X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/edaf10af99156022f7719c6853812005579c8726..5b4664e79f6b6a6e1e8dc2ae0284cab948e25b09:/armsrc/legicrf.c?ds=inline

diff --git a/armsrc/legicrf.c b/armsrc/legicrf.c
index d9c94106..26863d71 100644
--- a/armsrc/legicrf.c
+++ b/armsrc/legicrf.c
@@ -276,10 +276,10 @@ static void frame_receive_rwd(struct legic_frame * const f, int bits, int crypt)
 
 static void frame_append_bit(struct legic_frame * const f, int bit)
 {
-   if(f->bits >= 31)
+   if (f->bits >= 31)
        return; /* Overflow, won't happen */
   
-   f->data |= (bit<<f->bits);
+   f->data |= (bit << f->bits);
    f->bits++;
 }
 
@@ -302,9 +302,9 @@ static uint32_t perform_setup_phase_rwd(int iv)
 
 	frame_clean(&current_frame);
 	frame_receive_rwd(&current_frame, 6, 1);
-	legic_prng_forward(1); /* we wait anyways */
+	legic_prng_forward(3); /* we wait anyways */
 	while(timer->TC_CV < 387) ; /* ~ 258us */
-	frame_send_rwd(0x19, 6);
+	frame_send_rwd(0x39, 6);
 
 	return current_frame.data;
 }
@@ -325,12 +325,11 @@ static void LegicCommonInit(void) {
 	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
 }
 
+/* Switch off carrier, make sure tag is reset */
 static void switch_off_tag_rwd(void)
 {
-	/* Switch off carrier, make sure tag is reset */
 	AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
 	SpinDelay(10);
-
 	WDT_HIT();
 }
 /* calculate crc for a legic command */
@@ -345,7 +344,6 @@ static int LegicCRC(int byte_index, int value, int cmd_sz) {
 int legic_read_byte(int byte_index, int cmd_sz) {
 	int byte;
 
-	legic_prng_forward(4); /* we wait anyways */
 	while(timer->TC_CV < 387) ; /* ~ 258us + 100us*delay */
 
 	frame_send_rwd(1 | (byte_index << 1), cmd_sz);
@@ -354,12 +352,15 @@ int legic_read_byte(int byte_index, int cmd_sz) {
 	frame_receive_rwd(&current_frame, 12, 1);
 
 	byte = current_frame.data & 0xff;
+
 	if( LegicCRC(byte_index, byte, cmd_sz) != (current_frame.data >> 8) ) {
 		Dbprintf("!!! crc mismatch: expected %x but got %x !!!", 
-           LegicCRC(byte_index, current_frame.data & 0xff, cmd_sz), current_frame.data >> 8);
+			LegicCRC(byte_index, current_frame.data & 0xff, cmd_sz),
+			current_frame.data >> 8);
 		return -1;
 	}
 
+	legic_prng_forward(4); /* we wait anyways */
 	return byte;
 }
 
@@ -370,12 +371,12 @@ int legic_read_byte(int byte_index, int cmd_sz) {
  *  * wait until the tag sends back an ACK ('1' bit unencrypted)
  *  * forward the prng based on the timing
  */
+//int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
 int legic_write_byte(int byte, int addr, int addr_sz) {
-    //do not write UID, CRC, DCF
-    if(addr <= 0x06) { 
+    //do not write UID, CRC
+	if(addr <= 0x04) { 
 		return 0;
-	}
-
+		}
 	//== send write command ==============================
 	crc_clear(&legic_crc);
 	crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
@@ -393,6 +394,9 @@ int legic_write_byte(int byte, int addr, int addr_sz) {
     while(timer->TC_CV < 387) ; /* ~ 258us */
 	frame_send_rwd(cmd, cmd_sz);
 
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+
 	//== wait for ack ====================================
     int t, old_level=0, edges=0;
     int next_bit_at =0;
@@ -421,25 +425,37 @@ int legic_write_byte(int byte, int addr, int addr_sz) {
 	return -1;
 }
 
-int LegicRfReader(int offset, int bytes) {
+int LegicRfReader(int offset, int bytes, int iv) {
+	
+	// ice_legic_setup();
+	// ice_legic_select_card();
+	// return 0;
+	
 	int byte_index=0, cmd_sz=0, card_sz=0;
 
