisor, false); + DoAcquisition125k(trigger_threshold); } -void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, BYTE *command) +void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) { - BOOL at134khz; /* Make sure the tag is reset */ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(2500); + + int divisor_used = 95; // 125 KHz // see if 'h' was specified - if (command[strlen((char *) command) - 1] == 'h') - at134khz = TRUE; - else - at134khz = FALSE; - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + if (command[strlen((char *) command) - 1] == 'h') + divisor_used = 88; // 134.8 KHz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // Give it a bit of time for the resonant antenna to settle. SpinDelay(50); + // And a little more time for the tag to fully power up SpinDelay(2000); @@ -90,12 +137,9 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); @@ -105,15 +149,12 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // now do the read - DoAcquisition125k(); + DoAcquisition125k(-1); } /* blank r/w tag data stream @@ -141,15 +182,16 @@ void ReadTItag(void) // int n = GraphTraceLen; // 128 bit shift register [shift3:shift2:shift1:shift0] - DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; + uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; int i, cycles=0, samples=0; // how many sample points fit in 16 cycles of each frequency - DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; + uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; // when to tell if we're close enough to one freq or another - DWORD threshold = (sampleslo - sampleshi + 1)>>1; + uint32_t threshold = (sampleslo - sampleshi + 1)>>1; // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line @@ -236,7 +278,7 @@ void ReadTItag(void) // i'm 99% sure the crc algorithm is correct, but it may need to eat the // bytes in reverse or something // calculate CRC - DWORD crc=0; + uint32_t crc=0; crc = update_crc16(crc, (shift0)&0xff); crc = update_crc16(crc, (shift0>>8)&0xff); @@ -257,7 +299,7 @@ void ReadTItag(void) } } -void WriteTIbyte(BYTE b) +void WriteTIbyte(uint8_t b) { int i = 0; @@ -286,7 +328,7 @@ void AcquireTiType(void) { int i, j, n; // tag transmission is <20ms, sampling at 2M gives us 40K samples max - // each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS + // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t #define TIBUFLEN 1250 // clear buffer @@ -355,8 +397,9 @@ void AcquireTiType(void) // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc // if crc provided, it will be written with the data verbatim (even if bogus) // if not provided a valid crc will be computed from the data and written. -void WriteTItag(DWORD idhi, DWORD idlo, WORD crc) +void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); if(crc == 0) { crc = update_crc16(crc, (idlo)&0xff); crc = update_crc16(crc, (idlo>>8)&0xff); @@ -426,18 +469,19 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc) void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { int i; - BYTE *tab = (BYTE *)BigBuf; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); - + uint8_t *tab = (uint8_t *)BigBuf; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; - + #define SHORT_COIL() LOW(GPIO_SSC_DOUT) #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - + i = 0; for(;;) { while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { @@ -447,18 +491,18 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol) } WDT_HIT(); } - + if (ledcontrol) LED_D_ON(); - + if(tab[i]) OPEN_COIL(); else SHORT_COIL(); - + if (ledcontrol) LED_D_OFF(); - + while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { if(BUTTON_PRESS()) { DbpString("Stopped"); @@ -466,7 +510,7 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol) } WDT_HIT(); } - + i++; if(i == period) { i = 0; @@ -478,202 +522,14 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol) } } -/* Provides a framework for bidirectional LF tag communication - * Encoding is currently Hitag2, but the general idea can probably - * be transferred to other encodings. - * - * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME - * (PA15) a thresholded version of the signal from the ADC. Setting the - * ADC path to the low frequency peak detection signal, will enable a - * somewhat reasonable receiver for modulation on the carrier signal - * that is generated by the reader. The signal is low when the reader - * field is