]> git.zerfleddert.de Git - proxmark3-svn/commitdiff
fix hf mf sim (#812)
authorpwpiwi <pwpiwi@users.noreply.github.com>
Fri, 19 Apr 2019 08:22:10 +0000 (10:22 +0200)
committerGitHub <noreply@github.com>
Fri, 19 Apr 2019 08:22:10 +0000 (10:22 +0200)
* fix parity encryption (thanks to Eloff, http://www.proxmark.org/forum/viewtopic.php?id=6347)
* add support to simulate Mifare Mini, Mifare 2K and Mifare 4K
* change to standard LED handling (A: PM is working, B: reader is sending, C: tag is responding, D: HF field is on)
* NAK on unknown commands
* allow unencrypted HALT
* don't display messages during simulation (or we will miss next reader command)
* use DMA to receive reader command
* switch earlier from send to listen mode
* move ADC initializer to iso14443_setup
* remove remainders of incomplete Mifare 10Byte UID simulation
* show 'short' bytes (7Bits or 8Bits without parity) in 'hf list mf' and 'hf list 14a'
* whitespace

14 files changed:
CHANGELOG.md
armsrc/BigBuf.c
armsrc/BigBuf.h
armsrc/appmain.c
armsrc/apps.h
armsrc/iso14443a.c
armsrc/iso14443a.h
armsrc/mifaresim.c
armsrc/mifaresim.h
armsrc/mifareutil.c
armsrc/mifareutil.h
client/cmdhflist.c
client/cmdhfmf.c
include/usb_cmd.h

index adff821fa083548c2e05c15680ebf0f6a5460317..2a8ee1fee27d164ff88241a65fc1739895631d41 100644 (file)
@@ -30,6 +30,7 @@ This project uses the changelog in accordance with [keepchangelog](http://keepac
 - Added `hf plot` (piwi)
 - Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok)
 - Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok)
 - Added `hf plot` (piwi)
 - Added `hf mfp mad` `hf mf mad` parsing MAD1 and MAD2 (Merlok)
 - Added `hf mfp ndef` `hf mf ndef` parsing NDEF records (Merlok)
+- Added Mifare Mini, Mifare 2K and 4K support to `hf mf sim` (piwi)
 - Added Legic detection to `hf search` (dnet)
 
 ## [v3.1.0][2018-10-10]
 - Added Legic detection to `hf search` (dnet)
 
 ## [v3.1.0][2018-10-10]
index e2f513115277b6a3b6bfadd9bae4b23b5a67e0dd..ce97e41f0dc4c15de703896c9424c49841cd9078 100644 (file)
@@ -21,8 +21,8 @@
 /* BigBuf memory layout:
 Pointer to highest available memory: BigBuf_hi
 
 /* BigBuf memory layout:
 Pointer to highest available memory: BigBuf_hi
 
-    high BIGBUF_SIZE
-    reserved = BigBuf_malloc()  subtracts amount from BigBuf_hi,   
+       high BIGBUF_SIZE
+       reserved = BigBuf_malloc()  subtracts amount from BigBuf_hi,
        low  0x00
 */
 
        low  0x00
 */
 
@@ -39,6 +39,7 @@ static uint8_t *emulator_memory = NULL;
 static uint32_t traceLen = 0;
 static bool tracing = true;
 
 static uint32_t traceLen = 0;
 static bool tracing = true;
 
+
 // get the address of BigBuf
 uint8_t *BigBuf_get_addr(void)
 {
 // get the address of BigBuf
 uint8_t *BigBuf_get_addr(void)
 {
@@ -53,7 +54,7 @@ uint8_t *BigBuf_get_EM_addr(void)
        if (emulator_memory == NULL) {
                emulator_memory = BigBuf_malloc(CARD_MEMORY_SIZE);
        }
        if (emulator_memory == NULL) {
                emulator_memory = BigBuf_malloc(CARD_MEMORY_SIZE);
        }
-       
+
        return emulator_memory;
 }
 
        return emulator_memory;
 }
 
@@ -63,17 +64,22 @@ void BigBuf_Clear(void)
 {
        BigBuf_Clear_ext(true);
 }
 {
        BigBuf_Clear_ext(true);
 }
+
+
 // clear ALL of BigBuf
 void BigBuf_Clear_ext(bool verbose)
 {
        memset(BigBuf, 0, BIGBUF_SIZE);
 // clear ALL of BigBuf
 void BigBuf_Clear_ext(bool verbose)
 {
        memset(BigBuf, 0, BIGBUF_SIZE);
-       if (verbose) 
-               Dbprintf("Buffer cleared (%i bytes)",BIGBUF_SIZE);
+       if (verbose)
+               Dbprintf("Buffer cleared (%i bytes)", BIGBUF_SIZE);
 }
 }
+
+
 void BigBuf_Clear_EM(void){
        memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE);
 }
 
 void BigBuf_Clear_EM(void){
        memset(BigBuf_get_EM_addr(), 0, CARD_MEMORY_SIZE);
 }
 
+
 void BigBuf_Clear_keep_EM(void)
 {
        memset(BigBuf, 0, BigBuf_hi);
 void BigBuf_Clear_keep_EM(void)
 {
        memset(BigBuf, 0, BigBuf_hi);
@@ -83,11 +89,11 @@ void BigBuf_Clear_keep_EM(void)
 // at the beginning of BigBuf is always for traces/samples
 uint8_t *BigBuf_malloc(uint16_t chunksize)
 {
 // at the beginning of BigBuf is always for traces/samples
 uint8_t *BigBuf_malloc(uint16_t chunksize)
 {
-       if (BigBuf_hi - chunksize < 0) { 
-               return NULL;                                                    // no memory left
+       if (BigBuf_hi - chunksize < 0) {
+               return NULL;                            // no memory left
        } else {
        } else {
-               chunksize = (chunksize + 3) & 0xfffc;   // round to next multiple of 4
-               BigBuf_hi -= chunksize;                                 // aligned to 4 Byte boundary 
+               chunksize = (chunksize + 3) & 0xfffc;   // round to next multiple of 4
+               BigBuf_hi -= chunksize;                 // aligned to 4 Byte boundary
                return (uint8_t *)BigBuf + BigBuf_hi;
        }
 }
                return (uint8_t *)BigBuf + BigBuf_hi;
        }
 }
@@ -128,18 +134,22 @@ uint16_t BigBuf_max_traceLen(void)
        return BigBuf_hi;
 }
 