+	iv = (iv <= 0 ) ? SESSION_IV : iv;						   							   
+
 	LegicCommonInit();
 
 	uint8_t *BigBuf = BigBuf_get_addr();
 	memset(BigBuf, 0, 1024);
 
 	DbpString("setting up legic card");
-	uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV);
+	uint32_t tag_type = perform_setup_phase_rwd(iv);
 	switch_off_tag_rwd(); //we lose to mutch time with dprintf
 	switch(tag_type) {
+		case 0x0d:
+			DbpString("MIM22 card found, reading card ...");
+            cmd_sz = 6;
+			card_sz = 22;
+			break;
 		case 0x1d:
-			DbpString("MIM 256 card found, reading card ...");
+			DbpString("MIM256 card found, reading card ...");
             cmd_sz = 9;
 			card_sz = 256;
 			break;
 		case 0x3d:
-			DbpString("MIM 1024 card found, reading card ...");
+			DbpString("MIM1024 card found, reading card ...");
             cmd_sz = 11;
 			card_sz = 1024;
 			break;
@@ -453,7 +469,9 @@ int LegicRfReader(int offset, int bytes) {
 	if(bytes+offset >= card_sz)
 		bytes = card_sz-offset;
 
-	perform_setup_phase_rwd(SESSION_IV);
+	perform_setup_phase_rwd(iv);
+
+	legic_prng_forward(2);
 
 	LED_B_ON();
 	while(byte_index < bytes) {
@@ -468,7 +486,7 @@ int LegicRfReader(int offset, int bytes) {
 		BigBuf[byte_index] = r;
         WDT_HIT();
 		byte_index++;
-		if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
+		if (byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
 	}
 	LED_B_OFF();
     LED_C_OFF();
@@ -478,42 +496,108 @@ int LegicRfReader(int offset, int bytes) {
     return 0;
 }
 
-void LegicRfWriter(int bytes, int offset) {
+/*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
+	int byte_index=0;
+
+    LED_B_ON();
+	perform_setup_phase_rwd(SESSION_IV);
+    //legic_prng_forward(2);
+	while(byte_index < bytes) {
+		int r;
+
+		//check if the DCF should be changed
+		if ( (offset == 0x05) && (bytes == 0x02) ) {
+			//write DCF in reverse order (addr 0x06 before 0x05)
+			r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
+			//legic_prng_forward(1);
+			if(r == 0) {
+				byte_index++;
+				r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
+			}
+			//legic_prng_forward(1);
+		}
+		else {
+			r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
+		}
+		if((r != 0) || BUTTON_PRESS()) {
+			Dbprintf("operation aborted @ 0x%03.3x", byte_index);
+	switch_off_tag_rwd();
+			LED_B_OFF();
+			LED_C_OFF();
+			return -1;
+		}
+
+        WDT_HIT();
+		byte_index++;
+        if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
+	}
+    LED_B_OFF();
+    LED_C_OFF();
+    DbpString("write successful");
+    return 0;
+}*/
+
+void LegicRfWriter(int offset, int bytes, int iv) {
+
 	int byte_index=0, addr_sz=0;
 	uint8_t *BigBuf = BigBuf_get_addr();
+	iv = (iv <=0 ) ? SESSION_IV : iv;										  
 
 	LegicCommonInit();
 	
 	DbpString("setting up legic card");
-	uint32_t tag_type = perform_setup_phase_rwd(SESSION_IV);
+	uint32_t tag_type = perform_setup_phase_rwd(iv);
 	switch_off_tag_rwd();
 	switch(tag_type) {
+		case 0x0d:
+			if(offset+bytes > 22) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset+bytes);
+				return;
+			}
+			addr_sz = 5;
+			Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes);
+			break;
 		case 0x1d:
 			if(offset+bytes > 0x100) {
-				Dbprintf("Error: can not write to 0x%03.3x on MIM 256", offset+bytes);
+				Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset+bytes);
 				return;
 			}
 			addr_sz = 8;
-			Dbprintf("MIM 256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes);
+			Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes);
 			break;
 		case 0x3d:
 			if(offset+bytes > 0x400) {
-          		Dbprintf("Error: can not write to 0x%03.3x on MIM 1024", offset+bytes);
+          		Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset+bytes);
            		return;
           	}
 			addr_sz = 10;
-			Dbprintf("MIM 1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes);
+			Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes);
 			break;
 		default:
 			Dbprintf("No or unknown card found, aborting");
             return;
 	}
 
