X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/e98300f2455f72b64df737b3a81c072b6b3761e3..refs/pull/181/head:/armsrc/lfops.c?ds=inline diff --git a/armsrc/lfops.c b/armsrc/lfops.c index 0eb3503d..14b62673 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -14,94 +14,50 @@ #include "hitag2.h" #include "crc16.h" #include "string.h" - -void AcquireRawAdcSamples125k(int at134khz) +#include "lfdemod.h" +#include "lfsampling.h" +#include "protocols.h" +#include "usb_cdc.h" // for usb_poll_validate_length + +/** + * Function to do a modulation and then get samples. + * @param delay_off + * @param period_0 + * @param period_1 + * @param command + */ +void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) { - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - // Now call the acquisition routine - DoAcquisition125k(); -} - -// split into two routines so we can avoid timing issues after sending commands // -void DoAcquisition125k(void) -{ - uint8_t *dest = (uint8_t *)BigBuf; - int n = sizeof(BigBuf); - int i; + int divisor_used = 95; // 125 KHz + // see if 'h' was specified - memset(dest, 0, n); - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - LED_D_ON(); - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - LED_D_OFF(); - if (i >= n) break; - } - } - Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", - dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); -} + if (command[strlen((char *) command) - 1] == 'h') + divisor_used = 88; // 134.8 KHz -void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) -{ - int at134khz; + sample_config sc = { 0,0,1, divisor_used, 0}; + setSamplingConfig(&sc); + //clear read buffer + BigBuf_Clear_keep_EM(); /* Make sure the tag is reset */ + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(2500); - // see if 'h' was specified - if (command[strlen((char *) command) - 1] == 'h') - at134khz = TRUE; - else - at134khz = FALSE; - - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + LFSetupFPGAForADC(sc.divisor, 1); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); // And a little more time for the tag to fully power up SpinDelay(2000); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - // now modulate the reader field while(*command != '\0' && *command != ' ') { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); @@ -111,15 +67,12 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // now do the read - DoAcquisition125k(); + DoAcquisition_config(false); } /* blank r/w tag data stream @@ -137,15 +90,12 @@ void ReadTItag(void) // when we read a TI tag we sample the zerocross line at 2Mhz // TI tags modulate a 1 as 16 cycles of 123.2Khz // TI tags modulate a 0 as 16 cycles of 134.2Khz - #define FSAMPLE 2000000 - #define FREQLO 123200 - #define FREQHI 134200 - - signed char *dest = (signed char *)BigBuf; - int n = sizeof(BigBuf); -// int *dest = GraphBuffer; -// int n = GraphTraceLen; + #define FSAMPLE 2000000 + #define FREQLO 123200 + #define FREQHI 134200 + signed char *dest = (signed char *)BigBuf_get_addr(); + uint16_t n = BigBuf_max_traceLen(); // 128 bit shift register [shift3:shift2:shift1:shift0] uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; @@ -156,6 +106,7 @@ void ReadTItag(void) uint32_t threshold = (sampleslo - sampleshi + 1)>>1; // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line @@ -180,10 +131,10 @@ void ReadTItag(void) // TI bits are coming to us lsb first so shift them // right through our 128 bit right shift register - shift0 = (shift0>>1) | (shift1 << 31); - shift1 = (shift1>>1) | (shift2 << 31); - shift2 = (shift2>>1) | (shift3 << 31); - shift3 >>= 1; + shift0 = (shift0>>1) | (shift1 << 31); + shift1 = (shift1>>1) | (shift2 << 31); + shift2 = (shift2>>1) | (shift3 << 31); + shift3 >>= 1; // check if the cycles fall close to the number // expected for either the low or high frequency @@ -218,18 +169,18 @@ void ReadTItag(void) if (cycles!=0xF0B) { DbpString("Info: No valid tag detected."); } else { - // put 64 bit data into shift1 and shift0 - shift0 = (shift0>>24) | (shift1 << 8); - shift1 = (shift1>>24) | (shift2 << 8); + // put 64 bit data into shift1 and shift0 + shift0 = (shift0>>24) | (shift1 << 8); + shift1 = (shift1>>24) | (shift2 << 8); // align 16 bit crc into lower half of shift2 - shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; + shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; // if r/w tag, check ident match - if ( shift3&(1<<15) ) { + if (shift3 & (1<<15) ) { DbpString("Info: TI tag is rewriteable"); // only 15 bits compare, last bit of ident is not valid - if ( ((shift3>>16)^shift0)&0x7fff ) { + if (((shift3 >> 16) ^ shift0) & 0x7fff ) { DbpString("Error: Ident mismatch!"); } else { DbpString("Info: TI tag ident is valid"); @@ -244,7 +195,7 @@ void ReadTItag(void) // calculate CRC uint32_t crc=0; - crc = update_crc16(crc, (shift0)&0xff); + crc = update_crc16(crc, (shift0)&0xff); crc = update_crc16(crc, (shift0>>8)&0xff); crc = update_crc16(crc, (shift0>>16)&0xff); crc = update_crc16(crc, (shift0>>24)&0xff); @@ -254,7 +205,7 @@ void ReadTItag(void) crc = update_crc16(crc, (shift1>>24)&0xff); Dbprintf("Info: Tag data: %x%08x, crc=%x", - (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); + (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); if (crc != (shift2&0xffff)) { Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); } else { @@ -293,10 +244,11 @@ void AcquireTiType(void) int i, j, n; // tag transmission is <20ms, sampling at 2M gives us 40K samples max // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t - #define TIBUFLEN 1250 + #define TIBUFLEN 1250 // clear buffer - memset(BigBuf,0,sizeof(BigBuf)); + uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); + BigBuf_Clear_ext(false); // Set up the synchronous serial port AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; @@ -344,7 +296,7 @@ void AcquireTiType(void) AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; - char *dest = (char *)BigBuf; + char *dest = (char *)BigBuf_get_addr(); n = TIBUFLEN*32; // unpack buffer for (i=TIBUFLEN-1; i>=0; i--) { @@ -363,8 +315,9 @@ void AcquireTiType(void) // if not provided a valid crc will be computed from the data and written. void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); if(crc == 0) { - crc = update_crc16(crc, (idlo)&0xff); + crc = update_crc16(crc, (idlo)&0xff); crc = update_crc16(crc, (idlo>>8)&0xff); crc = update_crc16(crc, (idlo>>16)&0xff); crc = update_crc16(crc, (idlo>>24)&0xff); @@ -374,7 +327,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) crc = update_crc16(crc, (idhi>>24)&0xff); } Dbprintf("Writing to tag: %x%08x, crc=%x", - (unsigned int) idhi, (unsigned int) idlo, crc); + (unsigned int) idhi, (unsigned int) idlo, crc); // TI tags charge at 134.2Khz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz @@ -432,39 +385,40 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { int i; - uint8_t *tab = (uint8_t *)BigBuf; - + uint8_t *tab = BigBuf_get_addr(); + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); - + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; - -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - + + #define SHORT_COIL() LOW(GPIO_SSC_DOUT) + #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + i = 0; for(;;) { + //wait until SSC_CLK goes HIGH while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { - if(BUTTON_PRESS()) { + if(BUTTON_PRESS() || (usb_poll_validate_length() )) { DbpString("Stopped"); return; } WDT_HIT(); } - if (ledcontrol) LED_D_ON(); - + if(tab[i]) OPEN_COIL(); else SHORT_COIL(); - + if (ledcontrol) LED_D_OFF(); - + //wait until SSC_CLK goes LOW while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { if(BUTTON_PRESS()) { DbpString("Stopped"); @@ -472,9 +426,10 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol) } WDT_HIT(); } - + i++; if(i == period) { + i = 0; if (gap) { SHORT_COIL(); @@ -489,29 +444,31 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0) { } -// compose fc/8 fc/10 waveform -static void fc(int c, int *n) { - uint8_t *dest = (uint8_t *)BigBuf; +// compose fc/8 fc/10 waveform (FSK2) +static void fc(int c, int *n) +{ + uint8_t *dest = BigBuf_get_addr(); int idx; // for when we want an fc8 pattern every 4 logical bits if(c==0) { dest[((*n)++)]=1; dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; + dest[((*n)++)]=1; + dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; } - // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples + + // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples if(c==8) { for (idx=0; idx<6; idx++) { dest[((*n)++)]=1; dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; + dest[((*n)++)]=1; + dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; @@ -519,14 +476,14 @@ static void fc(int c, int *n) { } } - // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples + // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples if(c==10) { for (idx=0; idx<5; idx++) { dest[((*n)++)]=1; dest[((*n)++)]=1; dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; + dest[((*n)++)]=1; + dest[((*n)++)]=1; dest[((*n)++)]=0; dest[((*n)++)]=0; dest[((*n)++)]=0; @@ -535,6 +492,36 @@ static void fc(int c, int *n) { } } } +// compose fc/X fc/Y waveform (FSKx) +static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfFC = fc/2; + uint8_t wavesPerClock = clock/fc; + uint8_t mod = clock % fc; //modifier + uint8_t modAdj = fc/mod; //how often to apply modifier + bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; + // loop through clock - step field clock + for (uint8_t idx=0; idx < wavesPerClock; idx++){ + // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) + memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here + memset(dest+(*n)+(fc-halfFC), 1, halfFC); + *n += fc; + } + if (mod>0) (*modCnt)++; + if ((mod>0) && modAdjOk){ //fsk2 + if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave + memset(dest+(*n), 0, fc-halfFC); + memset(dest+(*n)+(fc-halfFC), 1, halfFC); + *n += fc; + } + } + if (mod>0 && !modAdjOk){ //fsk1 + memset(dest+(*n), 0, mod-(mod/2)); + memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); + *n += mod; + } +} // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed @@ -552,12 +539,12 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) */ if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); + DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); return; } fc(0,&n); // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid + fc(8, &n); fc(8, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 fc(10, &n); fc(10, &n); // invalid fc(8, &n); fc(10, &n); // logical 0 @@ -567,9 +554,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) for (i=11; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition + fc(10, &n); fc(8, &n); // low-high transition } else { - fc(8, &n); fc(10, &n); // high-low transition + fc(8, &n); fc(10, &n); // high-low transition } } @@ -578,9 +565,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) for (i=31; i>=0; i--) { if ((i%4)==3) fc(0,&n); if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition + fc(10, &n); fc(8, &n); // low-high transition } else { - fc(8, &n); fc(10, &n); // high-low transition + fc(8, &n); fc(10, &n); // high-low transition } } @@ -592,591 +579,789 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) LED_A_OFF(); } - -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +// prepare a waveform pattern in the buffer based on the ID given then +// simulate a FSK tag until the button is pressed +// arg1 contains fcHigh and fcLow, arg2 contains invert and clock +void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) { - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - uint32_t hi2=0, hi=0, lo=0; + int ledcontrol=1; + int n=0, i=0; + uint8_t fcHigh = arg1 >> 8; + uint8_t fcLow = arg1 & 0xFF; + uint16_t modCnt = 0; + uint8_t clk = arg2 & 0xFF; + uint8_t invert = (arg2 >> 8) & 1; + + for (i=0; i<size; i++){ + if (BitStream[i] == invert){ + fcAll(fcLow, &n, clk, &modCnt); + } else { + fcAll(fcHigh, &n, clk, &modCnt); + } + } + Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); + /*Dbprintf("DEBUG: First 32:"); + uint8_t *dest = BigBuf_get_addr(); + i=0; + Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + i+=16; + Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + */ + if (ledcontrol) + LED_A_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + SimulateTagLowFrequency(n, 0, ledcontrol); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + if (ledcontrol) + LED_A_OFF(); +} - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); +// compose ask waveform for one bit(ASK) +static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfClk = clock/2; + // c = current bit 1 or 0 + if (manchester==1){ + memset(dest+(*n), c, halfClk); + memset(dest+(*n) + halfClk, c^1, halfClk); + } else { + memset(dest+(*n), c, clock); + } + *n += clock; +} - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); +static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfClk = clock/2; + if (c){ + memset(dest+(*n), c ^ 1 ^ *phase, halfClk); + memset(dest+(*n) + halfClk, c ^ *phase, halfClk); + } else { + memset(dest+(*n), c ^ *phase, clock); + *phase ^= 1; + } +} - for(;;) { - WDT_HIT(); - if (ledcontrol) - LED_A_ON(); - if(BUTTON_PRESS()) { - DbpString("Stopped"); - if (ledcontrol) - LED_A_OFF(); - return; +// args clock, ask/man or askraw, invert, transmission separator +void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) +{ + int ledcontrol = 1; + int n=0, i=0; + uint8_t clk = (arg1 >> 8) & 0xFF; + uint8_t encoding = arg1 & 0xFF; + uint8_t separator = arg2 & 1; + uint8_t invert = (arg2 >> 8) & 1; + + if (encoding==2){ //biphase + uint8_t phase=0; + for (i=0; i<size; i++){ + biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); } - - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x43; - if (ledcontrol) - LED_D_ON(); + if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check + for (i=0; i<size; i++){ + biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (ledcontrol) - LED_D_OFF(); - if(i >= m) { - break; - } + } + } else { // ask/manchester || ask/raw + for (i=0; i<size; i++){ + askSimBit(BitStream[i]^invert, &n, clk, encoding); + } + if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) + for (i=0; i<size; i++){ + askSimBit(BitStream[i]^invert^1, &n, clk, encoding); } } + } + + if (separator==1) Dbprintf("sorry but separator option not yet available"); + + Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); + //DEBUG + //Dbprintf("First 32:"); + //uint8_t *dest = BigBuf_get_addr(); + //i=0; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + //i+=16; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + + if (ledcontrol) LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + if (ledcontrol) LED_A_OFF(); +} - // FSK demodulator +//carrier can be 2,4 or 8 +static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfWave = waveLen/2; + //uint8_t idx; + int i = 0; + if (phaseChg){ + // write phase change + memset(dest+(*n), *curPhase^1, halfWave); + memset(dest+(*n) + halfWave, *curPhase, halfWave); + *n += waveLen; + *curPhase ^= 1; + i += waveLen; + } + //write each normal clock wave for the clock duration + for (; i < clk; i+=waveLen){ + memset(dest+(*n), *curPhase, halfWave); + memset(dest+(*n) + halfWave, *curPhase^1, halfWave); + *n += waveLen; + } +} - // sync to first lo-hi transition - for( idx=1; idx<m; idx++) { - if (dest[idx-1]<dest[idx]) - lastval=idx; - break; +// args clock, carrier, invert, +void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) +{ + int ledcontrol=1; + int n=0, i=0; + uint8_t clk = arg1 >> 8; + uint8_t carrier = arg1 & 0xFF; + uint8_t invert = arg2 & 0xFF; + uint8_t curPhase = 0; + for (i=0; i<size; i++){ + if (BitStream[i] == curPhase){ + pskSimBit(carrier, &n, clk, &curPhase, FALSE); + } else { + pskSimBit(carrier, &n, clk, &curPhase, TRUE); } - WDT_HIT(); + } + Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); + //Dbprintf("DEBUG: First 32:"); + //uint8_t *dest = BigBuf_get_addr(); + //i=0; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + //i+=16; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + + if (ledcontrol) LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + if (ledcontrol) LED_A_OFF(); +} - // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) - // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere - // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 - for( i=0; idx<m; idx++) { - if (dest[idx-1]<dest[idx]) { - dest[i]=idx-lastval; - if (dest[i] <= 8) { - dest[i]=1; - } else { - dest[i]=0; - } +// loop to get raw HID waveform then FSK demodulate the TAG ID from it +void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); + size_t size; + uint32_t hi2=0, hi=0, lo=0; + int idx=0; + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + //clear read buffer + BigBuf_Clear_keep_EM(); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { - lastval=idx; - i++; - } - } - m=i; WDT_HIT(); + if (ledcontrol) LED_A_ON(); - // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns - lastval=dest[0]; - idx=0; - i=0; - n=0; - for( idx=0; idx<m; idx++) { - if (dest[idx]==lastval) { - n++; - } else { - // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, - // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets - // swallowed up by rounding - // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding - // special start of frame markers use invalid manchester states (no transitions) by using sequences - // like 111000 - if (dest[idx-1]) { - n=(n+1)/6; // fc/8 in sets of 6 - } else { - n=(n+1)/5; // fc/10 in sets of 5 + DoAcquisition_default(-1,true); + // FSK demodulator + //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use + size = 50*128*2; //big enough to catch 2 sequences of largest format + idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); + + if (idx>0 && lo>0 && (size==96 || size==192)){ + // go over previously decoded manchester data and decode into usable tag ID + if (hi2 != 0){ //extra large HID tags 88/192 bits + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + }else { //standard HID tags 44/96 bits + //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd + uint8_t bitlen = 0; + uint32_t fc = 0; + uint32_t cardnum = 0; + if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used + uint32_t lo2=0; + lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit + uint8_t idx3 = 1; + while(lo2 > 1){ //find last bit set to 1 (format len bit) + lo2=lo2 >> 1; + idx3++; + } + bitlen = idx3+19; + fc =0; + cardnum=0; + if(bitlen == 26){ + cardnum = (lo>>1)&0xFFFF; + fc = (lo>>17)&0xFF; + } + if(bitlen == 37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + if(bitlen == 34){ + cardnum = (lo>>1)&0xFFFF; + fc= ((hi&1)<<15)|(lo>>17); + } + if(bitlen == 35){ + cardnum = (lo>>1)&0xFFFFF; + fc = ((hi&1)<<11)|(lo>>21); + } } - switch (n) { // stuff appropriate bits in buffer - case 0: - case 1: // one bit - dest[i++]=dest[idx-1]; - break; - case 2: // two bits - dest[i++]=dest[idx-1]; - dest[i++]=dest[idx-1]; - break; - case 3: // 3 bit start of frame markers - dest[i++]=dest[idx-1]; - dest[i++]=dest[idx-1]; - dest[i++]=dest[idx-1]; - break; - // When a logic 0 is immediately followed by the start of the next transmisson - // (special pattern) a pattern of 4 bit duration lengths is created. - case 4: - dest[i++]=dest[idx-1]; - dest[i++]=dest[idx-1]; - dest[i++]=dest[idx-1]; - dest[i++]=dest[idx-1]; - break; - default: // this shouldn't happen, don't stuff any bits - break; + else { //if bit 38 is not set then 37 bit format is used + bitlen= 37; + fc =0; + cardnum=0; + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } } - n=0; - lastval=dest[idx]; + //Dbprintf("TAG ID: %x%08x (%d)", + // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, + (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + *high = hi; + *low = lo; + return; } + // reset } - m=i; + hi2 = hi = lo = idx = 0; WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - for( idx=0; idx<m-6; idx++) { - // search for a start of frame marker - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi2|hi|lo)) { - if (hi2 != 0){ - Dbprintf("TAG ID: %x%08x%08x (%d)", - (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - else { - Dbprintf("TAG ID: %x%08x (%d)", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi2=0; - hi=0; - lo=0; - found=0; - } +// loop to get raw HID waveform then FSK demodulate the TAG ID from it +void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + size_t size; + int idx=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition_default(-1,true); + // FSK demodulator + size = 50*128*2; //big enough to catch 2 sequences of largest format + idx = AWIDdemodFSK(dest, &size); + + if (idx<=0 || size!=96) continue; + // Index map + // 0 10 20 30 40 50 60 + // | | | | | | | + // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 + // ----------------------------------------------------------------------------- + // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 + // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 + // |---26 bit---| |-----117----||-------------142-------------| + // b = format bit len, o = odd parity of last 3 bits + // f = facility code, c = card number + // w = wiegand parity + // (26 bit format shown) + + //get raw ID before removing parities + uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); + uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); + uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); + + size = removeParity(dest, idx+8, 4, 1, 88); + if (size != 66) continue; + // ok valid card found! + + // Index map + // 0 10 20 30 40 50 60 + // | | | | | | | + // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 + // ----------------------------------------------------------------------------- + // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 + // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx + // |26 bit| |-117--| |-----142------| + // b = format bit len, o = odd parity of last 3 bits + // f = facility code, c = card number + // w = wiegand parity + // (26 bit format shown) + + uint32_t fc = 0; + uint32_t cardnum = 0; + uint32_t code1 = 0; + uint32_t code2 = 0; + uint8_t fmtLen = bytebits_to_byte(dest,8); + if (fmtLen==26){ + fc = bytebits_to_byte(dest+9, 8); + cardnum = bytebits_to_byte(dest+17, 16); + code1 = bytebits_to_byte(dest+8,fmtLen); + Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); + } else { + cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); + if (fmtLen>32){ + code1 = bytebits_to_byte(dest+8,fmtLen-32); + code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); + Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); + } else{ + code1 = bytebits_to_byte(dest+8,fmtLen); + Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { - hi2=(hi2<<1)|(hi>>31); - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi2=(hi2<<1)|(hi>>31); - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi2=0; - hi=0; - lo=0; - } - idx++; + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + return; + } + // reset + idx = 0; + WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + + size_t size=0, idx=0; + int clk=0, invert=0, errCnt=0, maxErr=20; + uint32_t hi=0; + uint64_t lo=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition_default(-1,true); + size = BigBuf_max_traceLen(); + //askdemod and manchester decode + if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format + errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); + WDT_HIT(); + + if (errCnt<0) continue; + + errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); + if (errCnt){ + if (size>64){ + Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", + hi, + (uint32_t)(lo>>32), + (uint32_t)lo, + (uint32_t)(lo&0xFFFF), + (uint32_t)((lo>>16LL) & 0xFF), + (uint32_t)(lo & 0xFFFFFF)); + } else { + Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", + (uint32_t)(lo>>32), + (uint32_t)lo, + (uint32_t)(lo&0xFFFF), + (uint32_t)((lo>>16LL) & 0xFF), + (uint32_t)(lo & 0xFFFFFF)); } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi|lo)) { - if (hi2 != 0){ - Dbprintf("TAG ID: %x%08x%08x (%d)", - (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - else { - Dbprintf("TAG ID: %x%08x (%d)", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi2=0; - hi=0; - lo=0; - found=0; - } + + if (findone){ + if (ledcontrol) LED_A_OFF(); + *high=lo>>32; + *low=lo & 0xFFFFFFFF; + return; } } WDT_HIT(); + hi = lo = size = idx = 0; + clk = invert = errCnt = 0; } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } +void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + int idx=0; + uint32_t code=0, code2=0; + uint8_t version=0; + uint8_t facilitycode=0; + uint16_t number=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + DoAcquisition_default(-1,true); + //fskdemod and get start index + WDT_HIT(); + idx = IOdemodFSK(dest, BigBuf_max_traceLen()); + if (idx<0) continue; + //valid tag found + + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + if(findone){ //only print binary if we are doing one + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); + Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + } + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + version = bytebits_to_byte(dest+idx+27,8); //14,4 + facilitycode = bytebits_to_byte(dest+idx+18,8); + number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 + + Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); + // if we're only looking for one tag + if (findone){ + if (ledcontrol) LED_A_OFF(); + //LED_A_OFF(); + *high=code; + *low=code2; + return; + } + code=code2=0; + version=facilitycode=0; + number=0; + idx=0; + + WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} /*------------------------------ - * T5555/T5557/T5567 routines + * T5555/T5557/T5567/T5577 routines *------------------------------ - */ - -/* T55x7 configuration register definitions */ -#define T55x7_POR_DELAY 0x00000001 -#define T55x7_ST_TERMINATOR 0x00000008 -#define T55x7_PWD 0x00000010 -#define T55x7_MAXBLOCK_SHIFT 5 -#define T55x7_AOR 0x00000200 -#define T55x7_PSKCF_RF_2 0 -#define T55x7_PSKCF_RF_4 0x00000400 -#define T55x7_PSKCF_RF_8 0x00000800 -#define T55x7_MODULATION_DIRECT 0 -#define T55x7_MODULATION_PSK1 0x00001000 -#define T55x7_MODULATION_PSK2 0x00002000 -#define T55x7_MODULATION_PSK3 0x00003000 -#define T55x7_MODULATION_FSK1 0x00004000 -#define T55x7_MODULATION_FSK2 0x00005000 -#define T55x7_MODULATION_FSK1a 0x00006000 -#define T55x7_MODULATION_FSK2a 0x00007000 -#define T55x7_MODULATION_MANCHESTER 0x00008000 -#define T55x7_MODULATION_BIPHASE 0x00010000 -#define T55x7_BITRATE_RF_8 0 -#define T55x7_BITRATE_RF_16 0x00040000 -#define T55x7_BITRATE_RF_32 0x00080000 -#define T55x7_BITRATE_RF_40 0x000C0000 -#define T55x7_BITRATE_RF_50 0x00100000 -#define T55x7_BITRATE_RF_64 0x00140000 -#define T55x7_BITRATE_RF_100 0x00180000 -#define T55x7_BITRATE_RF_128 0x001C0000 - -/* T5555 (Q5) configuration register definitions */ -#define T5555_ST_TERMINATOR 0x00000001 -#define T5555_MAXBLOCK_SHIFT 0x00000001 -#define T5555_MODULATION_MANCHESTER 0 -#define T5555_MODULATION_PSK1 0x00000010 -#define T5555_MODULATION_PSK2 0x00000020 -#define T5555_MODULATION_PSK3 0x00000030 -#define T5555_MODULATION_FSK1 0x00000040 -#define T5555_MODULATION_FSK2 0x00000050 -#define T5555_MODULATION_BIPHASE 0x00000060 -#define T5555_MODULATION_DIRECT 0x00000070 -#define T5555_INVERT_OUTPUT 0x00000080 -#define T5555_PSK_RF_2 0 -#define T5555_PSK_RF_4 0x00000100 -#define T5555_PSK_RF_8 0x00000200 -#define T5555_USE_PWD 0x00000400 -#define T5555_USE_AOR 0x00000800 -#define T5555_BITRATE_SHIFT 12 -#define T5555_FAST_WRITE 0x00004000 -#define T5555_PAGE_SELECT 0x00008000 - -/* - * Relevant times in microsecond + * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h + * + * Relevant communication times in microsecond * To compensate antenna falling times shorten the write times * and enlarge the gap ones. + * Q5 tags seems to have issues when these values changes. */ -#define START_GAP 250 -#define WRITE_GAP 160 -#define WRITE_0 144 // 192 -#define WRITE_1 400 // 432 for T55x7; 448 for E5550 +#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) +#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) +#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) +#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 +#define READ_GAP 15*8 + +void TurnReadLFOn(int delay) { + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + // Give it a bit of time for the resonant antenna to settle. + SpinDelayUs(delay); //155*8 //50*8 +} // Write one bit to card -void T55xxWriteBit(int bit) -{ - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - if (bit == 0) - SpinDelayUs(WRITE_0); +void T55xxWriteBit(int bit) { + if (!bit) + TurnReadLFOn(WRITE_0); else - SpinDelayUs(WRITE_1); + TurnReadLFOn(WRITE_1); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(WRITE_GAP); } -// Write