        return BigBuf_hi;
 }
 
+
 void clear_trace() {
        traceLen = 0;
 }
 
 void clear_trace() {
        traceLen = 0;
 }
 
+
 void set_tracing(bool enable) {
        tracing = enable;
 }
 
 void set_tracing(bool enable) {
        tracing = enable;
 }
 
+
 bool get_tracing(void) {
        return tracing;
 }
 
 bool get_tracing(void) {
        return tracing;
 }
 
+
 /**
  * Get the number of bytes traced
  * @return
 /**
  * Get the number of bytes traced
  * @return
@@ -149,6 +159,7 @@ uint16_t BigBuf_get_traceLen(void)
        return traceLen;
 }
 
        return traceLen;
 }
 
+
 /**
   This is a function to store traces. All protocols can use this generic tracer-function.
   The traces produced by calling this function can be fetched on the client-side
 /**
   This is a function to store traces. All protocols can use this generic tracer-function.
   The traces produced by calling this function can be fetched on the client-side
@@ -162,14 +173,14 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
 
        uint8_t *trace = BigBuf_get_addr();
 
 
        uint8_t *trace = BigBuf_get_addr();
 
-       uint32_t num_paritybytes = (iLen-1)/8 + 1;      // number of valid paritybytes in *parity
+       uint32_t num_paritybytes = (iLen-1)/8 + 1;  // number of valid paritybytes in *parity
        uint32_t duration = timestamp_end - timestamp_start;
 
        // Return when trace is full
        uint16_t max_traceLen = BigBuf_max_traceLen();
 
        if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
        uint32_t duration = timestamp_end - timestamp_start;
 
        // Return when trace is full
        uint16_t max_traceLen = BigBuf_max_traceLen();
 
        if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
-               tracing = false;        // don't trace any more
+               tracing = false;    // don't trace any more
                return false;
        }
        // Traceformat:
                return false;
        }
        // Traceformat:
@@ -237,7 +248,7 @@ int LogTraceHitag(const uint8_t * btBytes, int iBits, int iSamples, uint32_t dwP
        // Return when trace is full
        if (traceLen + sizeof(rsamples) + sizeof(dwParity) + sizeof(iBits) + iLen > BigBuf_max_traceLen()) {
                return false;
        // Return when trace is full
        if (traceLen + sizeof(rsamples) + sizeof(dwParity) + sizeof(iBits) + iLen > BigBuf_max_traceLen()) {
                return false;
-       }       
+       }
 
        //Hitag traces appear to use this traceformat:
        // 32 bits timestamp (little endian,Highest Bit used as readerToTag flag)
 
        //Hitag traces appear to use this traceformat:
        // 32 bits timestamp (little endian,Highest Bit used as readerToTag flag)
index 0553804444d39f269e9b0422751522737de7f994..00d5145fdb3dac3560e7ee854a17ffa2e9d1196d 100644 (file)
@@ -20,7 +20,7 @@
 #define MAX_PARITY_SIZE                        ((MAX_FRAME_SIZE + 7) / 8)
 #define MAX_MIFARE_FRAME_SIZE  18              // biggest Mifare frame is answer to a read (one block = 16 Bytes) + 2 Bytes CRC
 #define MAX_MIFARE_PARITY_SIZE 3               // need 18 parity bits for the 18 Byte above. 3 Bytes are enough to store these
 #define MAX_PARITY_SIZE                        ((MAX_FRAME_SIZE + 7) / 8)
 #define MAX_MIFARE_FRAME_SIZE  18              // biggest Mifare frame is answer to a read (one block = 16 Bytes) + 2 Bytes CRC
 #define MAX_MIFARE_PARITY_SIZE 3               // need 18 parity bits for the 18 Byte above. 3 Bytes are enough to store these
-#define CARD_MEMORY_SIZE               4096    
+#define CARD_MEMORY_SIZE               4096
 #define DMA_BUFFER_SIZE                128
 
 extern uint8_t *BigBuf_get_addr(void);
 #define DMA_BUFFER_SIZE                128
 
 extern uint8_t *BigBuf_get_addr(void);
index 926ac52ebbb5c362abf98ee1107ce1c2dcbc74c7..37328a506ce5492ba545da5da9b985508ea4e7b0 100644 (file)
@@ -29,6 +29,7 @@
 #include "lfsampling.h"
 #include "BigBuf.h"
 #include "mifareutil.h"
 #include "lfsampling.h"
 #include "BigBuf.h"
 #include "mifareutil.h"
+#include "mifaresim.h"
 #include "pcf7931.h"
 #include "i2c.h"
 #include "hfsnoop.h"
 #include "pcf7931.h"
 #include "i2c.h"
 #include "hfsnoop.h"
@@ -1249,7 +1250,7 @@ void UsbPacketReceived(uint8_t *packet, int len)
                        MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
                        break;
                case CMD_SIMULATE_MIFARE_CARD:
                        MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
                        break;
                case CMD_SIMULATE_MIFARE_CARD:
-                       Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
                        break;
                
                // emulator
                        break;
                
                // emulator
index 5b8516ebd2d8bd1e1ad4d71939e2fd2b29de7b02..72a62628c42038e0b2e6988156622f2986c814ad 100644 (file)
@@ -119,7 +119,6 @@ void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain);
 void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain);
 void MifareChkKeys(uint16_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain);
 void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain);
 void MifareChkKeys(uint16_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain);
-void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain);
 void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareSetDbgLvl(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
 void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
index 2f4baf175d5a413c16252a3f58a0115b7461f853..0ca9873bb4e63224d8a4d26f8bd14650ba0091b1 100644 (file)
@@ -68,7 +68,7 @@ typedef struct {
                // DROP_FIRST_HALF,
                } state;
        uint16_t shiftReg;
                // DROP_FIRST_HALF,
                } state;
        uint16_t shiftReg;
-       int16_t  bitCount;
+       int16_t  bitCount;
        uint16_t len;
        uint16_t byteCntMax;
        uint16_t posCnt;
        uint16_t len;
        uint16_t byteCntMax;
        uint16_t posCnt;
@@ -77,7 +77,7 @@ typedef struct {
        uint8_t  parityLen;
        uint32_t fourBits;
        uint32_t startTime, endTime;
        uint8_t  parityLen;
        uint32_t fourBits;
        uint32_t startTime, endTime;
-    uint8_t *output;
+       uint8_t *output;
        uint8_t *parity;
 } tUart;
 
        uint8_t *parity;
 } tUart;
 