+#if 1
     LED_B_ON();
-	perform_setup_phase_rwd(SESSION_IV);
-    legic_prng_forward(2);
+	perform_setup_phase_rwd(iv);
 	while(byte_index < bytes) {
-		int r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz);
+		int r;
+
+		//check if the DCF should be changed
+		if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
+			//write DCF in reverse order (addr 0x06 before 0x05)
+			r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz);
+
+			// write second byte on success...
+			if(r == 0) {
+				byte_index++;
+				r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz);
+			}
+		}
+		else {
+			r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz);
+		}
 		if((r != 0) || BUTTON_PRESS()) {
 			Dbprintf("operation aborted @ 0x%03.3x", byte_index);
 			switch_off_tag_rwd();
@@ -521,6 +605,7 @@ void LegicRfWriter(int bytes, int offset) {
 			LED_C_OFF();
 			return;
 		}
+
         WDT_HIT();
 		byte_index++;
         if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
@@ -528,6 +613,74 @@ void LegicRfWriter(int bytes, int offset) {
     LED_B_OFF();
     LED_C_OFF();
     DbpString("write successful");
+#else
+	for(byte_index = -2; byte_index < 200; byte_index++)
+	{
+		Dbprintf("+ Try RndValue %d...", byte_index);
+		if(_LegicRfWriter(bytes, offset, addr_sz, BigBuf, byte_index) == 0)
+			break;
+	}
+#endif
+
+}
+
+void LegicRfRawWriter(int address, int byte, int iv) {
+	int byte_index=0, addr_sz=0;
+												  
+	iv = (iv <= 0) ? SESSION_IV : iv;
+	
+	LegicCommonInit();
+	
+	DbpString("setting up legic card");
+	uint32_t tag_type = perform_setup_phase_rwd(iv);
+	switch_off_tag_rwd();
+	switch(tag_type) {
+		case 0x0d:
+			if(address > 22) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
+				return;
+			}
+			addr_sz = 5;
+			Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
+			break;
+		case 0x1d:
+			if(address > 0x100) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
+				return;
+			}
+			addr_sz = 8;
+			Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
+			break;
+		case 0x3d:
+			if(address > 0x400) {
+          		Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
+           		return;
+          	}
+			addr_sz = 10;
+			Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
+			break;
+		default:
+			Dbprintf("No or unknown card found, aborting");
+            return;
+	}
+	Dbprintf("integer value: %d address: %d  addr_sz: %d", byte, address, addr_sz);
+    LED_B_ON();
+	perform_setup_phase_rwd(iv);
+    //legic_prng_forward(2);
+		
+	int r = legic_write_byte(byte, address, addr_sz);
+		
+	if((r != 0) || BUTTON_PRESS()) {
+		Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
+		switch_off_tag_rwd();
+		LED_B_OFF();
+		LED_C_OFF();
+		return;
+	}
+	
+    LED_B_OFF();
+    LED_C_OFF();
+    DbpString("write successful");
 }
 
 int timestamp;
@@ -539,7 +692,7 @@ static void frame_handle_tag(struct legic_frame const * const f)
 
    /* First Part of Handshake (IV) */
    if(f->bits == 7) {
-     if(f->data == SESSION_IV) {
+//     if(f->data == SESSION_IV) {
         LED_C_ON();
         prng_timer->TC_CCR = AT91C_TC_SWTRG;
         legic_prng_init(f->data);
@@ -554,17 +707,19 @@ static void frame_handle_tag(struct legic_frame const * const f)
         while(timer->TC_CV > 1);
         while(timer->TC_CV < 280);
         return;
-      } else if((prng_timer->TC_CV % 50) > 40) {
-        legic_prng_init(f->data);
-        frame_send_tag(0x3d, 6, 1);
-        SpinDelay(20);
-        return;
-     }
+//      } else if((prng_timer->TC_CV % 50) > 40) {
+//        legic_prng_init(f->data);
+//        frame_send_tag(0x3d, 6, 1);
+//        SpinDelay(20);
+//        return;
+//     }
    }
 
