X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/f25c62c5ec53de4f0657fb14379bf3098dab9148..874572d4197e2a02152ea8c2185df90531b576c3:/armsrc/iso14443a.c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index b18a2fe6..8e2c56b0 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -12,10 +12,11 @@ #include "iso14443a.h" +#include +#include #include "proxmark3.h" #include "apps.h" #include "util.h" -#include "string.h" #include "cmd.h" #include "iso14443crc.h" #include "crapto1/crapto1.h" @@ -132,13 +133,13 @@ uint16_t FpgaSendQueueDelay; #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) // When the PM acts as tag and is sending, it takes -// 4*16 ticks until we can write data to the sending hold register +// 4*16 + 8 ticks until we can write data to the sending hold register // 8*16 ticks until the SHR is transferred to the Sending Shift Register -// 8 ticks until the first transfer starts -// 8 ticks later the FPGA samples the data -// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) +// 8 ticks later the FPGA samples the first data +// + 16 ticks until assigned to mod_sig // + 1 tick to assign mod_sig_coil -#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) +// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) +#define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE) // When the PM acts as sniffer and is receiving tag data, it takes // 3 ticks A/D conversion @@ -191,7 +192,7 @@ void iso14a_set_timeout(uint32_t timeout) { } -void iso14a_set_ATS_timeout(uint8_t *ats) { +static void iso14a_set_ATS_timeout(uint8_t *ats) { uint8_t tb1; uint8_t fwi; @@ -246,7 +247,7 @@ void AppendCrc14443a(uint8_t* data, int len) ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } -void AppendCrc14443b(uint8_t* data, int len) +static void AppendCrc14443b(uint8_t* data, int len) { ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); } @@ -283,7 +284,7 @@ const bool Mod_Miller_LUT[] = { #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) -void UartReset() +static void UartReset() { Uart.state = STATE_UNSYNCD; Uart.bitCount = 0; @@ -295,7 +296,7 @@ void UartReset() Uart.endTime = 0; } -void UartInit(uint8_t *data, uint8_t *parity) +static void UartInit(uint8_t *data, uint8_t *parity) { Uart.output = data; Uart.parity = parity; @@ -455,7 +456,7 @@ const bool Mod_Manchester_LUT[] = { #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) -void DemodReset() +static void DemodReset() { Demod.state = DEMOD_UNSYNCD; Demod.len = 0; // number of decoded data bytes @@ -469,7 +470,7 @@ void DemodReset() Demod.endTime = 0; } -void DemodInit(uint8_t *data, uint8_t *parity) +static void DemodInit(uint8_t *data, uint8_t *parity) { Demod.output = data; Demod.parity = parity; @@ -793,14 +794,6 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par ToSendMax++; } -static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) -{ - uint8_t par[MAX_PARITY_SIZE]; - - GetParity(cmd, len, par); - CodeIso14443aAsTagPar(cmd, len, par); -} - static void Code4bitAnswerAsTag(uint8_t cmd) { @@ -840,6 +833,38 @@ static void Code4bitAnswerAsTag(uint8_t cmd) ToSendMax++; } + +static uint8_t *LastReaderTraceTime = NULL; + +static void EmLogTraceReader(void) { + // remember last reader trace start to fix timing info later + LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); +} + + +static void FixLastReaderTraceTime(uint32_t tag_StartTime) { + uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG; + uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG; + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_StartTime = tag_StartTime - exact_fdt - reader_modlen; + LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff; + LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff; + LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff; + LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff; +} + + +static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) { + uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG; + uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG; + LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false); + FixLastReaderTraceTime(tag_StartTime); +} + + //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed @@ -868,33 +893,22 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if(MillerDecoding(b, 0)) { *len = Uart.len; + EmLogTraceReader(); return true; } } } } -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSend4bitEx(uint8_t resp, bool correctionNeeded); + +static int EmSend4bitEx(uint8_t resp); int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); -int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSendCmd(uint8_t *resp, uint16_t respLen); -int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); +static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen); +int EmSendPrecompiledCmd(tag_response_info_t *response_info); -static uint8_t* free_buffer_pointer; -typedef struct { - uint8_t* response; - size_t response_n; - uint8_t* modulation; - size_t modulation_n; - uint32_t ProxToAirDuration; -} tag_response_info_t; - -bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { +static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence // 144 data bits (18 * 8) @@ -908,17 +922,18 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // Prepare the tag modulation bits from the message - CodeIso14443aAsTag(response_info->response,response_info->response_n); + GetParity(response_info->response, response_info->response_n, &(response_info->par)); + CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par)); // Make sure we do not exceed the free buffer space if (ToSendMax > max_buffer_size) { Dbprintf("Out of memory, when modulating bits for tag answer:"); - Dbhexdump(response_info->response_n,response_info->response,false); + Dbhexdump(response_info->response_n, response_info->response, false); return false; } // Copy the byte array, used for this modulation to the buffer position - memcpy(response_info->modulation,ToSend,ToSendMax); + memcpy(response_info->modulation, ToSend, ToSendMax); // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them response_info->modulation_n = ToSendMax; @@ -930,21 +945,20 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) -// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits +// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation // -> need 273 bytes buffer #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 -bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { +bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) { + // Retrieve and store the current buffer index - response_info->modulation = free_buffer_pointer; - - // Determine the maximum size we can use from our buffer - size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; + response_info->modulation = *buffer; // Forward the prepare tag modulation function to the inner function - if (prepare_tag_modulation(response_info, max_buffer_size)) { - // Update the free buffer offset - free_buffer_pointer += ToSendMax; + if (prepare_tag_modulation(response_info, *max_buffer_size)) { + // Update the free buffer offset and the remaining buffer size + *buffer += ToSendMax; + *max_buffer_size -= ToSendMax; return true; } else { return false; @@ -1074,8 +1088,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // allocate buffers: uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); - free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); - + uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); + size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; // clear trace clear_trace(); set_tracing(true); @@ -1083,7 +1097,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA for (size_t i=0; imodulation, p_response->modulation_n, receivedCmd[0] == 0x52); - // do the tracing for the previous reader request and this tag answer: - uint8_t par[MAX_PARITY_SIZE]; - GetParity(p_response->response, p_response->response_n, par); - - EmLogTrace(Uart.output, - Uart.len, - Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parity, - p_response->response, - p_response->response_n, - LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, - (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - par); + EmSendPrecompiledCmd(p_response); } if (!tracing) { @@ -1262,7 +1249,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // prepare a delayed transfer. This simply shifts ToSend[] by a number // of bits specified in the delay parameter. -void PrepareDelayedTransfer(uint16_t delay) +static void PrepareDelayedTransfer(uint16_t delay) { uint8_t bitmask = 0; uint8_t bits_to_shift = 0; @@ -1335,7 +1322,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) +static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { int i, j; int last; @@ -1413,21 +1400,13 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 ToSendMax++; } -//----------------------------------------------------------------------------- -// Prepare reader command to send to FPGA -//----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) -{ - CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); -} - //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) +int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { *len = 0; @@ -1435,12 +1414,6 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) int analogCnt = 0; int analogAVG = 0; - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - // Set ADC to read field strength AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = @@ -1451,12 +1424,23 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) // start ADC AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; - // Now run a 'software UART' on the stream of incoming samples. + // Run a 'software UART' on the stream of incoming samples. UartInit(received, parity); - // Clear RXRDY: - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN + do { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = SEC_F; + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b; + } + } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3)); + + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + for(;;) { WDT_HIT(); @@ -1482,9 +1466,10 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) // receive and test the miller decoding if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if(MillerDecoding(b, 0)) { *len = Uart.len; + EmLogTraceReader(); return 0; } } @@ -1493,19 +1478,27 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) } -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) { uint8_t b; uint16_t i = 0; - uint32_t ThisTransferTime; - + bool correctionNeeded; + // Modulate Manchester FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); // include correction bit if necessary - if (Uart.parityBits & 0x01) { - correctionNeeded = true; + if (Uart.bitCount == 7) + { + // Short tags (7 bits) don't have parity, determine the correct value from MSB + correctionNeeded = Uart.output[0] & 0x40; } + else + { + // Look at the last parity bit + correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7)); + } + if(correctionNeeded) { // 1236, so correction bit needed i = 0; @@ -1525,10 +1518,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe if (AT91C_BASE_SSC->SSC_RHR) break; } - while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); - - // Clear TXRDY: - AT91C_BASE_SSC->SSC_THR = SEC_F; + LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0); // send cycle for(; i < respLen; ) { @@ -1542,97 +1532,60 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe } } - // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; - for (i = 0; i <= fpga_queued_bits/8 + 1; ) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = SEC_F; - FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - } - } - - LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); - return 0; } -int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ + +static int EmSend4bitEx(uint8_t resp){ Code4bitAnswerAsTag(resp); - int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); + int res = EmSendCmd14443aRaw(ToSend, ToSendMax); // do the tracing for the previous reader request and this tag answer: - uint8_t par[1]; - GetParity(&resp, 1, par); - EmLogTrace(Uart.output, - Uart.len, - Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parity, - &resp, - 1, - LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, - (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - par); + EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration); return res; } + int EmSend4bit(uint8_t resp){ - return EmSend4bitEx(resp, false); + return EmSend4bitEx(resp); } -int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ + +static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ CodeIso14443aAsTagPar(resp, respLen, par); - int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); + int res = EmSendCmd14443aRaw(ToSend, ToSendMax); // do the tracing for the previous reader request and this tag answer: - EmLogTrace(Uart.output, - Uart.len, - Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parity, - resp, - respLen, - LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, - (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - par); + EmLogTraceTag(resp, respLen, par, LastProxToAirDuration); return res; } -int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ + +int EmSendCmdEx(uint8_t *resp, uint16_t respLen){ uint8_t par[MAX_PARITY_SIZE]; GetParity(resp, respLen, par); - return EmSendCmdExPar(resp, respLen, correctionNeeded, par); + return EmSendCmdExPar(resp, respLen, par); } + int EmSendCmd(uint8_t *resp, uint16_t respLen){ uint8_t par[MAX_PARITY_SIZE]; GetParity(resp, respLen, par); - return EmSendCmdExPar(resp, respLen, false, par); + return EmSendCmdExPar(resp, respLen, par); } + int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ - return EmSendCmdExPar(resp, respLen, false, par); + return EmSendCmdExPar(resp, respLen, par); } -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) -{ - if (tracing) { - // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from - // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. - // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: - uint16_t reader_modlen = reader_EndTime - reader_StartTime; - uint16_t approx_fdt = tag_StartTime - reader_EndTime; - uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; - reader_EndTime = tag_StartTime - exact_fdt; - reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, true)) { - return false; - } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false)); - } else { - return true; - } + +int EmSendPrecompiledCmd(tag_response_info_t *response_info) { + int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n); + // do the tracing for the previous reader request and this tag answer: + EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration); + return ret; } + //----------------------------------------------------------------------------- // Wait a certain time for tag response // If a response is captured return true @@ -1693,7 +1646,7 @@ void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *tim } -void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) +static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect uint8_t par[MAX_PARITY_SIZE]; @@ -1710,7 +1663,8 @@ void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) + +static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false; if (tracing) { @@ -1719,6 +1673,7 @@ int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parit return Demod.len; } + int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false; @@ -1733,7 +1688,8 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) // fills the card info record unless NULL // if anticollision is false, then the UID must be provided in uid_ptr[] // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) -int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) { +// requests ATS unless no_rats is true +int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) { uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP uint8_t sel_all[] = { 0x93,0x20 }; uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; @@ -1747,6 +1703,13 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u int cascade_level = 0; int len; + // init card struct + if(p_hi14a_card) { + p_hi14a_card->uidlen = 0; + memset(p_hi14a_card->uid, 0, 10); + p_hi14a_card->ats_len = 0; + } + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field ReaderTransmitBitsPar(wupa, 7, NULL, NULL); @@ -1755,8 +1718,6 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u if(p_hi14a_card) { memcpy(p_hi14a_card->atqa, resp, 2); - p_hi14a_card->uidlen = 0; - memset(p_hi14a_card->uid,0,10); } if (anticollision) { @@ -1862,33 +1823,33 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u if(p_hi14a_card) { p_hi14a_card->sak = sak; - p_hi14a_card->ats_len = 0; } - // non iso14443a compliant tag + // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0) if( (sak & 0x20) == 0) return 2; - // Request for answer to select - AppendCrc14443a(rats, 2); - ReaderTransmit(rats, sizeof(rats), NULL); + if (!no_rats) { + // Request for answer to select + AppendCrc14443a(rats, 2); + ReaderTransmit(rats, sizeof(rats), NULL); - if (!(len = ReaderReceive(resp, resp_par))) return 0; + if (!(len = ReaderReceive(resp, resp_par))) return 0; - - if(p_hi14a_card) { - memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); - p_hi14a_card->ats_len = len; - } - - // reset the PCB block number - iso14_pcb_blocknum = 0; + if(p_hi14a_card) { + memcpy(p_hi14a_card->ats, resp, len); + p_hi14a_card->ats_len = len; + } - // set default timeout based on ATS - iso14a_set_ATS_timeout(resp); + // reset the PCB block number + iso14_pcb_blocknum = 0; + // set default timeout based on ATS + iso14a_set_ATS_timeout(resp); + } return 1; } + void iso14443a_setup(uint8_t fpga_minor_mode) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Set up the synchronous serial port @@ -1911,37 +1872,57 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { DemodReset(); UartReset(); NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; - iso14a_set_timeout(1050); // 10ms default + iso14a_set_timeout(1060); // 10ms default } + int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { uint8_t parity[MAX_PARITY_SIZE]; - uint8_t real_cmd[cmd_len+4]; - real_cmd[0] = 0x0a; //I-Block + uint8_t real_cmd[cmd_len + 4]; + + // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02 + real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) // put block number into the PCB real_cmd[0] |= iso14_pcb_blocknum; - real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards - memcpy(real_cmd+2, cmd, cmd_len); - AppendCrc14443a(real_cmd,cmd_len+2); + memcpy(real_cmd + 1, cmd, cmd_len); + AppendCrc14443a(real_cmd, cmd_len + 1); - ReaderTransmit(real_cmd, cmd_len+4, NULL); + ReaderTransmit(real_cmd, cmd_len + 3, NULL); + size_t len = ReaderReceive(data, parity); uint8_t *data_bytes = (uint8_t *) data; - if (!len) + + if (!len) { return 0; //DATA LINK ERROR + // if we received an I- or R(ACK)-Block with a block number equal to the // current block number, toggle the current block number - else if (len >= 4 // PCB+CID+CRC = 4 bytes + } else{ + if (len >= 3 // PCB+CRC = 3 bytes && ((data_bytes[0] & 0xC0) == 0 // I-Block || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers - { - iso14_pcb_blocknum ^= 1; - } + { + iso14_pcb_blocknum ^= 1; + } + // crc check + if (len >=3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) { + return -1; + } + + } + + // cut frame byte + len -= 1; + // memmove(data_bytes, data_bytes + 1, len); + for (int i = 0; i < len; i++) + data_bytes[i] = data_bytes[i + 1]; + return