switched off, and high when the reader field is active. Due - * to the way that the signal looks like, mostly only the rising edge is - * useful, your mileage may vary. - * - * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also - * TIOA1, which can be used as the capture input for timer 1. This should - * make it possible to measure the exact edge-to-edge time, without processor - * intervention. - * - * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz) - * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz) - * - * The following defines are in carrier periods: - */ -#define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */ -#define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */ -#define HITAG_T_EOF 40 /* T_EOF should be > 36 */ -#define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */ - -static void hitag_handle_frame(int t0, int frame_len, char *frame); -//#define DEBUG_RA_VALUES 1 #define DEBUG_FRAME_CONTENTS 1 void SimulateTagLowFrequencyBidir(int divisor, int t0) { -#if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS - int i = 0; -#endif - char frame[10]; - int frame_pos=0; - - DbpString("Starting Hitag2 emulator, press button to end"); - hitag2_init(); - - /* Set up simulator mode, frequency divisor which will drive the FPGA - * and analog mux selection. - */ - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - RELAY_OFF(); - - /* Set up Timer 1: - * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger, - * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising - * edge of TIOA. Assign PA15 to TIOA1 (peripheral B) - */ - - AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); - AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; - AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; - AT91C_BASE_TC1->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 | - AT91C_TC_ETRGEDG_RISING | - AT91C_TC_ABETRG | - AT91C_TC_LDRA_RISING | - AT91C_TC_LDRB_RISING; - AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | - AT91C_TC_SWTRG; - - /* calculate the new value for the carrier period in terms of TC1 values */ - t0 = t0/2; - - int overflow = 0; - while(!BUTTON_PRESS()) { - WDT_HIT(); - if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { - int ra = AT91C_BASE_TC1->TC_RA; - if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1; -#if DEBUG_RA_VALUES - if(ra > 255 || overflow) ra = 255; - ((char*)BigBuf)[i] = ra; - i = (i+1) % 8000; -#endif - - if(overflow || (ra > t0*HITAG_T_EOF) || (ra < t0*HITAG_T_0_MIN)) { - /* Ignore */ - } else if(ra >= t0*HITAG_T_1_MIN ) { - /* '1' bit */ - if(frame_pos < 8*sizeof(frame)) { - frame[frame_pos / 8] |= 1<<( 7-(frame_pos%8) ); - frame_pos++; - } - } else if(ra >= t0*HITAG_T_0_MIN) { - /* '0' bit */ - if(frame_pos < 8*sizeof(frame)) { - frame[frame_pos / 8] |= 0<<( 7-(frame_pos%8) ); - frame_pos++; - } - } - - overflow = 0; - LED_D_ON(); - } else { - if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) { - /* Minor nuisance: In Capture mode, the timer can not be - * stopped by a Compare C. There's no way to stop the clock - * in software, so we'll just have to note the fact that an - * overflow happened and the next loaded timer value might - * have wrapped. Also, this marks the end of frame, and the - * still running counter can be used to determine the correct - * time for the start of the reply. - */ - overflow = 1; - - if(frame_pos > 0) { - /* Have a frame, do something with it */ -#if DEBUG_FRAME_CONTENTS - ((char*)BigBuf)[i++] = frame_pos; - memcpy( ((char*)BigBuf)+i, frame, 7); - i+=7; - i = i % sizeof(BigBuf); -#endif - hitag_handle_frame(t0, frame_pos, frame); - memset(frame, 0, sizeof(frame)); - } - frame_pos = 0; - - } - LED_D_OFF(); - } - } - DbpString("All done"); -} - -static void hitag_send_bit(int t0, int bit) { - if(bit == 1) { - /* Manchester: Loaded, then unloaded */ - LED_A_ON(); - SHORT_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*15); - OPEN_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*31); - LED_A_OFF(); - } else if(bit == 0) { - /* Manchester: Unloaded, then loaded */ - LED_B_ON(); - OPEN_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*15); - SHORT_COIL(); - while(AT91C_BASE_TC1->TC_CV < t0*31); - LED_B_OFF(); - } - AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */ - -} -static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt) -{ - OPEN_COIL(); - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - /* Wait