    /* 0x19==??? */
    if(legic_state == STATE_IV) {
-      if((f->bits == 6) && (f->data == (0x19 ^ get_key_stream(1, 6)))) {
+      int local_key = get_key_stream(3, 6);
+      int xored = 0x39 ^ local_key;
+      if((f->bits == 6) && (f->data == xored)) {
          legic_state = STATE_CON;
 
          /* TIMEOUT */
@@ -575,7 +730,7 @@ static void frame_handle_tag(struct legic_frame const * const f)
       } else {
          legic_state = STATE_DISCON;
          LED_C_OFF();
-         Dbprintf("0x19 - Frame: %03.3x", f->data);
+         Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
          return;
       }
    }
@@ -583,7 +738,7 @@ static void frame_handle_tag(struct legic_frame const * const f)
    /* Read */
    if(f->bits == 11) {
       if(legic_state == STATE_CON) {
-         int key   = get_key_stream(-1, 11); //legic_phase_drift, 11);
+         int key   = get_key_stream(2, 11); //legic_phase_drift, 11);
          int addr  = f->data ^ key; addr = addr >> 1;
          int data = BigBuf[addr];
          int hash = LegicCRC(addr, data, 11) << 8;
@@ -598,7 +753,7 @@ static void frame_handle_tag(struct legic_frame const * const f)
          /* SHORT TIMEOUT */
          timer->TC_CCR = AT91C_TC_SWTRG;
          while(timer->TC_CV > 1);
-         legic_prng_forward(legic_frame_drift);
+         legic_prng_forward(2);
          while(timer->TC_CV < 180);
          return;
       }
@@ -678,14 +833,14 @@ void LegicRfSimulate(int phase, int frame, int reqresp)
    * seems to be 300us-ish.
    */
 
-   if(phase < 0) {
-      int i;
-      for(i=0; i<=reqresp; i++) {
-         legic_prng_init(SESSION_IV);
-         Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame));
-      }
-      return;
-   }
+//   if(phase < 0) {
+//      int i;
+//      for(i=0; i<=reqresp; i++) {
+//         legic_prng_init(SESSION_IV);
+//         Dbprintf("i=%u, key 0x%3.3x", i, get_key_stream(i, frame));
+//      }
+//      return;
+//   }
 
    legic_phase_drift = phase;
    legic_frame_drift = frame;
@@ -755,3 +910,757 @@ void LegicRfSimulate(int phase, int frame, int reqresp)
    LED_C_OFF();
 }
 