len; } + //----------------------------------------------------------------------------- // Read an ISO 14443a tag. Send out commands and store answers. // @@ -1954,25 +1935,36 @@ void ReaderIso14443a(UsbCommand *c) size_t lenbits = c->arg[1] >> 16; uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; - byte_t buf[USB_CMD_DATA_SIZE]; + byte_t buf[USB_CMD_DATA_SIZE] = {0}; uint8_t par[MAX_PARITY_SIZE]; + bool cantSELECT = false; - if(param & ISO14A_CONNECT) { + set_tracing(true); + + if(param & ISO14A_CLEAR_TRACE) { clear_trace(); } - set_tracing(true); - if(param & ISO14A_REQUEST_TRIGGER) { iso14a_set_trigger(true); } if(param & ISO14A_CONNECT) { + LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; - arg0 = iso14443a_select_card(NULL, card, NULL, true, 0); + arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS); + + // if we cant select then we cant send data + if (arg0 != 1 && arg0 != 2) { + // 1 - all is OK with ATS, 2 - without ATS + cantSELECT = true; + } + + LED_B_ON(); cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); + LED_B_OFF(); } } @@ -1980,12 +1972,14 @@ void ReaderIso14443a(UsbCommand *c) iso14a_set_timeout(timeout); } - if(param & ISO14A_APDU) { + if(param & ISO14A_APDU && !cantSELECT) { arg0 = iso14_apdu(cmd, len, buf); - cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); + LED_B_ON(); + cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf)); + LED_B_OFF(); } - if(param & ISO14A_RAW) { + if(param & ISO14A_RAW && !cantSELECT) { if(param & ISO14A_APPEND_CRC) { if(param & ISO14A_TOPAZMODE) { AppendCrc14443b(cmd,len); @@ -2021,7 +2015,10 @@ void ReaderIso14443a(UsbCommand *c) } } arg0 = ReaderReceive(buf, par); + + LED_B_ON(); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); + LED_B_OFF(); } if(param & ISO14A_REQUEST_TRIGGER) { @@ -2040,7 +2037,7 @@ void ReaderIso14443a(UsbCommand *c) // Determine the distance between two nonces. // Assume that the difference is small, but we don't know which is first. // Therefore try in alternating directions. -int32_t dist_nt(uint32_t nt1, uint32_t nt2) { +static int32_t dist_nt(uint32_t nt1, uint32_t nt2) { uint16_t i; uint32_t nttmp1, nttmp2; @@ -2168,7 +2165,7 @@ void ReaderMifare(bool first_try) SpinDelay(100); } - if(!iso14443a_select_card(uid, NULL, &cuid, true, 0)) { + if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); continue; } @@ -2352,705 +2349,6 @@ void ReaderMifare(bool first_try) set_tracing(false); } -typedef struct { - uint32_t cuid; - uint8_t sector; - uint8_t keytype; - uint32_t nonce; - uint32_t ar; - uint32_t nr; - uint32_t nonce2; - uint32_t ar2; - uint32_t nr2; -} nonces_t; - -/** - *MIFARE 1K simulate. - * - *@param flags : - * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK - * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that - * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that - * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished - * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later - * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) - *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... - * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) - */ -void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) -{ - int cardSTATE = MFEMUL_NOFIELD; - int _UID_LEN = 0; // 4, 7, 10 - int vHf = 0; // in mV - int res; - uint32_t selTimer = 0; - uint32_t authTimer = 0; - uint16_t len = 0; - uint8_t cardWRBL = 0; - uint8_t cardAUTHSC = 0; - uint8_t cardAUTHKEY = 0xff; // no authentication - uint32_t cardRr = 0; - uint32_t cuid = 0; - //uint32_t rn_enc = 0; - uint32_t ans = 0; - uint32_t cardINTREG = 0; - uint8_t cardINTBLOCK = 0; - struct Crypto1State mpcs = {0, 0}; - struct Crypto1State *pcs; - pcs = &mpcs; - uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; - uint8_t response[MAX_MIFARE_FRAME_SIZE]; - uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; - - uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID - uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! - uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - - uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated - uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished - - uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; - uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - - //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 - // This will be used in the reader-only attack. - - //allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys - #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack() - nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) - memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); - - uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius) - memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); - uint8_t nonce1_count = 0; - uint8_t nonce2_count = 0; - uint8_t moebius_n_count = 0; - bool gettingMoebius = false; - uint8_t mM = 0; //moebius_modifier for collection storage - - // Authenticate response - nonce - uint32_t nonce; - if (flags & FLAG_RANDOM_NONCE) { - nonce = prand(); - } else { - nonce = bytes_to_num(rAUTH_NT, 4); - } - - //-- Determine the UID - // Can be set from emulator memory, incoming data - // and can be 7 or 4 bytes long - if (flags & FLAG_4B_UID_IN_DATA) - { - // 4B uid comes from data-portion of packet - memcpy(rUIDBCC1,datain,4); - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - _UID_LEN = 4; - } else if (flags & FLAG_7B_UID_IN_DATA) { - // 7B uid comes from data-portion of packet - memcpy(&rUIDBCC1[1],datain,3); - memcpy(rUIDBCC2, datain+3, 4); - _UID_LEN = 7; - } else if (flags & FLAG_10B_UID_IN_DATA) { - memcpy(&rUIDBCC1[1], datain, 3); - memcpy(&rUIDBCC2[1], datain+3, 3); - memcpy( rUIDBCC3, datain+6, 4); - _UID_LEN = 10; - } else { - // get UID from emul memory - guess at length - emlGetMemBt(receivedCmd, 7, 1); - if (receivedCmd[0] == 0x00) { // ---------- 4BUID - emlGetMemBt(rUIDBCC1, 0, 4); - _UID_LEN = 4; - } else { // ---------- 7BUID - emlGetMemBt(&rUIDBCC1[1], 0, 3); - emlGetMemBt(rUIDBCC2, 3, 4); - _UID_LEN = 7; - } - } - - switch (_UID_LEN) { - case 4: - // save CUID - cuid = bytes_to_num(rUIDBCC1, 4); - // BCC - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - if (MF_DBGLEVEL >= 2) { - Dbprintf("4B UID: %02x%02x%02x%02x", - rUIDBCC1[0], - rUIDBCC1[1], - rUIDBCC1[2], - rUIDBCC1[3] - ); - } - break; - case 7: - rATQA[0] |= 0x40; - // save CUID - cuid = bytes_to_num(rUIDBCC2, 4); - // CascadeTag, CT - rUIDBCC1[0] = 0x88; - // BCC - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; - if (MF_DBGLEVEL >= 2) { - Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", - rUIDBCC1[1], - rUIDBCC1[2], - rUIDBCC1[3], - rUIDBCC2[0], - rUIDBCC2[1], - rUIDBCC2[2], - rUIDBCC2[3] - ); - } - break; - case 10: - rATQA[0] |= 0x80; - //sak_10[0] &= 0xFB; - // save CUID - cuid = bytes_to_num(rUIDBCC3, 4); - // CascadeTag, CT - rUIDBCC1[0] = 0x88; - rUIDBCC2[0] = 0x88; - // BCC - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; - rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; - - if (MF_DBGLEVEL >= 2) { - Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", - rUIDBCC1[1], - rUIDBCC1[2], - rUIDBCC1[3], - rUIDBCC2[1], - rUIDBCC2[2], - rUIDBCC2[3], - rUIDBCC3[0], - rUIDBCC3[1], - rUIDBCC3[2], - rUIDBCC3[3] - ); - } - break; - default: - break; - } - - // We need to listen to the high-frequency, peak-detected path. - iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // free eventually allocated BigBuf memory but keep Emulator Memory - BigBuf_free_keep_EM(); - - // clear trace - clear_trace(); - set_tracing(true); - - bool finished = false; - bool button_pushed = BUTTON_PRESS(); - while (!button_pushed && !finished && !usb_poll_validate_length()) { - WDT_HIT(); - - // find reader field - if (cardSTATE == MFEMUL_NOFIELD) { - vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; - if (vHf > MF_MINFIELDV) { - cardSTATE_TO_IDLE(); - LED_A_ON(); - } - } - if (cardSTATE == MFEMUL_NOFIELD) continue; - - //Now, get data - res = EmGetCmd(receivedCmd, &len, receivedCmd_par); - if (res == 2) { //Field is off! - cardSTATE = MFEMUL_NOFIELD; - LEDsoff(); - continue; - } else if (res == 1) { - break; //return value 1 means button press - } - - // REQ or WUP request in ANY state and WUP in HALTED state - if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { - selTimer = GetTickCount(); - EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA)); - cardSTATE = MFEMUL_SELECT1; - - // init crypto block - LED_B_OFF(); - LED_C_OFF(); - crypto1_destroy(pcs); - cardAUTHKEY = 0xff; - if (flags & FLAG_RANDOM_NONCE) { - nonce = prand(); - } - continue; - } - - switch (cardSTATE) { - case MFEMUL_NOFIELD: - case MFEMUL_HALTED: - case MFEMUL_IDLE:{ - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - case MFEMUL_SELECT1:{ - // select all - 0x93 0x20 - if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { - if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); - EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); - break; - } - - // select card - 0x93 0x70 ... - if (len == 9 && - (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - if (MF_DBGLEVEL >= 4) - Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); - - switch(_UID_LEN) { - case 4: - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); - EmSendCmd(rSAKfinal, sizeof(rSAKfinal)); - break; - case 7: - cardSTATE = MFEMUL_SELECT2; - EmSendCmd(rSAK1, sizeof(rSAK1)); - break; - case 10: - cardSTATE = MFEMUL_SELECT2; - EmSendCmd(rSAK1, sizeof(rSAK1)); - break; - default:break; - } - } else { - cardSTATE_TO_IDLE(); - } - break; - } - case MFEMUL_SELECT3:{ - if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - // select all cl3 - 0x97 0x20 - if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) { - EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3)); - break; - } - // select card cl3 - 0x97 0x70 - if (len == 9 && - (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && - receivedCmd[1] == 0x70 && - memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) { - - EmSendCmd(rSAKfinal, sizeof(rSAKfinal)); - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer); - break; - } - cardSTATE_TO_IDLE(); - break; - } - case MFEMUL_AUTH1:{ - if( len != 8) { - cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - - uint32_t nr = bytes_to_num(receivedCmd, 4); - uint32_t ar = bytes_to_num(&receivedCmd[4], 4); - - // Collect AR/NR per keytype & sector - if(flags & FLAG_NR_AR_ATTACK) { - for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { - if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) { - // if first auth for sector, or matches sector and keytype of previous auth - if (ar_nr_collected[i+mM] < 2) { - // if we haven't already collected 2 nonces for this sector - if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { - // Avoid duplicates... probably not necessary, ar should vary. - if (ar_nr_collected[i+mM]==0) { - // first nonce collect - ar_nr_resp[i+mM].cuid = cuid; - ar_nr_resp[i+mM].sector = cardAUTHSC; - ar_nr_resp[i+mM].keytype = cardAUTHKEY; - ar_nr_resp[i+mM].nonce = nonce; - ar_nr_resp[i+mM].nr = nr; - ar_nr_resp[i+mM].ar = ar; - nonce1_count++; - // add this nonce to first moebius nonce - ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid; - ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC; - ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY; - ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce; - ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr; - ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar; - ar_nr_collected[i+ATTACK_KEY_COUNT]++; - } else { // second nonce collect (std and moebius) - ar_nr_resp[i+mM].nonce2 = nonce; - ar_nr_resp[i+mM].nr2 = nr; - ar_nr_resp[i+mM].ar2 = ar; - if (!gettingMoebius) { - nonce2_count++; - // check if this was the last second nonce we need for std attack - if ( nonce2_count == nonce1_count ) { - // done collecting std test switch to moebius - // first finish incrementing last sample - ar_nr_collected[i+mM]++; - // switch to moebius collection - gettingMoebius = true; - mM = ATTACK_KEY_COUNT; - if (flags & FLAG_RANDOM_NONCE) { - nonce = prand(); - } else { - nonce = nonce*7; - } - break; - } - } else { - moebius_n_count++; - // if we've collected all the nonces we need - finish. - if (nonce1_count == moebius_n_count) finished = true; - } - } - ar_nr_collected[i+mM]++; - } - } - // we found right spot for this nonce stop looking - break; - } - } - } - - // --- crypto - crypto1_word(pcs, nr , 1); - cardRr = ar ^ crypto1_word(pcs, 0, 0); - - // test if auth OK - if (cardRr != prng_successor(nonce, 64)){ - if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - cardRr, prng_successor(nonce, 64)); - // Shouldn't we respond anything here? - // Right now, we don't nack or anything, which causes the - // reader to do a WUPA after a while. /Martin - // -- which is the correct response. /piwi - cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - - //auth successful - ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); - - num_to_bytes(ans, 4, rAUTH_AT); - // --- crypto - EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - LED_C_ON(); - cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - GetTickCount() - authTimer); - break; - } - case MFEMUL_SELECT2:{ - if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - // select all cl2 - 0x95 0x20 - if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { - EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); - break; - } - - // select cl2 card - 0x95 0x70 xxxxxxxxxxxx - if (len == 9 && - (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { - switch(_UID_LEN) { - case 7: - EmSendCmd(rSAKfinal, sizeof(rSAKfinal)); - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); - break; - case 10: - EmSendCmd(rSAK1, sizeof(rSAK1)); - cardSTATE = MFEMUL_SELECT3; - break; - default:break; - } - break; - } - - // i guess there is a command). go into the work state. - if (len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - cardSTATE = MFEMUL_WORK; - //goto lbWORK; - //intentional fall-through to the next case-stmt - } - - case MFEMUL_WORK:{ - if (len == 0) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - - bool encrypted_data = (cardAUTHKEY != 0xFF) ; - - if(encrypted_data) { - // decrypt seqence - mf_crypto1_decrypt(pcs, receivedCmd, len); - } - - if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { - - // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack - if (receivedCmd[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) { - //is this the correct response to an auth on a out of range block? marshmellow - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - break; - } - - authTimer = GetTickCount(); - cardAUTHSC = receivedCmd[1] / 4; // received block num - cardAUTHKEY = receivedCmd[0] - 