@@ -94,8 +94,8 @@ static uint8_t iso14_pcb_blocknum = 0;
 //
 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
 #define REQUEST_GUARD_TIME (7000/16 + 1)
 //
 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
 #define REQUEST_GUARD_TIME (7000/16 + 1)
-// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles 
-#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) 
+// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
+#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
 // bool LastCommandWasRequest = false;
 
 //
 // bool LastCommandWasRequest = false;
 
 //
@@ -107,8 +107,8 @@ static uint8_t iso14_pcb_blocknum = 0;
 // 8 ticks until bit_to_arm is assigned from curbit
 // 8*16 ticks for the transfer from FPGA to ARM
 // 4*16 ticks until we measure the time
 // 8 ticks until bit_to_arm is assigned from curbit
 // 8*16 ticks for the transfer from FPGA to ARM
 // 4*16 ticks until we measure the time
-// - 8*16 ticks because we measure the time of the previous transfer 
-#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) 
+// - 8*16 ticks because we measure the time of the previous transfer
+#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
 
 // When the PM acts as a reader and is sending, it takes
 // 4*16 ticks until we can write data to the sending hold register
 
 // When the PM acts as a reader and is sending, it takes
 // 4*16 ticks until we can write data to the sending hold register
@@ -125,10 +125,10 @@ static uint8_t iso14_pcb_blocknum = 0;
 // 8 ticks until the SSC samples the first data
 // 7*16 ticks to complete the transfer from FPGA to ARM
 // 8 ticks until the next ssp_clk rising edge
 // 8 ticks until the SSC samples the first data
 // 7*16 ticks to complete the transfer from FPGA to ARM
 // 8 ticks until the next ssp_clk rising edge
-// 4*16 ticks until we measure the time 
-// - 8*16 ticks because we measure the time of the previous transfer 
+// 4*16 ticks until we measure the time
+// - 8*16 ticks because we measure the time of the previous transfer
 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
+
 // The FPGA will report its internal sending delay in
 uint16_t FpgaSendQueueDelay;
 // the 5 first bits are the number of bits buffered in mod_sig_buf
 // The FPGA will report its internal sending delay in
 uint16_t FpgaSendQueueDelay;
 // the 5 first bits are the number of bits buffered in mod_sig_buf
@@ -150,16 +150,16 @@ uint16_t FpgaSendQueueDelay;
 // 8 ticks (on average) until the result is stored in to_arm
 // + the delays in transferring data - which is the same for
 // sniffing reader and tag data and therefore not relevant
 // 8 ticks (on average) until the result is stored in to_arm
 // + the delays in transferring data - which is the same for
 // sniffing reader and tag data and therefore not relevant
-#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) 
+#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
+
 // When the PM acts as sniffer and is receiving reader data, it takes
 // When the PM acts as sniffer and is receiving reader data, it takes
-// 2 ticks delay in analogue RF receiver (for the falling edge of the 
+// 2 ticks delay in analogue RF receiver (for the falling edge of the
 // start bit, which marks the start of the communication)
 // 3 ticks A/D conversion
 // 8 ticks on average until the data is stored in to_arm.
 // + the delays in transferring data - which is the same for
 // sniffing reader and tag data and therefore not relevant
 // start bit, which marks the start of the communication)
 // 3 ticks A/D conversion
 // 8 ticks on average until the data is stored in to_arm.
 // + the delays in transferring data - which is the same for
 // sniffing reader and tag data and therefore not relevant
-#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) 
+#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
 
 //variables used for timing purposes:
 //these are in ssp_clk cycles:
 
 //variables used for timing purposes:
 //these are in ssp_clk cycles:
@@ -177,12 +177,12 @@ static uint32_t LastProxToAirDuration;
 // Sequence X: 00001100 drop after half a period
 // Sequence Y: 00000000 no drop
 // Sequence Z: 11000000 drop at start
 // Sequence X: 00001100 drop after half a period
 // Sequence Y: 00000000 no drop
 // Sequence Z: 11000000 drop at start
-#define        SEC_D 0xf0
-#define        SEC_E 0x0f
-#define        SEC_F 0x00
-#define        SEC_X 0x0c
-#define        SEC_Y 0x00
-#define        SEC_Z 0xc0
+#define SEC_D 0xf0
+#define SEC_E 0x0f
+#define SEC_F 0x00
+#define SEC_X 0x0c
+#define SEC_Y 0x00
+#define SEC_Z 0xc0
 
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
 
 void iso14a_set_trigger(bool enable) {
        trigger = enable;
@@ -214,8 +214,8 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
                // Generate the parity bits
                parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
                if (paritybit_cnt == 7) {
                // Generate the parity bits
                parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
                if (paritybit_cnt == 7) {
-                       par[paritybyte_cnt] = parityBits;       // save 8 Bits parity
-                       parityBits = 0;                                         // and advance to next Parity Byte
+                       par[paritybyte_cnt] = parityBits;   // save 8 Bits parity
+                       parityBits = 0;                     // and advance to next Parity Byte
                        paritybyte_cnt++;
                        paritybit_cnt = 0;
                } else {
                        paritybyte_cnt++;
                        paritybit_cnt = 0;
                } else {
@@ -225,7 +225,7 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
 
        // save remaining parity bits
        par[paritybyte_cnt] = parityBits;
 