+
+//-----------------------------------------------------------------------------
+//-----------------------------------------------------------------------------
+
+
+//-----------------------------------------------------------------------------
+// Code up a string of octets at layer 2 (including CRC, we don't generate
+// that here) so that they can be transmitted to the reader. Doesn't transmit
+// them yet, just leaves them ready to send in ToSend[].
+//-----------------------------------------------------------------------------
+// static void CodeLegicAsTag(const uint8_t *cmd, int len)
+// {
+	// int i;
+
+	// ToSendReset();
+
+	// // Transmit a burst of ones, as the initial thing that lets the
+	// // reader get phase sync. This (TR1) must be > 80/fs, per spec,
+	// // but tag that I've tried (a Paypass) exceeds that by a fair bit,
+	// // so I will too.
+	// for(i = 0; i < 20; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Send SOF.
+	// for(i = 0; i < 10; i++) {
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+	// }
+	// for(i = 0; i < 2; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// for(i = 0; i < len; i++) {
+		// int j;
+		// uint8_t b = cmd[i];
+
+		// // Start bit
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+
+		// // Data bits
+		// for(j = 0; j < 8; j++) {
+			// if(b & 1) {
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+			// } else {
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+			// }
+			// b >>= 1;
+		// }
+
+		// // Stop bit
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Send EOF.
+	// for(i = 0; i < 10; i++) {
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+	// }
+	// for(i = 0; i < 2; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Convert from last byte pos to length
+	// ToSendMax++;
+// }
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static struct {
+	enum {
+		STATE_UNSYNCD,
+		STATE_GOT_FALLING_EDGE_OF_SOF,
+		STATE_AWAITING_START_BIT,
+		STATE_RECEIVING_DATA
+	}       state;
+	uint16_t shiftReg;
+	int     bitCnt;
+	int     byteCnt;
+	int     byteCntMax;
+	int     posCnt;
+	uint8_t *output;
+} Uart;
+
+/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED A -> ON once we have received the SOF and are expecting the rest.
+ * LED A -> OFF once we have received EOF or are in error state or unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ */
+// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
+// {
+	// switch(Uart.state) {
+		// case STATE_UNSYNCD:
+			// if(!bit) {
+				// // we went low, so this could be the beginning of an SOF
+				// Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
+				// Uart.posCnt = 0;
+				// Uart.bitCnt = 0;
+			// }
+			// break;
+
+		// case STATE_GOT_FALLING_EDGE_OF_SOF:
+			// Uart.posCnt++;
+			// if(Uart.posCnt == 2) {	// sample every 4 1/fs in the middle of a bit
+				// if(bit) {
+					// if(Uart.bitCnt > 9) {
+						// // we've seen enough consecutive
+						// // zeros that it's a valid SOF
+						// Uart.posCnt = 0;
+						// Uart.byteCnt = 0;
+						// Uart.state = STATE_AWAITING_START_BIT;
+						// LED_A_ON(); // Indicate we got a valid SOF
+					// } else {
+						// // didn't stay down long enough
+						// // before going high, error
+						// Uart.state = STATE_UNSYNCD;
+					// }
+				// } else {
+					// // do nothing, keep waiting
+				// }
+				// Uart.bitCnt++;
+			// }
+			// if(Uart.posCnt >= 4) Uart.posCnt = 0;
+			// if(Uart.bitCnt > 12) {
+				// // Give up if we see too many zeros without
+				// // a one, too.
+				// LED_A_OFF();
+				// Uart.state = STATE_UNSYNCD;
+			// }
+			// break;
+
+		// case STATE_AWAITING_START_BIT:
+			// Uart.posCnt++;
+			// if(bit) {
+				// if(Uart.posCnt > 50/2) {	// max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
+					// // stayed high for too long between
+					// // characters, error
+					// Uart.state = STATE_UNSYNCD;
+				// }
+			// } else {
+				// // falling edge, this starts the data byte
+				// Uart.posCnt = 0;
+				// Uart.bitCnt = 0;
+				// Uart.shiftReg = 0;
+				// Uart.state = STATE_RECEIVING_DATA;
+			// }
+			// break;
+
+		// case STATE_RECEIVING_DATA:
+			// Uart.posCnt++;
+			// if(Uart.posCnt == 2) {
+				// // time to sample a bit
+				// Uart.shiftReg >>= 1;
+				// if(bit) {
+					// Uart.shiftReg |= 0x200;