one card block in page 0, no lock -void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) -{ - unsigned int i; +// Send T5577 reset command then read stream (see if we can identify the start of the stream) +void T55xxResetRead(void) { + LED_A_ON(); + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_keep_EM(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); + // Trigger T55x7 in mode. + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // reset tag - op code 00 + T55xxWriteBit(0); + T55xxWriteBit(0); + + // Turn field on to read the response + TurnReadLFOn(READ_GAP); - // Now start writting + // Acquisition + doT55x7Acquisition(BigBuf_max_traceLen()); + + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); +} + +// Write one card block in page 0, no lock +void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { + LED_A_ON(); + bool PwdMode = arg & 0x1; + uint8_t Page = (arg & 0x2)>>1; + uint32_t i = 0; + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + + // Trigger T55x7 in mode. FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); - // Opcode + // Opcode 10 T55xxWriteBit(1); - T55xxWriteBit(0); //Page 0 - if (PwdMode == 1){ - // Pwd + T55xxWriteBit(Page); //Page 0 + if (PwdMode){ + // Send Pwd for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Pwd & i); - } - // Lock bit + } + // Send Lock bit T55xxWriteBit(0); - // Data + // Send Data for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Data & i); - // Block + // Send Block number for (i = 0x04; i != 0; i >>= 1) T55xxWriteBit(Block & i); - // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, + // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, // so wait a little more) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - SpinDelay(20); + TurnReadLFOn(20 * 1000); + //could attempt to do a read to confirm write took + // as the tag should repeat back the new block + // until it is reset, but to confirm it we would + // need to know the current block 0 config mode + + // turn field off FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_A_OFF(); +} + +// Write one card block in page 0, no lock +void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { + T55xxWriteBlockExt(Data, Block, Pwd, arg); + cmd_send(CMD_ACK,0,0,0,0,0); } +// Read one card block in page [page] +void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { + LED_A_ON(); + bool PwdMode = arg0 & 0x1; + uint8_t Page = (arg0 & 0x2) >> 1; + uint32_t i = 0; + bool RegReadMode = (Block == 0xFF); -// Read one card block in page 0 -void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) -{ - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + //make sure block is at max 7 + Block &= 0x7; - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); + // Set up FPGA, 125kHz to power up the tag + LFSetupFPGAForADC(95, true); - // Now start writting + // Trigger T55x7 Direct Access Mode with start gap FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); - // Opcode + // Opcode 1[page] T55xxWriteBit(1); - T55xxWriteBit(0); //Page 0 - if (PwdMode == 1){ - // Pwd + T55xxWriteBit(Page); //Page 0 + + if (PwdMode){ + // Send Pwd for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Pwd & i); - } - // Lock bit - T55xxWriteBit(0); - // Block - for (i = 0x04; i != 0; i >>= 1) - T55xxWriteBit(Block & i); - - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis -// if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (i >= m) break; - } } + // Send a zero bit separation + T55xxWriteBit(0); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); - DbpString("DONE!"); -} + // Send Block number (if direct access mode) + if (!RegReadMode) + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); -// Read card traceability data (page 1) -void T55xxReadTrace(void){ - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + // Turn field on to read the response + TurnReadLFOn(READ_GAP); - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + // Acquisition + doT55x7Acquisition(12000); - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); +} - // Now start writting +void T55xxWakeUp(uint32_t Pwd){ + LED_B_ON(); + uint32_t i = 0; + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + + // Trigger T55x7 Direct Access Mode FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); - - // Opcode + + // Opcode 10 T55xxWriteBit(1); - T55xxWriteBit(1); //Page 1 - - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + T55xxWriteBit(0); //Page 0 - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + + // Turn and leave field on to let the begin repeating transmission + TurnReadLFOn(20*1000); +} + +/*-------------- Cloning routines -----------*/ + +void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { + // write last block first and config block last (if included) + for (uint8_t i = numblocks+startblock; i > startblock; i--) { + T55xxWriteBlockExt(blockdata[i-1],i-1,0,0); + } +} + +// Copy HID id to card and setup block 0 config +void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { + uint32_t data[] = {0,0,0,0,0,0,0}; + uint8_t last_block = 0; + + if (longFMT) { + // Ensure no more than 84 bits supplied + if (hi2>0xFFFFF) { + DbpString("Tags can only have 84 bits."); + return; } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; + // Build the 6 data blocks for supplied 84bit ID + last_block = 6; + // load preamble (1D) & long format identifier (9E manchester encoded) + data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); + // load raw id from hi2, hi, lo to data blocks (manchester encoded) + data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); + data[3] = manchesterEncode2Bytes(hi >> 16); + data[4] = manchesterEncode2Bytes(hi & 0xFFFF); + data[5] = manchesterEncode2Bytes(lo >> 16); + data[6] = manchesterEncode2Bytes(lo & 0xFFFF); + } else { + // Ensure no more than 44 bits supplied + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; } + // Build the 3 data blocks for supplied 44bit ID + last_block = 3; + // load preamble + data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); + data[2] = manchesterEncode2Bytes(lo >> 16); + data[3] = manchesterEncode2Bytes(lo & 0xFFFF); } + // load chip config block + data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; + + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + WriteT55xx(data, 0, last_block+1); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); + DbpString("DONE!"); } -/*-------------- Cloning routines -----------*/ -// Copy HID id to card and setup block 0 config -void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) -{ - int data1, data2, data3, data4, data5, data6; //up to six blocks for long format - int last_block = 0; - - if (longFMT){ - // Ensure no more than 84 bits supplied - if (hi2>0xFFFFF) { - DbpString("Tags can only have 84 bits."); - return; - } - // Build the 6 data blocks for supplied 84bit ID - last_block = 6; - data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) - for (int i=0;i<4;i++) { - if (hi2 & (1<<(19-i))) - data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((3-i)*2)); // 0 -> 01 - } - - data2 = 0; - for (int i=0;i<16;i++) { - if (hi2 & (1<<(15-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data3 = 0; - for (int i=0;i<16;i++) { - if (hi & (1<<(31-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data4 = 0; - for (int i=0;i<16;i++) { - if (hi & (1<<(15-i))) - data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data4 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data5 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data5 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data6 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data6 |= (1<<((15-i)*2)); // 0 -> 01 - } - } - else { - // Ensure no more than 44 bits supplied - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - - // Build the 3 data blocks for supplied 44bit ID - last_block = 3; - - data1 = 0x1D000000; // load preamble - - for (int i=0;i<12;i++) { - if (hi & (1<<(12-i))) - data1 |= (1<<(((12-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((12-i)*2)); // 0 -> 01 - } - - data2 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data3 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 - } - } +void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { + uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; LED_D_ON(); // Program the data blocks for supplied ID - // and the block 0 for HID format - T55xxWriteBlock(data1,1,0,0); - T55xxWriteBlock(data2,2,0,0); - T55xxWriteBlock(data3,3,0,0); - - if (longFMT) { // if long format there are 6 blocks - T55xxWriteBlock(data4,4,0,0); - T55xxWriteBlock(data5,5,0,0); - T55xxWriteBlock(data6,6,0,0); - } - - // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) - T55xxWriteBlock(T55x7_BITRATE_RF_50 | - T55x7_MODULATION_FSK2a | - last_block << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - + // and the block 0 config + WriteT55xx(data, 0, 3); + LED_D_OFF(); - + DbpString("DONE!"); } +// Clone Indala 64-bit tag by UID to T55x7 +void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { + //Program the 2 data blocks for supplied 64bit UID + // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) + uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; + + WriteT55xx(data, 0, 3); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) + // T5567WriteBlock(0x603E1042,0); + DbpString("DONE!"); +} +// Clone Indala 224-bit tag by UID to T55x7 +void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { + //Program the 7 data blocks for supplied 224bit UID + uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; + // and the block 0 for Indala224 format + //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) + data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; + WriteT55xx(data, 0, 8); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) + // T5567WriteBlock(0x603E10E2,0); + DbpString("DONE!"); +} +// clone viking tag to T55xx +void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { + uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; + if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; + // Program the data blocks for supplied ID and the block 0 config + WriteT55xx(data, 0, 3); + LED_D_OFF(); + cmd_send(CMD_ACK,0,0,0,0,0); +} + // Define 9bit header for EM410x tags -#define EM410X_HEADER 0x1FF +#define EM410X_HEADER 0x1FF #define EM410X_ID_LENGTH 40 -void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) -{ +void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { int i, id_bit; uint64_t id = EM410X_HEADER; uint64_t rev_id = 0; // reversed ID int c_parity[4]; // column parity int r_parity = 0; // row parity + uint32_t clock = 0; // Reverse ID bits given as parameter (for simpler operations) for (i = 0; i < EM410X_ID_LENGTH; ++i) { @@ -1230,68 +1415,237 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) LED_D_ON(); // Write EM410x ID - T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); - T55xxWriteBlock((uint32_t)id, 2, 0, 0); - - // Config for EM410x (RF/64, Manchester, Maxblock=2) - if (card) - // Writing configuration for T55x7 tag - T55xxWriteBlock(T55x7_BITRATE_RF_64 | - T55x7_MODULATION_MANCHESTER | - 2 << T55x7_MAXBLOCK_SHIFT, - 0, 0, 0); - else - // Writing configuration for T5555(Q5) tag - T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | - T5555_MODULATION_MANCHESTER | - 2 << T5555_MAXBLOCK_SHIFT, - 0, 0, 0); + uint32_t data[] = {0, id>>32, id & 0xFFFFFFFF}; + + clock = (card & 0xFF00) >> 8; + clock = (clock == 0) ? 