        // save remaining parity bits
        par[paritybyte_cnt] = parityBits;
-       
+
 }
 
 void AppendCrc14443a(uint8_t* data, int len)
 }
 
 void AppendCrc14443a(uint8_t* data, int len)
@@ -244,14 +244,14 @@ static void AppendCrc14443b(uint8_t* data, int len)
 //=============================================================================
 // Basics:
 // This decoder is used when the PM3 acts as a tag.
 //=============================================================================
 // Basics:
 // This decoder is used when the PM3 acts as a tag.
-// The reader will generate "pauses" by temporarily switching of the field. 
-// At the PM3 antenna we will therefore measure a modulated antenna voltage. 
+// The reader will generate "pauses" by temporarily switching of the field.
+// At the PM3 antenna we will therefore measure a modulated antenna voltage.
 // The FPGA does a comparison with a threshold and would deliver e.g.:
 // ........  1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1  .......
 // The Miller decoder needs to identify the following sequences:
 // The FPGA does a comparison with a threshold and would deliver e.g.:
 // ........  1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1  .......
 // The Miller decoder needs to identify the following sequences:
-// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated:        pause at beginning - Sequence Z ("start of communication" or a "0")
-// 8 ticks without a modulation:                                                                       no pause - Sequence Y (a "0" or "end of communication" or "no information")
-// 4 ticks unmodulated followed by 2 (or 3) ticks pause:                       pause in second half - Sequence X (a "1")
+// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated:     pause at beginning - Sequence Z ("start of communication" or a "0")
+// 8 ticks without a modulation:                                    no pause - Sequence Y (a "0" or "end of communication" or "no information")
+// 4 ticks unmodulated followed by 2 (or 3) ticks pause:            pause in second half - Sequence X (a "1")
 // Note 1: the bitstream may start at any time. We therefore need to sync.
 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
 //-----------------------------------------------------------------------------
 // Note 1: the bitstream may start at any time. We therefore need to sync.
 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
 //-----------------------------------------------------------------------------
@@ -274,19 +274,19 @@ static void UartReset()
 {
        Uart.state = STATE_UNSYNCD;
        Uart.bitCount = 0;
 {
        Uart.state = STATE_UNSYNCD;
        Uart.bitCount = 0;
-       Uart.len = 0;                                           // number of decoded data bytes
-       Uart.parityLen = 0;                                     // number of decoded parity bytes
-       Uart.shiftReg = 0;                                      // shiftreg to hold decoded data bits
-       Uart.parityBits = 0;                            // holds 8 parity bits
-       Uart.startTime = 0;
-       Uart.endTime = 0;
+       Uart.len = 0;                       // number of decoded data bytes
+       Uart.parityLen = 0;                 // number of decoded parity bytes
+       Uart.shiftReg = 0;                  // shiftreg to hold decoded data bits
+       Uart.parityBits = 0;                // holds 8 parity bits
 }
 
 static void UartInit(uint8_t *data, uint8_t *parity)
 {
        Uart.output = data;
        Uart.parity = parity;
 }
 
 static void UartInit(uint8_t *data, uint8_t *parity)
 {
        Uart.output = data;
        Uart.parity = parity;
-       Uart.fourBits = 0x00000000;                     // clear the buffer for 4 Bits
+       Uart.fourBits = 0x00000000;         // clear the buffer for 4 Bits
+       Uart.startTime = 0;
+       Uart.endTime = 0;
        UartReset();
 }
 
        UartReset();
 }
 
@@ -295,17 +295,17 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
        Uart.fourBits = (Uart.fourBits << 8) | bit;
 {
 
        Uart.fourBits = (Uart.fourBits << 8) | bit;
-       
-       if (Uart.state == STATE_UNSYNCD) {                                                                                      // not yet synced
-       
-               Uart.syncBit = 9999;                                                                                                    // not set
+
+       if (Uart.state == STATE_UNSYNCD) {                                          // not yet synced
+
+               Uart.syncBit = 9999;                                                    // not set
                // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
                // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
                // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
                // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
-               // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern 
+               // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
                // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
                // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
-               #define ISO14443A_STARTBIT_MASK         0x07FFEF80                                                      // mask is    00000111 11111111 11101111 10000000
-               #define ISO14443A_STARTBIT_PATTERN      0x07FF8F80                                                      // pattern is 00000111 11111111 10001111 10000000
-               if              ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+               #define ISO14443A_STARTBIT_MASK     0x07FFEF80                          // mask is    00000111 11111111 11101111 10000000
+               #define ISO14443A_STARTBIT_PATTERN  0x07FF8F80                          // pattern is 00000111 11111111 10001111 10000000
+               if      ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
@@ -314,7 +314,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
 
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
                else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
 
-               if (Uart.syncBit != 9999) {                                                                                             // found a sync bit
+               if (Uart.syncBit != 9999) {                                             // found a sync bit
                        Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                        Uart.startTime -= Uart.syncBit;
                        Uart.endTime = Uart.startTime;
                        Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                        Uart.startTime -= Uart.syncBit;
                        Uart.endTime = Uart.startTime;
@@ -324,97 +324,97 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 
        } else {
 