+				// }
+				// Uart.bitCnt++;
+			// }
+			// if(Uart.posCnt >= 4) {
+				// Uart.posCnt = 0;
+			// }
+			// if(Uart.bitCnt == 10) {
+				// if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
+				// {
+					// // this is a data byte, with correct
+					// // start and stop bits
+					// Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
+					// Uart.byteCnt++;
+
+					// if(Uart.byteCnt >= Uart.byteCntMax) {
+						// // Buffer overflowed, give up
+						// LED_A_OFF();
+						// Uart.state = STATE_UNSYNCD;
+					// } else {
+						// // so get the next byte now
+						// Uart.posCnt = 0;
+						// Uart.state = STATE_AWAITING_START_BIT;
+					// }
+				// } else if (Uart.shiftReg == 0x000) {
+					// // this is an EOF byte
+					// LED_A_OFF(); // Finished receiving
+					// Uart.state = STATE_UNSYNCD;
+					// if (Uart.byteCnt != 0) {
+					// return TRUE;
+					// }
+				// } else {
+					// // this is an error
+					// LED_A_OFF();
+					// Uart.state = STATE_UNSYNCD;
+				// }
+			// }
+			// break;
+
+		// default:
+			// LED_A_OFF();
+			// Uart.state = STATE_UNSYNCD;
+			// break;
+	// }
+
+	// return FALSE;
+// }
+
+
+static void UartReset()
+{
+	Uart.byteCntMax = MAX_FRAME_SIZE;
+	Uart.state = STATE_UNSYNCD;
+	Uart.byteCnt = 0;
+	Uart.bitCnt = 0;
+	Uart.posCnt = 0;
+	memset(Uart.output, 0x00, MAX_FRAME_SIZE);
+}
+
+// static void UartInit(uint8_t *data)
+// {
+	// Uart.output = data;
+	// UartReset();
+// }
+
+//=============================================================================
+// An LEGIC reader. We take layer two commands, code them
+// appropriately, and then send them to the tag. We then listen for the
+// tag's response, which we leave in the buffer to be demodulated on the
+// PC side.
+//=============================================================================
+
+static struct {
+	enum {
+		DEMOD_UNSYNCD,
+		DEMOD_PHASE_REF_TRAINING,
+		DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
+		DEMOD_GOT_FALLING_EDGE_OF_SOF,
+		DEMOD_AWAITING_START_BIT,
+		DEMOD_RECEIVING_DATA
+	}       state;
+	int     bitCount;
+	int     posCount;
+	int     thisBit;
+	uint16_t  shiftReg;
+	uint8_t   *output;
+	int     len;
+	int     sumI;
+	int     sumQ;
+} Demod;
+
+/*
+ * Handles reception of a bit from the tag
+ *
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED C -> ON once we have received the SOF and are expecting the rest.
+ * LED C -> OFF once we have received EOF or are unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ *
+ */
+
+ #ifndef SUBCARRIER_DETECT_THRESHOLD
+ # define SUBCARRIER_DETECT_THRESHOLD	8
+ #endif
+ 
+ // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#ifndef CHECK_FOR_SUBCARRIER
+# define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
+#endif
+
+// The soft decision on the bit uses an estimate of just the
+// quadrant of the reference angle, not the exact angle.
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#define MAKE_SOFT_DECISION() { \
+		if(Demod.sumI > 0) \
+			v = ci; \
+		else \
+			v = -ci; \
+		\
+		if(Demod.sumQ > 0) \
+			v += cq; \
+		else \
+			v -= cq; \
+		\
+	}
+
+static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
+{
+	int v = 0;
+	int ai = ABS(ci);
+	int aq = ABS(cq);
+	int halfci = (ai >> 1);
+	int halfcq = (aq >> 1);
+
+	switch(Demod.state) {
+		case DEMOD_UNSYNCD:
+			
+			CHECK_FOR_SUBCARRIER()
+			
+			if(v > SUBCARRIER_DETECT_THRESHOLD) {	// subcarrier detected
+				Demod.state = DEMOD_PHASE_REF_TRAINING;
+				Demod.sumI = ci;
+				Demod.sumQ = cq;
+				Demod.posCount = 1;
+			}
+			break;
+
+		case DEMOD_PHASE_REF_TRAINING:
+			if(Demod.posCount < 8) {
+			
+				CHECK_FOR_SUBCARRIER()
+				
+				if (v > SUBCARRIER_DETECT_THRESHOLD) {
+					// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+					// note: synchronization time > 80 1/fs
+					Demod.sumI += ci;
+					Demod.sumQ += cq;
+					++Demod.posCount;
+				} else {
+					// subcarrier lost
+					Demod.state = DEMOD_UNSYNCD;
+				}
+			} else {
+				Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
+			}
+			break;
+
+		case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
+
+			MAKE_SOFT_DECISION()
+
+			//Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
+			// logic '0' detected
+			if (v <= 0) {
+				