for HITAG_T_WRESP carrier periods after the last reader bit, - * not that since the clock counts since the rising edge, but T_wresp is - * with respect to the falling edge, we need to wait actually (T_wresp - T_g) - * periods. The gap time T_g varies (4..10). - */ - while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8)); - - int saved_cmr = AT91C_BASE_TC1->TC_CMR; - AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */ - AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */ - - int i; - for(i=0; i<5; i++) - hitag_send_bit(t0, 1); /* Start of frame */ - - for(i=0; iTC_CMR = saved_cmr; -} - -/* Callback structure to cleanly separate tag emulation code from the radio layer. */ -static int hitag_cb(const char* response_data, const int response_length, const int fdt, void *cb_cookie) -{ - hitag_send_frame(*(int*)cb_cookie, response_length, response_data, fdt); - return 0; -} -/* Frame length in bits, frame contents in MSBit first format */ -static void hitag_handle_frame(int t0, int frame_len, char *frame) -{ - hitag2_handle_command(frame, frame_len, hitag_cb, &t0); } // compose fc/8 fc/10 waveform static void fc(int c, int *n) { - BYTE *dest = (BYTE *)BigBuf; + uint8_t *dest = (uint8_t *)BigBuf; int idx; // for when we want an fc8 pattern every 4 logical bits @@ -774,198 +630,1256 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) LED_A_OFF(); } - -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +size_t fsk_demod(uint8_t * dest, size_t size) { - BYTE *dest = (BYTE *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - DWORD hi=0, lo=0; + uint32_t last_transition = 0; + uint32_t idx = 1; - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + // we don't care about actual value, only if it's more or less than a + // threshold essentially we capture zero crossings for later analysis + uint8_t threshold_value = 127; - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // sync to first lo-hi transition, and threshold - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); + //Need to threshold first sample + if(dest[0] < threshold_value) dest[0] = 0; + else dest[0] = 1; - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + size_t numBits = 0; + // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) + // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere + // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 + for(idx = 1; idx < size; idx++) { + // threshold current value + if (dest[idx] < threshold_value) dest[idx] = 0; + else dest[idx] = 1; - for(;;) { - WDT_HIT(); - if (ledcontrol) - LED_A_ON(); - if(BUTTON_PRESS()) { - DbpString("Stopped"); - if (ledcontrol) - LED_A_OFF(); - return; - } + // Check for 0->1 transition + if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x43; - if (ledcontrol) - LED_D_ON(); - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (ledcontrol) - LED_D_OFF(); - if(i >= m) { - break; - } + if (idx-last_transition < 9) { + dest[numBits]=1; + } else { + dest[numBits]=0; } + last_transition = idx; + numBits++; } + } + return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 +} - // FSK demodulator - // sync to first lo-hi transition - for( idx=1; idx0 crossing + if ( dest[idx-1] ) { + n=(n+1) / h2l_crossing_value; + } else {// 0->1 crossing + n=(n+1) / l2h_crossing_value; } - m=i; + if (n == 0) n = 1; + + if(n < maxConsequtiveBits) + { + memset(dest+numBits, dest[idx-1] , n); + numBits += n; + } + n=0; + lastval=dest[idx]; + }//end for + + return numBits; + +} +// loop to capture raw HID waveform then FSK demodulate the TAG ID from it +void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = (uint8_t *)BigBuf; + + size_t size=0,idx=0; //, found=0; + uint32_t hi2=0, hi=0, lo=0; + + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + + // FSK demodulator + size = fsk_demod(dest, size); // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns - lastval=dest[0]; - idx=0; - i=0; - n=0; - for( idx=0; idx0 : fc/8 in sets of 6 + // 0->1 : fc/10 in sets of 5 + size = aggregate_bits(dest,size, 6,5,5); + WDT_HIT(); // final loop, go over previously decoded manchester data and decode into usable tag ID // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - for( idx=0; idx>1) & 0xFFFF); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi=0; - lo=0; - found=0; + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { // frame marker found + idx+=sizeof(frame_marker_mask); + + while(dest[idx] != dest[idx+1] && idx < size-2) + { + // Keep going until next frame marker (or error) + // Shift in a bit. Start by shifting high registers + hi2 = (hi2<<1)|(hi>>31); + hi = (hi<<1)|(lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + lo=(lo<<1)|0; + else // 0 1 + lo=(lo<<1)| + 1; + numshifts ++; + idx += 2; } - } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi=0; - lo=0; - } - idx++; - } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi|lo)) { - Dbprintf("TAG ID: %x%08x (%d)", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - /* if we're only looking for one tag */ - if (findone) + //Dbprintf("Num shifts: %d ", numshifts); + // Hopefully, we read a tag and hit upon the next frame marker + if(idx + sizeof(frame_marker_mask) < size) + { + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { - *high = hi; - *low = lo; - return; + if (hi2 != 0){ + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + } + else { + Dbprintf("TAG ID: %x%08x (%d)", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + } } - hi=0; - lo=0; - found=0; + } + + // reset + hi2 = hi = lo = 0; + numshifts = 0; + }else + { + idx++; } } WDT_HIT(); + + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +uint32_t bytebits_to_byte(uint8_t* src, int numbits) +{ + uint32_t num = 0; + for(int i = 0 ; i < numbits ; i++) + { + num = (num << 1) | (*src); + src++; + } + return num; +} + + +void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = (uint8_t *)BigBuf; + + size_t size=0, idx=0; + uint32_t code=0, code2=0; + + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS()) { + + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + + // FSK demodulator + size = fsk_demod(dest, size); + + // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns + // 1->0 : fc/8 in sets of 7 + // 0->1 : fc/10 in sets of 6 + size = aggregate_bits(dest, size, 7,6,13); + + WDT_HIT(); + + //Handle the data + uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; + for( idx=0; idx < size - 64; idx++) { + + if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue; + + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]); + Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + + short version = bytebits_to_byte(dest+idx+14,4); + char unknown = bytebits_to_byte(dest+idx+19,8) ; + uint16_t number = bytebits_to_byte(dest+idx+36,9); + + Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2); + if (ledcontrol) LED_D_OFF(); + + // if we're only looking for one tag + if (findone){ + LED_A_OFF(); + return; + } + } + WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +/*------------------------------ + * T5555/T5557/T5567 routines + *------------------------------ + */ + +/* T55x7 configuration register definitions */ +#define T55x7_POR_DELAY 0x00000001 +#define T55x7_ST_TERMINATOR 0x00000008 +#define T55x7_PWD 0x00000010 +#define T55x7_MAXBLOCK_SHIFT 5 +#define T55x7_AOR 0x00000200 +#define T55x7_PSKCF_RF_2 0 +#define T55x7_PSKCF_RF_4 0x00000400 +#define T55x7_PSKCF_RF_8 0x00000800 +#define T55x7_MODULATION_DIRECT 0 +#define T55x7_MODULATION_PSK1 0x00001000 +#define T55x7_MODULATION_PSK2 0x00002000 +#define T55x7_MODULATION_PSK3 0x00003000 +#define T55x7_MODULATION_FSK1 0x00004000 +#define T55x7_MODULATION_FSK2 0x00005000 +#define T55x7_MODULATION_FSK1a 0x00006000 +#define T55x7_MODULATION_FSK2a 0x00007000 +#define T55x7_MODULATION_MANCHESTER 0x00008000 +#define T55x7_MODULATION_BIPHASE 0x00010000 +#define T55x7_BITRATE_RF_8 0 +#define T55x7_BITRATE_RF_16 0x00040000 +#define T55x7_BITRATE_RF_32 0x00080000 +#define T55x7_BITRATE_RF_40 0x000C0000 +#define T55x7_BITRATE_RF_50 0x00100000 +#define T55x7_BITRATE_RF_64 0x00140000 +#define T55x7_BITRATE_RF_100 0x00180000 +#define T55x7_BITRATE_RF_128 0x001C0000 + +/* T5555 (Q5) configuration register definitions */ +#define T5555_ST_TERMINATOR 0x00000001 +#define T5555_MAXBLOCK_SHIFT 0x00000001 +#define T5555_MODULATION_MANCHESTER 0 +#define T5555_MODULATION_PSK1 0x00000010 +#define T5555_MODULATION_PSK2 0x00000020 +#define T5555_MODULATION_PSK3 0x00000030 +#define T5555_MODULATION_FSK1 0x00000040 +#define T5555_MODULATION_FSK2 0x00000050 +#define T5555_MODULATION_BIPHASE 0x00000060 +#define T5555_MODULATION_DIRECT 0x00000070 +#define T5555_INVERT_OUTPUT 0x00000080 +#define T5555_PSK_RF_2 0 +#define T5555_PSK_RF_4 0x00000100 +#define T5555_PSK_RF_8 0x00000200 +#define T5555_USE_PWD 0x00000400 +#define