 
        } else {
 
-               if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {                 
-                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation in both halves - error
+               if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {     // Modulation in both halves - error
                                LED_B_OFF();
                                UartReset();
                                LED_B_OFF();
                                UartReset();
-                       } else {                                                                                                                        // Modulation in first half = Sequence Z = logic "0"
-                               if (Uart.state == STATE_MILLER_X) {                                                             // error - must not follow after X
+                       } else {                                                            // Modulation in first half = Sequence Z = logic "0"
+                               if (Uart.state == STATE_MILLER_X) {                             // error - must not follow after X
                                        LED_B_OFF();
                                        UartReset();
                                } else {
                                        Uart.bitCount++;
                                        LED_B_OFF();
                                        UartReset();
                                } else {
                                        Uart.bitCount++;
-                                       Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
+                                       Uart.shiftReg = (Uart.shiftReg >> 1);                       // add a 0 to the shiftreg
                                        Uart.state = STATE_MILLER_Z;
                                        Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
                                        Uart.state = STATE_MILLER_Z;
                                        Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
-                                       if(Uart.bitCount >= 9) {                                                                        // if we decoded a full byte (including parity)
+                                       if(Uart.bitCount >= 9) {                                    // if we decoded a full byte (including parity)
                                                Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
                                                Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
-                                               Uart.parityBits <<= 1;                                                                  // make room for the parity bit
-                                               Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);               // store parity bit
+                                               Uart.parityBits <<= 1;                                  // make room for the parity bit
+                                               Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);       // store parity bit
                                                Uart.bitCount = 0;
                                                Uart.shiftReg = 0;
                                                Uart.bitCount = 0;
                                                Uart.shiftReg = 0;
-                                               if((Uart.len&0x0007) == 0) {                                                    // every 8 data bytes
-                                                       Uart.parity[Uart.parityLen++] = Uart.parityBits;        // store 8 parity bits
+                                               if((Uart.len&0x0007) == 0) {                            // every 8 data bytes
+                                                       Uart.parity[Uart.parityLen++] = Uart.parityBits;    // store 8 parity bits
                                                        Uart.parityBits = 0;
                                                }
                                        }
                                }
                        }
                } else {
                                                        Uart.parityBits = 0;
                                                }
                                        }
                                }
                        }
                } else {
-                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {         // Modulation second half = Sequence X = logic "1"
+                       if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {     // Modulation second half = Sequence X = logic "1"
                                Uart.bitCount++;
                                Uart.bitCount++;
-                               Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;                                   // add a 1 to the shiftreg
+                               Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;                   // add a 1 to the shiftreg
                                Uart.state = STATE_MILLER_X;
                                Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
                                Uart.state = STATE_MILLER_X;
                                Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
-                               if(Uart.bitCount >= 9) {                                                                                // if we decoded a full byte (including parity)
+                               if(Uart.bitCount >= 9) {                                        // if we decoded a full byte (including parity)
                                        Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
                                        Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
-                                       Uart.parityBits <<= 1;                                                                          // make room for the new parity bit
-                                       Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);                       // store parity bit
+                                       Uart.parityBits <<= 1;                                      // make room for the new parity bit
+                                       Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);           // store parity bit
                                        Uart.bitCount = 0;
                                        Uart.shiftReg = 0;
                                        Uart.bitCount = 0;
                                        Uart.shiftReg = 0;
-                                       if ((Uart.len&0x0007) == 0) {                                                           // every 8 data bytes
-                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;                // store 8 parity bits
+                                       if ((Uart.len&0x0007) == 0) {                               // every 8 data bytes
+                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;        // store 8 parity bits
                                                Uart.parityBits = 0;
                                        }
                                }
                                                Uart.parityBits = 0;
                                        }
                                }
-                       } else {                                                                                                                        // no modulation in both halves - Sequence Y
-                               if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) {     // Y after logic "0" - End of Communication
+                       } else {                                                            // no modulation in both halves - Sequence Y
+                               if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
                                        LED_B_OFF();
                                        Uart.state = STATE_UNSYNCD;
                                        LED_B_OFF();
                                        Uart.state = STATE_UNSYNCD;
-                                       Uart.bitCount--;                                                                                        // last "0" was part of EOC sequence
-                                       Uart.shiftReg <<= 1;                                                                            // drop it
-                                       if(Uart.bitCount > 0) {                                                                         // if we decoded some bits
-                                               Uart.shiftReg >>= (9 - Uart.bitCount);                                  // right align them
-                                               Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);               // add last byte to the output
-                                               Uart.parityBits <<= 1;                                                                  // add a (void) parity bit
-                                               Uart.parityBits <<= (8 - (Uart.len&0x0007));                    // left align parity bits
-                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;                // and store it
+                                       Uart.bitCount--;                                            // last "0" was part of EOC sequence
+                                       Uart.shiftReg <<= 1;                                        // drop it
+                                       if(Uart.bitCount > 0) {                                     // if we decoded some bits
+                                               Uart.shiftReg >>= (9 - Uart.bitCount);                  // right align them
+                                               Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);       // add last byte to the output
+                                               Uart.parityBits <<= 1;                                  // add a (void) parity bit
+                                               Uart.parityBits <<= (8 - (Uart.len&0x0007));            // left align parity bits
+                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;        // and store it
                                                return true;
                                                return true;
-                                       } else if (Uart.len & 0x0007) {                                                         // there are some parity bits to store
-                                               Uart.parityBits <<= (8 - (Uart.len&0x0007));                    // left align remaining parity bits
-                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;                // and store them
+                                       } else if (Uart.len & 0x0007) {                             // there are some parity bits to store
+                                               Uart.parityBits <<= (8 - (Uart.len&0x0007));            // left align remaining parity bits
+                                               Uart.parity[Uart.parityLen++] = Uart.parityBits;        // and store them
                                        }
                                        if (Uart.len) {
                                        }
                                        if (Uart.len) {
-                                               return true;                                                                                    // we are finished with decoding the raw data sequence
+                                               return true;                                            // we are finished with decoding the raw data sequence
                                        } else {
                                        } else {
-                                               UartReset();                                                                                    // Nothing received - start over
+                                               UartReset();                                            // Nothing received - start over
                                        }
                                }
                                        }
                                }
-                               if (Uart.state == STATE_START_OF_COMMUNICATION) {                               // error - must not follow directly after SOC
+                               if (Uart.state == STATE_START_OF_COMMUNICATION) {               // error - must not follow directly after SOC
                                        LED_B_OFF();
                                        UartReset();
                                        LED_B_OFF();
                                        UartReset();
-                               } else {                                                                                                                // a logic "0"
+                               } else {                                                        // a logic "0"
                                        Uart.bitCount++;
                                        Uart.bitCount++;
-                                       Uart.shiftReg = (Uart.shiftReg >> 1);                                           // add a 0 to the shiftreg
+                                       Uart.shiftReg = (Uart.shiftReg >> 1);                       // add a 0 to the shiftreg
                                        Uart.state = STATE_MILLER_Y;
                                        Uart.state = STATE_MILLER_Y;
-                                       if(Uart.bitCount >= 9) {                                                                        // if we decoded a full byte (including parity)
+                                       if(Uart.bitCount >= 9) {                                    // if we decoded a full byte (including parity)
                                                Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
                                                Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
-                                               Uart.parityBits <<= 1;                                                                  // make room for the parity bit
-                                               Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);               // store parity bit
+                                               Uart.parityBits <<= 1;                                  // make room for the parity bit
+                                               Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01);       // store parity bit
                                                Uart.bitCount = 0;
                                                Uart.shiftReg = 0;
                                                Uart.bitCount = 0;
                                                Uart.shiftReg = 0;
-                                               if ((Uart.len&0x0007) == 0) {                                                   // every 8 data bytes
-                                                       Uart.parity[Uart.parityLen++] = Uart.parityBits;        // store 8 parity bits
+                                               if ((Uart.len&0x0007) == 0) {                           // every 8 data bytes
+                                                       Uart.parity[Uart.parityLen++] = Uart.parityBits;    // store 8 parity bits
                                                        Uart.parityBits = 0;
                                                }
                                        }
                                }
                        }
                }
                                                        Uart.parityBits = 0;
                                                }
                                        }
                                }
                        }
                }
-                       
-       } 
 