+				Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
+			
+				// start of SOF sequence
+				Demod.posCount = 0;
+			} else {
+				// maximum length of TR1 = 200 1/fs
+				if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
+			}
+			++Demod.posCount;
+			break;
+
+		case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+			++Demod.posCount;
+
+			MAKE_SOFT_DECISION()
+
+			if(v > 0) {
+				// low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
+				if(Demod.posCount < 10*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+				} else {
+					LED_C_ON(); // Got SOF
+					Demod.state = DEMOD_AWAITING_START_BIT;
+					Demod.posCount = 0;
+					Demod.len = 0;
+				}
+			} else {
+				// low phase of SOF too long (> 12 etu)
+				if(Demod.posCount > 13*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+					LED_C_OFF();
+				}
+			}
+			break;
+
+		case DEMOD_AWAITING_START_BIT:
+			++Demod.posCount;
+			
+			MAKE_SOFT_DECISION()
+			
+			if(v > 0) {
+				// max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
+				if(Demod.posCount > 3*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+					LED_C_OFF();
+				}
+			} else {
+				// start bit detected
+				Demod.bitCount = 0;
+				Demod.posCount = 1;				// this was the first half
+				Demod.thisBit = v;
+				Demod.shiftReg = 0;
+				Demod.state = DEMOD_RECEIVING_DATA;
+			}
+			break;
+
+		case DEMOD_RECEIVING_DATA:
+		
+			MAKE_SOFT_DECISION()
+			
+			if(Demod.posCount == 0) {
+				// first half of bit
+				Demod.thisBit = v;
+				Demod.posCount = 1;
+			} else {
+				// second half of bit
+				Demod.thisBit += v;
+				Demod.shiftReg >>= 1;
+				// logic '1'
+				if(Demod.thisBit > 0) 
+					Demod.shiftReg |= 0x200;
+				
+				++Demod.bitCount;
+				
+				if(Demod.bitCount == 10) {
+					
+					uint16_t s = Demod.shiftReg;
+					
+					if((s & 0x200) && !(s & 0x001)) { 
+						// stop bit == '1', start bit == '0'
+						uint8_t b = (s >> 1);
+						Demod.output[Demod.len] = b;
+						++Demod.len;
+						Demod.state = DEMOD_AWAITING_START_BIT;
+					} else {
+						Demod.state = DEMOD_UNSYNCD;
+						LED_C_OFF();
+						
+						if(s == 0x000) {
+							// This is EOF (start, stop and all data bits == '0'
+							return TRUE;
+						}
+					}
+				}
+				Demod.posCount = 0;
+			}
+			break;
+
+		default:
+			Demod.state = DEMOD_UNSYNCD;
+			LED_C_OFF();
+			break;
+	}
+	return FALSE;
+}
+
+// Clear out the state of the "UART" that receives from the tag.
+static void DemodReset() {
+	Demod.len = 0;
+	Demod.state = DEMOD_UNSYNCD;
+	Demod.posCount = 0;
+	Demod.sumI = 0;
+	Demod.sumQ = 0;
+	Demod.bitCount = 0;
+	Demod.thisBit = 0;
+	Demod.shiftReg = 0;
+	memset(Demod.output, 0x00, MAX_FRAME_SIZE);
+}
+
+static void DemodInit(uint8_t *data) {
+	Demod.output = data;
+	DemodReset();
+}
+
+/*
+ *  Demodulate the samples we received from the tag, also log to tracebuffer
+ *  quiet: set to 'TRUE' to disable debug output
+ */
+ #define LEGIC_DMA_BUFFER_SIZE 256
+static void GetSamplesForLegicDemod(int n, bool quiet)
+{
+	int max = 0;
+	bool gotFrame = FALSE;
+	int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+	int	ci, cq, samples = 0;
+
+	BigBuf_free();
+
+	// And put the FPGA in the appropriate mode
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
+
+	// The response (tag -> reader) that we're receiving.
+	// Set up the demodulator for tag -> reader responses.
+	DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
+	
+	// The DMA buffer, used to stream samples from the FPGA
+	int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
+	int8_t *upTo = dmaBuf;
+
+	// Setup and start DMA.
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}	
+
+	// Signal field is ON with the appropriate LED:
+	LED_D_ON();
+	for(;;) {
+		int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
+		if(behindBy > max) max = behindBy;
+
+		while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
+			ci = upTo[0];
+			cq = upTo[1];
+			upTo += 2;
+			if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
+				upTo = dmaBuf;
+				AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+				AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
+			}
+			lastRxCounter -= 2;
+			if(lastRxCounter <= 0)
+				lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+
+			samples += 2;
+
+			gotFrame = HandleLegicSamplesDemod(ci , cq );