T5555_USE_AOR 0x00000800 +#define T5555_BITRATE_SHIFT 12 +#define T5555_FAST_WRITE 0x00004000 +#define T5555_PAGE_SELECT 0x00008000 + +/* + * Relevant times in microsecond + * To compensate antenna falling times shorten the write times + * and enlarge the gap ones. + */ +#define START_GAP 250 +#define WRITE_GAP 160 +#define WRITE_0 144 // 192 +#define WRITE_1 400 // 432 for T55x7; 448 for E5550 + +// Write one bit to card +void T55xxWriteBit(int bit) +{ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + if (bit == 0) + SpinDelayUs(WRITE_0); + else + SpinDelayUs(WRITE_1); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(WRITE_GAP); +} + +// Write one card block in page 0, no lock +void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) +{ + unsigned int i; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // Now start writting + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + if (PwdMode == 1){ + // Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Lock bit + T55xxWriteBit(0); + + // Data + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Data & i); + + // Block + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, + // so wait a little more) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + SpinDelay(20); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); +} + +// Read one card block in page 0 +void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) +{ + uint8_t *dest = (uint8_t *)BigBuf; + int m=0, i=0; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + m = sizeof(BigBuf); + // Clear destination buffer before sending the command + memset(dest, 128, m); + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + LED_D_ON(); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // Now start writting + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + if (PwdMode == 1){ + // Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Lock bit + T55xxWriteBit(0); + // Block + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Turn field on to read the response + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + // we don't care about actual value, only if it's more or less than a + // threshold essentially we capture zero crossings for later analysis + // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; + i++; + if (i >= m) break; + } + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); + DbpString("DONE!"); +} + +// Read card traceability data (page 1) +void T55xxReadTrace(void){ + uint8_t *dest = (uint8_t *)BigBuf; + int m=0, i=0; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + m = sizeof(BigBuf); + // Clear destination buffer before sending the command + memset(dest, 128, m); + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + LED_D_ON(); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // Now start writting + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode + T55xxWriteBit(1); + T55xxWriteBit(1); //Page 1 + + // Turn field on to read the response + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + if (i >= m) break; + } + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); + DbpString("DONE!"); +} + +/*-------------- Cloning routines -----------*/ +// Copy HID id to card and setup block 0 config +void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) +{ + int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format + int last_block = 0; + + if (longFMT){ + // Ensure no more than 84 bits supplied + if (hi2>0xFFFFF) { + DbpString("Tags can only have 84 bits."); + return; + } + // Build the 6 data blocks for supplied 84bit ID + last_block = 6; + data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) + for (int i=0;i<4;i++) { + if (hi2 & (1<<(19-i))) + data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((3-i)*2)); // 0 -> 01 + } + + data2 = 0; + for (int i=0;i<16;i++) { + if (hi2 & (1<<(15-i))) + data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data2 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data3 = 0; + for (int i=0;i<16;i++) { + if (hi & (1<<(31-i))) + data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data3 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data4 = 0; + for (int i=0;i<16;i++) { + if (hi & (1<<(15-i))) + data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data4 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data5 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(31-i))) + data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data5 