 
-    return false;      // not finished yet, need more data
+       }
+
+       return false;   // not finished yet, need more data
 }
 
 
 }
 
 
@@ -428,10 +428,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
 // The Manchester decoder needs to identify the following sequences:
 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
 // The Manchester decoder needs to identify the following sequences:
-// 4 ticks modulated followed by 4 ticks unmodulated:  Sequence D = 1 (also used as "start of communication")
-// 4 ticks unmodulated followed by 4 ticks modulated:  Sequence E = 0
-// 8 ticks unmodulated:                                                                        Sequence F = end of communication
-// 8 ticks modulated:                                                                  A collision. Save the collision position and treat as Sequence D
+// 4 ticks modulated followed by 4 ticks unmodulated:   Sequence D = 1 (also used as "start of communication")
+// 4 ticks unmodulated followed by 4 ticks modulated:   Sequence E = 0
+// 8 ticks unmodulated:                                 Sequence F = end of communication
+// 8 ticks modulated:                                   A collision. Save the collision position and treat as Sequence D
 // Note 1: the bitstream may start at any time. We therefore need to sync.
 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
 static tDemod Demod;
 // Note 1: the bitstream may start at any time. We therefore need to sync.
 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
 static tDemod Demod;
@@ -450,12 +450,12 @@ const bool Mod_Manchester_LUT[] = {
 static void DemodReset()
 {
        Demod.state = DEMOD_UNSYNCD;
 static void DemodReset()
 {
        Demod.state = DEMOD_UNSYNCD;
-       Demod.len = 0;                                          // number of decoded data bytes
+       Demod.len = 0;                      // number of decoded data bytes
        Demod.parityLen = 0;
        Demod.parityLen = 0;
-       Demod.shiftReg = 0;                                     // shiftreg to hold decoded data bits
-       Demod.parityBits = 0;                           // 
-       Demod.collisionPos = 0;                         // Position of collision bit
-       Demod.twoBits = 0xffff;                         // buffer for 2 Bits
+       Demod.shiftReg = 0;                 // shiftreg to hold decoded data bits
+       Demod.parityBits = 0;               //
+       Demod.collisionPos = 0;             // Position of collision bit
+       Demod.twoBits = 0xffff;             // buffer for 2 Bits
        Demod.highCnt = 0;
        Demod.startTime = 0;
        Demod.endTime = 0;
        Demod.highCnt = 0;
        Demod.startTime = 0;
        Demod.endTime = 0;
@@ -473,18 +473,18 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 {
 
        Demod.twoBits = (Demod.twoBits << 8) | bit;
 {
 
        Demod.twoBits = (Demod.twoBits << 8) | bit;
-       
+
        if (Demod.state == DEMOD_UNSYNCD) {
 
        if (Demod.state == DEMOD_UNSYNCD) {
 
-               if (Demod.highCnt < 2) {                                                                                        // wait for a stable unmodulated signal
+               if (Demod.highCnt < 2) {                                            // wait for a stable unmodulated signal
                        if (Demod.twoBits == 0x0000) {
                                Demod.highCnt++;
                        } else {
                                Demod.highCnt = 0;
                        }
                } else {
                        if (Demod.twoBits == 0x0000) {
                                Demod.highCnt++;
                        } else {
                                Demod.highCnt = 0;
                        }
                } else {
-                       Demod.syncBit = 0xFFFF;                 // not set
-                       if              ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; 
+                       Demod.syncBit = 0xFFFF;         // not set
+                       if      ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
                        else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
                        else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
                        else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
                        else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
                        else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
                        else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
@@ -495,7 +495,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
                        if (Demod.syncBit != 0xFFFF) {
                                Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                                Demod.startTime -= Demod.syncBit;
                        if (Demod.syncBit != 0xFFFF) {
                                Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
                                Demod.startTime -= Demod.syncBit;
-                               Demod.bitCount = offset;                        // number of decoded data bits
+                               Demod.bitCount = offset;            // number of decoded data bits
                                Demod.state = DEMOD_MANCHESTER_DATA;
                                LED_C_ON();
                        }
                                Demod.state = DEMOD_MANCHESTER_DATA;
                                LED_C_ON();
                        }
@@ -503,66 +503,66 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 
        } else {
 