+			if ( gotFrame )
+				break;
+		}
+
+		if(samples > n || gotFrame)
+			break;
+	}
+
+	FpgaDisableSscDma();
+
+	if (!quiet && Demod.len == 0) {
+		Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
+			max,
+			samples, 
+			gotFrame, 
+			Demod.len, 
+			Demod.sumI, 
+			Demod.sumQ
+		);
+	}
+
+	//Tracing
+	if (Demod.len > 0) {
+		uint8_t parity[MAX_PARITY_SIZE] = {0x00};
+		LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
+	}
+}
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+static void TransmitForLegic(void)
+{
+	int c;
+
+	FpgaSetupSsc();
+	
+	while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
+		AT91C_BASE_SSC->SSC_THR = 0xff;
+
+	// Signal field is ON with the appropriate Red LED
+	LED_D_ON();
+
+	// Signal we are transmitting with the Green LED
+	LED_B_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+	
+	for(c = 0; c < 10;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = 0xff;
+			c++;
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+			(void)r;
+		}
+		WDT_HIT();
+	}
+
+	c = 0;
+	for(;;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = ToSend[c];
+			legic_prng_forward(1); // forward the lfsr 
+			c++;
+			if(c >= ToSendMax) {
+				break;
+			}
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+			(void)r;
+		}
+		WDT_HIT();
+	}
+	LED_B_OFF();
+}
+
+
+//-----------------------------------------------------------------------------
+// Code a layer 2 command (string of octets, including CRC) into ToSend[],
+// so that it is ready to transmit to the tag using TransmitForLegic().
+//-----------------------------------------------------------------------------
+static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+	int i, j;
+	uint8_t b;
+
+	ToSendReset();
+
+	// Send SOF
+	for(i = 0; i < 7; i++)
+		ToSendStuffBit(1);
+
+
+	for(i = 0; i < cmdlen; i++) {
+		// Start bit
+		ToSendStuffBit(0);
+
+		// Data bits
+		b = cmd[i];
+		for(j = 0; j < bits; j++) {
+			if(b & 1) {
+				ToSendStuffBit(1);
+			} else {
+				ToSendStuffBit(0);
+			}
+			b >>= 1;
+		}
+	}
+	
+	// Convert from last character reference to length
+	++ToSendMax;
+}
+
+/**
+  Convenience function to encode, transmit and trace Legic comms
+  **/
+static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+	CodeLegicBitsAsReader(cmd, cmdlen, bits);
+	TransmitForLegic();
+	if (tracing) {
+		uint8_t parity[1] = {0x00};
+		LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
+	}
+}
+
+int ice_legic_select_card()
+{
+	//int cmd_size=0, card_size=0;
+	uint8_t wakeup[] = { 0x7F };
+	uint8_t getid[] = {0x19};
+
+	legic_prng_init(SESSION_IV);
+
+	// first, wake up the tag, 7bits
+	CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7);
+
+	GetSamplesForLegicDemod(1000, TRUE);
+
+	// frame_clean(&current_frame);
+	//frame_receive_rwd(&current_frame, 6, 1);
+
+	legic_prng_forward(1); /* we wait anyways */
+	
+	//while(timer->TC_CV < 387) ; /* ~ 258us */
+	//frame_send_rwd(0x19, 6);
+	CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8);
+	GetSamplesForLegicDemod(1000, TRUE);
+
+	//if (Demod.len < 14) return 2; 
+	Dbprintf("CARD TYPE: %02x  LEN: %d", Demod.output[0], Demod.len);
+
+	switch(Demod.output[0]) {
+		case 0x1d:
+			DbpString("MIM 256 card found");
+            // cmd_size = 9;
+			// card_size = 256;
+			break;
+		case 0x3d:
+			DbpString("MIM 1024 card found");
+            // cmd_size = 11;
+			// card_size = 1024;
+			break;
+		default:
+			return -1;
+	}
+	
+	// if(bytes == -1)
+		// bytes = card_size;
+
+	// if(bytes + offset >= card_size)
+		// bytes = card_size - offset;	
+	
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
+	return 1;
+}
+
+// Set up LEGIC communication
+void ice_legic_setup() {
+
+	// standard things.
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(TRUE);
+	DemodReset();
+	UartReset();
+	
+	// Set up the synchronous serial port
+	FpgaSetupSsc();
+
+	// connect Demodulated Signal to ADC:
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	// Signal field is on with the appropriate LED
+    LED_D_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+	SpinDelay(200);
+	// Start the timer
+	//StartCountSspClk();
+	
+	// initalize CRC 
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+	// initalize prng
+	legic_prng_init(0);
+}
\ No newline at end of file