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data6 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(15-i))) + data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data6 |= (1<<((15-i)*2)); // 0 -> 01 + } + } + else { + // Ensure no more than 44 bits supplied + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; + } + + // Build the 3 data blocks for supplied 44bit ID + last_block = 3; + + data1 = 0x1D000000; // load preamble + + for (int i=0;i<12;i++) { + if (hi & (1<<(11-i))) + data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((11-i)*2)); // 0 -> 01 + } + + data2 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(31-i))) + data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data2 |= (1<<((15-i)*2)); // 0 -> 01 + } + + data3 = 0; + for (int i=0;i<16;i++) { + if (lo & (1<<(15-i))) + data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 + else + data3 |= (1<<((15-i)*2)); // 0 -> 01 + } + } + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + T55xxWriteBlock(data1,1,0,0); + T55xxWriteBlock(data2,2,0,0); + T55xxWriteBlock(data3,3,0,0); + + if (longFMT) { // if long format there are 6 blocks + T55xxWriteBlock(data4,4,0,0); + T55xxWriteBlock(data5,5,0,0); + T55xxWriteBlock(data6,6,0,0); + } + + // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) + T55xxWriteBlock(T55x7_BITRATE_RF_50 | + T55x7_MODULATION_FSK2a | + last_block << T55x7_MAXBLOCK_SHIFT, + 0,0,0); + + LED_D_OFF(); + + DbpString("DONE!"); +} + +void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) +{ + int data1=0, data2=0; //up to six blocks for long format + + data1 = hi; // load preamble + data2 = lo; + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + T55xxWriteBlock(data1,1,0,0); + T55xxWriteBlock(data2,2,0,0); + + //Config Block + T55xxWriteBlock(0x00147040,0,0,0); + LED_D_OFF(); + + DbpString("DONE!"); +} + +// Define 9bit header for EM410x tags +#define EM410X_HEADER 0x1FF +#define EM410X_ID_LENGTH 40 + +void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) +{ + int i, id_bit; + uint64_t id = EM410X_HEADER; + uint64_t rev_id = 0; // reversed ID + int c_parity[4]; // column parity + int r_parity = 0; // row parity + uint32_t clock = 0; + + // Reverse ID bits given as parameter (for simpler operations) + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + if (i < 32) { + rev_id = (rev_id << 1) | (id_lo & 1); + id_lo >>= 1; + } else { + rev_id = (rev_id << 1) | (id_hi & 1); + id_hi >>= 1; + } + } + + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + id_bit = rev_id & 1; + + if (i % 4 == 0) { + // Don't write row parity bit at start of parsing + if (i) + id = (id << 1) | r_parity; + // Start counting parity for new row + r_parity = id_bit; + } else { + // Count row parity + r_parity ^= id_bit; + } + + // First elements in column? + if (i < 4) + // Fill out first elements + c_parity[i] = id_bit; + else + // Count column parity + c_parity[i % 4] ^= id_bit; + + // Insert ID bit + id = (id << 1) | id_bit; + rev_id >>= 1; + } + + // Insert parity bit of last row + id = (id << 1) | r_parity; + + // Fill out column parity at the end of tag + for (i = 0; i < 4; ++i) + id = (id << 1) | c_parity[i]; + + // Add stop bit + id <<= 1; + + Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); + LED_D_ON(); + + // Write EM410x ID + T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); + T55xxWriteBlock((uint32_t)id, 2, 0, 0); + + // Config for EM410x (RF/64, Manchester, Maxblock=2) + if (card) { + // Clock rate is stored in bits 8-15 of the card value + clock = (card & 0xFF00) >> 8; + Dbprintf("Clock rate: %d", clock); + switch (clock) + { + case 32: + clock = T55x7_BITRATE_RF_32; + break; + case 16: + clock = T55x7_BITRATE_RF_16; + break; + case 0: + // A value of 0 is assumed to be 64 for backwards-compatibility + // Fall through... + case 64: + clock = T55x7_BITRATE_RF_64; + break; + default: + Dbprintf("Invalid clock rate: %d", clock); + return; + } + + // Writing configuration for T55x7 tag + T55xxWriteBlock(clock | + T55x7_MODULATION_MANCHESTER | + 2 << T55x7_MAXBLOCK_SHIFT, + 0, 0, 0); + } + else + // Writing configuration for T5555(Q5) tag + T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | + T5555_MODULATION_MANCHESTER | + 2 << T5555_MAXBLOCK_SHIFT, + 0, 0, 0); + + LED_D_OFF(); + Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", + (uint32_t)(id >> 32), (uint32_t)id); +} + +// Clone