 
        } else {
 
-               if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) {            // modulation in first half
-                       if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) {    // ... and in second half = collision
+               if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) {        // modulation in first half
+                       if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) {    // ... and in second half = collision
                                if (!Demod.collisionPos) {
                                        Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
                                }
                                if (!Demod.collisionPos) {
                                        Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
                                }
-                       }                                                                                                                       // modulation in first half only - Sequence D = 1
+                       }                                                           // modulation in first half only - Sequence D = 1
                        Demod.bitCount++;
                        Demod.bitCount++;
-                       Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100;                         // in both cases, add a 1 to the shiftreg
-                       if(Demod.bitCount == 9) {                                                                       // if we decoded a full byte (including parity)
+                       Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100;             // in both cases, add a 1 to the shiftreg
+                       if(Demod.bitCount == 9) {                                   // if we decoded a full byte (including parity)
                                Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
                                Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
-                               Demod.parityBits <<= 1;                                                                 // make room for the parity bit
-                               Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01);     // store parity bit
+                               Demod.parityBits <<= 1;                                 // make room for the parity bit
+                               Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01);     // store parity bit
                                Demod.bitCount = 0;
                                Demod.shiftReg = 0;
                                Demod.bitCount = 0;
                                Demod.shiftReg = 0;
-                               if((Demod.len&0x0007) == 0) {                                                   // every 8 data bytes
-                                       Demod.parity[Demod.parityLen++] = Demod.parityBits;     // store 8 parity bits
+                               if((Demod.len&0x0007) == 0) {                           // every 8 data bytes
+                                       Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
                                        Demod.parityBits = 0;
                                }
                        }
                        Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
                                        Demod.parityBits = 0;
                                }
                        }
                        Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
-               } else {                                                                                                                // no modulation in first half
-                       if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) {    // and modulation in second half = Sequence E = 0
+               } else {                                                        // no modulation in first half
+                       if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) {    // and modulation in second half = Sequence E = 0
                                Demod.bitCount++;
                                Demod.bitCount++;
-                               Demod.shiftReg = (Demod.shiftReg >> 1);                                 // add a 0 to the shiftreg
-                               if(Demod.bitCount >= 9) {                                                               // if we decoded a full byte (including parity)
+                               Demod.shiftReg = (Demod.shiftReg >> 1);                 // add a 0 to the shiftreg
+                               if(Demod.bitCount >= 9) {                               // if we decoded a full byte (including parity)
                                        Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
                                        Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
-                                       Demod.parityBits <<= 1;                                                         // make room for the new parity bit
+                                       Demod.parityBits <<= 1;                             // make room for the new parity bit
                                        Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
                                        Demod.bitCount = 0;
                                        Demod.shiftReg = 0;
                                        Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
                                        Demod.bitCount = 0;
                                        Demod.shiftReg = 0;
-                                       if ((Demod.len&0x0007) == 0) {                                          // every 8 data bytes
-                                               Demod.parity[Demod.parityLen++] = Demod.parityBits;     // store 8 parity bits1
+                                       if ((Demod.len&0x0007) == 0) {                      // every 8 data bytes
+                                               Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
                                                Demod.parityBits = 0;
                                        }
                                }
                                Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
                                                Demod.parityBits = 0;
                                        }
                                }
                                Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
-                       } else {                                                                                                        // no modulation in both halves - End of communication
+                       } else {                                                    // no modulation in both halves - End of communication
                                LED_C_OFF();
                                LED_C_OFF();
-                               if(Demod.bitCount > 0) {                                                                // there are some remaining data bits
-                                       Demod.shiftReg >>= (9 - Demod.bitCount);                        // right align the decoded bits
-                                       Demod.output[Demod.len++] = Demod.shiftReg & 0xff;      // and add them to the output
-                                       Demod.parityBits <<= 1;                                                         // add a (void) parity bit
-                                       Demod.parityBits <<= (8 - (Demod.len&0x0007));          // left align remaining parity bits
-                                       Demod.parity[Demod.parityLen++] = Demod.parityBits;     // and store them
+                               if(Demod.bitCount > 0) {                                // there are some remaining data bits
+                                       Demod.shiftReg >>= (9 - Demod.bitCount);            // right align the decoded bits
+                                       Demod.output[Demod.len++] = Demod.shiftReg & 0xff;  // and add them to the output
+                                       Demod.parityBits <<= 1;                             // add a (void) parity bit
+                                       Demod.parityBits <<= (8 - (Demod.len&0x0007));      // left align remaining parity bits
+                                       Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
                                        return true;
                                        return true;
-                               } else if (Demod.len & 0x0007) {                                                // there are some parity bits to store
-                                       Demod.parityBits <<= (8 - (Demod.len&0x0007));          // left align remaining parity bits
-                                       Demod.parity[Demod.parityLen++] = Demod.parityBits;     // and store them
+                               } else if (Demod.len & 0x0007) {                        // there are some parity bits to store
+                                       Demod.parityBits <<= (8 - (Demod.len&0x0007));      // left align remaining parity bits
+                                       Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
                                }
                                if (Demod.len) {
                                }
                                if (Demod.len) {
-                                       return true;                                                                            // we are finished with decoding the raw data sequence
-                               } else {                                                                                                // nothing received. Start over
+                                       return true;                                        // we are finished with decoding the raw data sequence
+                               } else {                                                // nothing received. Start over
                                        DemodReset();
                                }
                        }
                }
                                        DemodReset();
                                }
                        }
                }
-                       
-       } 
 
 
-    return false;      // not finished yet, need more data
+       }
+
+       return false;   // not finished yet, need more data
 }
 
 //=============================================================================
 }
 
 //=============================================================================
@@ -579,7 +579,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // param:
        // bit 0 - trigger from first card answer
        // bit 1 - trigger from first reader 7-bit request
        // param:
        // bit 0 - trigger from first card answer
        // bit 1 - trigger from first reader 7-bit request
-       
+
        LEDsoff();
        LED_A_ON();
 
        LEDsoff();
        LED_A_ON();
 
@@ -592,11 +592,11 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        // The command (reader -> tag) that we're receiving.
        uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
        uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
        // The command (reader -> tag) that we're receiving.
        uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
        uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
-       
+
        // The response (tag -> reader) that we're receiving.
        uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
        uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
        // The response (tag -> reader) that we're receiving.
        uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
        uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
-       
+
        // The DMA buffer, used to stream samples from the FPGA
        uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 
        // The DMA buffer, used to stream samples from the FPGA
        uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 
@@ -610,26 +610,26 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
        int dataLen = 0;
        bool TagIsActive = false;
        bool ReaderIsActive = false;
        int dataLen = 0;
        bool TagIsActive = false;
        bool ReaderIsActive = false;
-       
+
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
        // Set up the demodulator for tag -> reader responses.
        DemodInit(receivedResponse, receivedResponsePar);
-       
+
        // Set up the demodulator for the reader -> tag commands
        UartInit(receivedCmd, receivedCmdPar);
        // Set up the demodulator for the reader -> tag commands
        UartInit(receivedCmd, receivedCmdPar);
-       
+
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
        // Setup and start DMA.
        FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
-       
+
        // We won't start recording the frames that we acquire until we trigger;
        // a good trigger condition to get started is probably when we see a
        // response from the tag.
        // triggered == false -- to wait first for card
        // We won't start recording the frames that we acquire until we trigger;
        // a good trigger condition to get started is probably when we see a
        // response from the tag.
        // triggered == false -- to wait first for card
-       bool triggered = !(param & 0x03); 
-       
+       bool triggered = !(param & 0x03);
+
        // And now we loop, receiving samples.
        // And now we loop, receiving samples.
-       for(uint32_t rsamples = 0; true; ) {
+       for (uint32_t rsamples = 0; true; ) {
 
 
-               if(BUTTON_PRESS()) {
+               if (BUTTON_PRESS()) {
                        DbpString("cancelled by button");
                        break;
                }
                        DbpString("cancelled by button");
                        break;
                }
@@ -665,9 +665,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                        AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
                }
 