64 : clock; + Dbprintf("Clock rate: %d", clock); + if (card & 0xFF) { //t55x7 + clock = GetT55xxClockBit(clock); + if (clock == 0) { + Dbprintf("Invalid clock rate: %d", clock); + return; + } + data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); + } else { //t5555 (Q5) + clock = (clock-2)>>1; //n = (RF-2)/2 + data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); + } + + WriteT55xx(data, 0, 3); LED_D_OFF(); Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", - (uint32_t)(id >> 32), (uint32_t)id); + (uint32_t)(id >> 32), (uint32_t)id); } -// Clone Indala 64-bit tag by UID to T55x7 -void CopyIndala64toT55x7(int hi, int lo) -{ +//----------------------------------- +// EM4469 / EM4305 routines +//----------------------------------- +#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored +#define FWD_CMD_WRITE 0xA +#define FWD_CMD_READ 0x9 +#define FWD_CMD_DISABLE 0x5 + +uint8_t forwardLink_data[64]; //array of forwarded bits +uint8_t * forward_ptr; //ptr for forward message preparation +uint8_t fwd_bit_sz; //forwardlink bit counter +uint8_t * fwd_write_ptr; //forwardlink bit pointer + +//==================================================================== +// prepares command bits +// see EM4469 spec +//==================================================================== +//-------------------------------------------------------------------- +// VALUES TAKEN FROM EM4x function: SendForward +// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) +// WRITE_GAP = 128; (16*8) +// WRITE_1 = 256 32*8; (32*8) + +// These timings work for 4469/4269/4305 (with the 55*8 above) +// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); + +uint8_t Prepare_Cmd( uint8_t cmd ) { + + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code + + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + + return 6; //return number of emited bits +} - //Program the 2 data blocks for supplied 64bit UID - // and the block 0 for Indala64 format - T55xxWriteBlock(hi,1,0,0); - T55xxWriteBlock(lo,2,0,0); - //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) - T55xxWriteBlock(T55x7_BITRATE_RF_32 | - T55x7_MODULATION_PSK1 | - 2 << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) -// T5567WriteBlock(0x603E1042,0); +//==================================================================== +// prepares address bits +// see EM4469 spec +//==================================================================== +uint8_t Prepare_Addr( uint8_t addr ) { - DbpString("DONE!"); + register uint8_t line_parity; -} + uint8_t i; + line_parity = 0; + for(i=0;i<6;i++) { + *forward_ptr++ = addr; + line_parity ^= addr; + addr >>= 1; + } -void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) -{ + *forward_ptr++ = (line_parity & 1); - //Program the 7 data blocks for supplied 224bit UID - // and the block 0 for Indala224 format - T55xxWriteBlock(uid1,1,0,0); - T55xxWriteBlock(uid2,2,0,0); - T55xxWriteBlock(uid3,3,0,0); - T55xxWriteBlock(uid4,4,0,0); - T55xxWriteBlock(uid5,5,0,0); - T55xxWriteBlock(uid6,6,0,0); - T55xxWriteBlock(uid7,7,0,0); - //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) - T55xxWriteBlock(T55x7_BITRATE_RF_32 | - T55x7_MODULATION_PSK1 | - 7 << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) -// T5567WriteBlock(0x603E10E2,0); + return 7; //return number of emited bits +} - DbpString("DONE!"); +//==================================================================== +// prepares data bits intreleaved with parity bits +// see EM4469 spec +//==================================================================== +uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + + for(j=0; j<8; j++) { + *forward_ptr++ = column_parity; + column_parity >>= 1; + } + *forward_ptr = 0; + + return 45; //return number of emited bits +} + +//==================================================================== +// Forward Link send function +// Requires: forwarLink_data filled with valid bits (1 bit per byte) +// fwd_bit_count set with number of bits to be sent +//==================================================================== +void SendForward(uint8_t fwd_bit_count) { + + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + LED_D_ON(); + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + + // force 1st mod pulse (start gap must be longer for 4305) + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(16*8); //16 cycles on (8us each) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) + SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) + else { + //These timings work for 4469/4269/4305 (with the 55*8 above) + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + SpinDelayUs(23*8); //16-4 cycles off (8us each) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + SpinDelayUs(9*8); //16 cycles on (8us each) + } + } +} + +void EM4xLogin(uint32_t Password) { + + uint8_t fwd_bit_count; + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + + SendForward(fwd_bit_count); + + //Wait for command to complete + SpinDelay(20); +} + +void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t fwd_bit_count; + uint8_t *dest = BigBuf_get_addr(); + uint16_t bufferlength = BigBuf_max_traceLen(); + uint32_t i = 0; + + // Clear destination buffer before sending the command + BigBuf_Clear_ext(false); + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + + SendForward(fwd_bit_count); + + // Now do the acquisition + i = 0; + for(;;) { + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + AT91C_BASE_SSC->SSC_THR = 0x43; + } + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + if (i >= bufferlength) break; + } + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_D_OFF(); +} + +void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t fwd_bit_count; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + SpinDelay(20); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_D_OFF(); }