Indala 64-bit tag by UID to T55x7 +void CopyIndala64toT55x7(int hi, int lo) +{ + + //Program the 2 data blocks for supplied 64bit UID + // and the block 0 for Indala64 format + T55xxWriteBlock(hi,1,0,0); + T55xxWriteBlock(lo,2,0,0); + //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) + T55xxWriteBlock(T55x7_BITRATE_RF_32 | + T55x7_MODULATION_PSK1 | + 2 << T55x7_MAXBLOCK_SHIFT, + 0, 0, 0); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) +// T5567WriteBlock(0x603E1042,0); + + DbpString("DONE!"); + +} + +void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) +{ + + //Program the 7 data blocks for supplied 224bit UID + // and the block 0 for Indala224 format + T55xxWriteBlock(uid1,1,0,0); + T55xxWriteBlock(uid2,2,0,0); + T55xxWriteBlock(uid3,3,0,0); + T55xxWriteBlock(uid4,4,0,0); + T55xxWriteBlock(uid5,5,0,0); + T55xxWriteBlock(uid6,6,0,0); + T55xxWriteBlock(uid7,7,0,0); + //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) + T55xxWriteBlock(T55x7_BITRATE_RF_32 | + T55x7_MODULATION_PSK1 | + 7 << T55x7_MAXBLOCK_SHIFT, + 0,0,0); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) +// T5567WriteBlock(0x603E10E2,0); + + DbpString("DONE!"); + +} + + +#define abs(x) ( ((x)<0) ? -(x) : (x) ) +#define max(x,y) ( x GraphBuffer[0]) { + while(i < GraphTraceLen) { + if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) + break; + i++; + } + dir = 0; + } + else { + while(i < GraphTraceLen) { + if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) + break; + i++; + } + dir = 1; + } + + lastval = i++; + half_switch = 0; + pmc = 0; + block_done = 0; + + for (bitidx = 0; i < GraphTraceLen; i++) + { + if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) + { + lc = i - lastval; + lastval = i; + + // Switch depending on lc length: + // Tolerance is 1/8 of clock rate (arbitrary) + if (abs(lc-clock/4) < tolerance) { + // 16T0 + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33+16)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else { + pmc = i; + } + } else if (abs(lc-clock/2) < tolerance) { + // 32TO + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else if(half_switch == 1) { + BitStream[bitidx++] = 0; + half_switch = 0; + } + else + half_switch++; + } else if (abs(lc-clock) < tolerance) { + // 64TO + BitStream[bitidx++] = 1; + } else { + // Error + warnings++; + if (warnings > 10) + { + Dbprintf("Error: too many detection errors, aborting."); + return 0; + } + } + + if(block_done == 1) { + if(bitidx == 128) { + for(j=0; j<16; j++) { + Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ + 64*BitStream[j*8+6]+ + 32*BitStream[j*8+5]+ + 16*BitStream[j*8+4]+ + 8*BitStream[j*8+3]+ + 4*BitStream[j*8+2]+ + 2*BitStream[j*8+1]+ + BitStream[j*8]; + } + num_blocks++; + } + bitidx = 0; + block_done = 0; + half_switch = 0; + } + if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; + else dir = 1; + } + if(bitidx==255) + bitidx=0; + warnings = 0; + if(num_blocks == 4) break; + } + memcpy(outBlocks, Blocks, 16*num_blocks); + return num_blocks; +} + +int IsBlock0PCF7931(uint8_t *Block) { + // Assume RFU means 0 :) + if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled + return 1; + if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? + return 1; + return 0; +} + +int IsBlock1PCF7931(uint8_t *Block) { + // Assume RFU means 0 :) + if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) + if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) + return 1; + + return 0; +} + +#define ALLOC 16 + +void ReadPCF7931() { + uint8_t Blocks[8][17]; + uint8_t tmpBlocks[4][16]; + int i, j, ind, ind2, n; + int num_blocks = 0; + int max_blocks = 8; + int ident = 0; + int error = 0; + int tries = 0; + + memset(Blocks, 0, 8*17*sizeof(uint8_t)); + + do { + memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); + n = DemodPCF7931((uint8_t**)tmpBlocks); + if(!n) + error++; + if(error==10 && num_blocks == 0) { + Dbprintf("Error, no tag or bad tag"); + return; + } + else if (tries==20 || error==10) { + Dbprintf("Error reading the tag"); + Dbprintf("Here is the partial content"); + goto end; + } + + for(i=0; i= 0; ind--,ind2--) { + if(ind2 < 0) + ind2 = max_blocks; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { + if(ind2 > max_blocks) + ind2 = 0; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + } + } + } + } + } + tries++; + if (BUTTON_PRESS()) return; + } while (num_blocks != max_blocks); +end: + Dbprintf("-----------------------------------------"); + Dbprintf("Memory content:"); + Dbprintf("-----------------------------------------"); + for(i=0; i", i); } + Dbprintf("-----------------------------------------"); + + return ; +} + + +//----------------------------------- +// EM4469 / EM4305 routines +//----------------------------------- +#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored +#define FWD_CMD_WRITE 0xA +#define FWD_CMD_READ 0x9 +#define FWD_CMD_DISABLE 0x5 + + +uint8_t forwardLink_data[64]; //array of forwarded bits +uint8_t * forward_ptr; //ptr for forward message preparation +uint8_t fwd_bit_sz; //forwardlink bit counter +uint8_t * fwd_write_ptr; //forwardlink bit pointer + +//==================================================================== +// prepares command bits +// see EM4469 spec +//==================================================================== +//-------------------------------------------------------------------- +uint8_t Prepare_Cmd( uint8_t cmd ) { + //-------------------------------------------------------------------- + + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code + + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + + return 6; //return number of emited bits +} + +//==================================================================== +// prepares address bits +// see EM4469 spec +//==================================================================== + +//-------------------------------------------------------------------- +uint8_t Prepare_Addr( uint8_t addr ) { + //-------------------------------------------------------------------- + + register uint8_t line_parity; + + uint8_t i; + line_parity = 0; + for(i=0;i<6;i++) { + *forward_ptr++ = addr; + line_parity ^= addr; + addr >>= 1; + } + + *forward_ptr++ = (line_parity & 1); + + return 7; //return number of emited bits +} + +//==================================================================== +// prepares data bits intreleaved with parity bits +// see EM4469 spec +//==================================================================== + +//-------------------------------------------------------------------- +uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { + //-------------------------------------------------------------------- + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + + for(j=0; j<8; j++) { + *forward_ptr++ = column_parity; + column_parity >>= 1; + } + *forward_ptr = 0; + + return 45; //return number of emited bits +} + +//==================================================================== +// Forward Link send function +// Requires: forwarLink_data filled with valid bits (1 bit per byte) +// fwd_bit_count set with number of bits to be sent +//==================================================================== +void SendForward(uint8_t fwd_bit_count) { + + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + LED_D_ON(); + + //Field on + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + + // force 1st mod pulse (start gap must be longer for 4305) + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(16*8); //16 cycles on (8us each) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) + SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) + else { + //These timings work for 4469/4269/4305 (with the 55*8 above) + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(23*8); //16-4 cycles off (8us each) + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(9*8); //16 cycles on (8us each) + } + } +} + +void EM4xLogin(uint32_t Password) { + + uint8_t fwd_bit_count; + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + + SendForward(fwd_bit_count); + + //Wait for command to complete + SpinDelay(20); + +} + +void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t fwd_bit_count; + uint8_t *dest = (uint8_t *)BigBuf; + int m=0, i=0; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + + m = sizeof(BigBuf); + // Clear destination buffer before sending the command + memset(dest, 128, m); + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + SendForward(fwd_bit_count); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + if (i >= m) break; + } + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); +} + +void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t fwd_bit_count; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + SpinDelay(20); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); }