0x60; - crypto1_destroy(pcs);//Added by martin - crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); - //uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY); - //Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF)); - - if (!encrypted_data) { // first authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - - crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state - num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce - } else { // nested authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); - num_to_bytes(ans, 4, rAUTH_AT); - } - - EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); - cardSTATE = MFEMUL_AUTH1; - break; - } - - // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued - // BUT... ACK --> NACK - if (len == 1 && receivedCmd[0] == CARD_ACK) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - - // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) - if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - break; - } - - if(len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - - if(receivedCmd[0] == 0x30 // read block - || receivedCmd[0] == 0xA0 // write block - || receivedCmd[0] == 0xC0 // inc - || receivedCmd[0] == 0xC1 // dec - || receivedCmd[0] == 0xC2 // restore - || receivedCmd[0] == 0xB0) { // transfer - if (receivedCmd[1] >= 16 * 4) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - break; - } - - if (receivedCmd[1] / 4 != cardAUTHSC) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); - break; - } - } - // read block - if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 4) { - Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); - } - emlGetMem(response, receivedCmd[1], 1); - AppendCrc14443a(response, 16); - mf_crypto1_encrypt(pcs, response, 18, response_par); - EmSendCmdPar(response, 18, response_par); - numReads++; - if(exitAfterNReads > 0 && numReads == exitAfterNReads) { - Dbprintf("%d reads done, exiting", numReads); - finished = true; - } - break; - } - // write block - if (receivedCmd[0] == 0xA0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - cardSTATE = MFEMUL_WRITEBL2; - cardWRBL = receivedCmd[1]; - break; - } - // increment, decrement, restore - if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - if (emlCheckValBl(receivedCmd[1])) { - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - if (receivedCmd[0] == 0xC1) - cardSTATE = MFEMUL_INTREG_INC; - if (receivedCmd[0] == 0xC0) - cardSTATE = MFEMUL_INTREG_DEC; - if (receivedCmd[0] == 0xC2) - cardSTATE = MFEMUL_INTREG_REST; - cardWRBL = receivedCmd[1]; - break; - } - // transfer - if (receivedCmd[0] == 0xB0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - else - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - break; - } - // halt - if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { - LED_B_OFF(); - LED_C_OFF(); - cardSTATE = MFEMUL_HALTED; - if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - break; - } - // RATS - if (receivedCmd[0] == 0xe0) {//RATS - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - // command not allowed - if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - case MFEMUL_WRITEBL2:{ - if (len == 18){ - mf_crypto1_decrypt(pcs, receivedCmd, len); - emlSetMem(receivedCmd, cardWRBL, 1); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - cardSTATE = MFEMUL_WORK; - } else { - cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - } - break; - } - - case MFEMUL_INTREG_INC:{ - mf_crypto1_decrypt(pcs, receivedCmd, len); - memcpy(&ans, receivedCmd, 4); - if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - cardSTATE_TO_IDLE(); - break; - } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - cardINTREG = cardINTREG + ans; - cardSTATE = MFEMUL_WORK; - break; - } - case MFEMUL_INTREG_DEC:{ - mf_crypto1_decrypt(pcs, receivedCmd, len); - memcpy(&ans, receivedCmd, 4); - if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - cardSTATE_TO_IDLE(); - break; - } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - cardINTREG = cardINTREG - ans; - cardSTATE = MFEMUL_WORK; - break; - } - case MFEMUL_INTREG_REST:{ - mf_crypto1_decrypt(pcs, receivedCmd, len); - memcpy(&ans, receivedCmd, 4); - if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - cardSTATE_TO_IDLE(); - break; - } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); - cardSTATE = MFEMUL_WORK; - break; - } - } - button_pushed = BUTTON_PRESS(); - } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LEDsoff(); - - if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { - for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { - if (ar_nr_collected[i] == 2) { - Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); - - if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK - //Send the collected ar_nr in the response - cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp)); - } -} - //----------------------------------------------------------------------------- // MIFARE sniffer.