                        AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
                }
 
-               if (rsamples & 0x01) {                          // Need two samples to feed Miller and Manchester-Decoder
+               if (rsamples & 0x01) {              // Need two samples to feed Miller and Manchester-Decoder
 
 
-                       if(!TagIsActive) {              // no need to try decoding reader data if the tag is sending
+                       if(!TagIsActive) {      // no need to try decoding reader data if the tag is sending
                                uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
                                if (MillerDecoding(readerdata, (rsamples-1)*4)) {
                                        // check - if there is a short 7bit request from reader
                                uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
                                if (MillerDecoding(readerdata, (rsamples-1)*4)) {
                                        // check - if there is a short 7bit request from reader
@@ -675,11 +675,11 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                                triggered = true;
                                        }
                                        if(triggered) {
                                                triggered = true;
                                        }
                                        if(triggered) {
-                                               if (!LogTrace(receivedCmd, 
-                                                                               Uart.len, 
+                                               if (!LogTrace(receivedCmd,
+                                                                               Uart.len,
                                                                                Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
                                                                                Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
                                                                                Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
                                                                                Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
-                                                                               Uart.parity, 
+                                                                               Uart.parity,
                                                                                true)) break;
                                        }
                                        /* And ready to receive another command. */
                                                                                true)) break;
                                        }
                                        /* And ready to receive another command. */
@@ -691,12 +691,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                ReaderIsActive = (Uart.state != STATE_UNSYNCD);
                        }
 
                                ReaderIsActive = (Uart.state != STATE_UNSYNCD);
                        }
 
-                       if (!ReaderIsActive) {          // no need to try decoding tag data if the reader is sending - and we cannot afford the time
+                       if (!ReaderIsActive) {      // no need to try decoding tag data if the reader is sending - and we cannot afford the time
                                uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
                                if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
                                uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
                                if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
-                                       if (!LogTrace(receivedResponse, 
-                                                                       Demod.len, 
-                                                                       Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 
+                                       if (!LogTrace(receivedResponse,
+                                                                       Demod.len,
+                                                                       Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
                                                                        Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
                                                                        Demod.parity,
                                                                        false)) break;
                                                                        Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
                                                                        Demod.parity,
                                                                        false)) break;
@@ -705,7 +705,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
                                        DemodReset();
                                        // And reset the Miller decoder including itS (now outdated) input buffer
                                        UartInit(receivedCmd, receivedCmdPar);
                                        DemodReset();
                                        // And reset the Miller decoder including itS (now outdated) input buffer
                                        UartInit(receivedCmd, receivedCmdPar);
-                               } 
+                               }
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                        }
                }
                                TagIsActive = (Demod.state != DEMOD_UNSYNCD);
                        }
                }
@@ -742,16 +742,16 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par
        ToSendStuffBit(0);
        ToSendStuffBit(0);
        ToSendStuffBit(0);
        ToSendStuffBit(0);
        ToSendStuffBit(0);
        ToSendStuffBit(0);
-       
+
        // Send startbit
        ToSend[++ToSendMax] = SEC_D;
        LastProxToAirDuration = 8 * ToSendMax - 4;
 
        // Send startbit
        ToSend[++ToSendMax] = SEC_D;
        LastProxToAirDuration = 8 * ToSendMax - 4;
 
-       for(uint16_t i = 0; i < len; i++) {
+       for (uint16_t i = 0; i < len; i++) {
                uint8_t b = cmd[i];
 
                // Data bits
                uint8_t b = cmd[i];
 
                // Data bits
-               for(uint16_t j = 0; j < 8; j++) {
+               for (uint16_t j = 0; j < 8; j++) {
                        if(b & 1) {
                                ToSend[++ToSendMax] = SEC_D;
                        } else {
                        if(b & 1) {
                                ToSend[++ToSendMax] = SEC_D;
                        } else {
@@ -798,7 +798,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd)
        ToSend[++ToSendMax] = SEC_D;
 
        uint8_t b = cmd;
        ToSend[++ToSendMax] = SEC_D;
 
        uint8_t b = cmd;
-       for(i = 0; i < 4; i++) {
+       for (i = 0; i < 4; i++) {
                if(b & 1) {
                        ToSend[++ToSendMax] = SEC_D;
                        LastProxToAirDuration = 8 * ToSendMax - 4;
                if(b & 1) {
                        ToSend[++ToSendMax] = SEC_D;
                        LastProxToAirDuration = 8 * ToSendMax - 4;
@@ -839,7 +839,7 @@ static void FixLastReaderTraceTime(uint32_t tag_StartTime) {
        LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
 }
 
        LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
 }
 
-       
+
 static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
        uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
        uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
 static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
        uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
        uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
@@ -855,39 +855,38 @@ static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Pari
 //-----------------------------------------------------------------------------
 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
 {
 //-----------------------------------------------------------------------------
 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
 {
-    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
-    // only, since we are receiving, not transmitting).
-    // Signal field is off with the appropriate LED
-    LED_D_OFF();
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+       // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+       // only, since we are receiving, not transmitting).
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
 
-    // Now run a `software UART' on the stream of incoming samples.
+       // Now run a `software UART' on the stream of incoming samples.
        UartInit(received, parity);
 
        // clear RXRDY:
        UartInit(received, parity);
 
        // clear RXRDY:
-    uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+       uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+
+       for (;;) {
+               WDT_HIT();
 
 
-    for(;;) {
-        WDT_HIT();
+               if(BUTTON_PRESS()) return false;
 
 
-        if(BUTTON_PRESS()) return false;
-               
-        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-            b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        if(MillerDecoding(b, 0)) {
                                *len = Uart.len;
                                EmLogTraceReader();
                                return true;
                        }
                        if(MillerDecoding(b, 0)) {
                                *len = Uart.len;
                                EmLogTraceReader();
                                return true;
                        }
-               }
-    }
+               }
+       }
 }
 
 
 }
 
 
-static int EmSend4bitEx(uint8_t resp);
 int EmSend4bit(uint8_t resp);
 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
 int EmSend4bit(uint8_t resp);
 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
+int EmSendCmd(uint8_t *resp, uint16_t respLen);
 int EmSendPrecompiledCmd(tag_response_info_t *response_info);
 
 
 int EmSendPrecompiledCmd(tag_response_info_t *response_info);
 
 
@@ -902,32 +901,32 @@ static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t ma
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
        // ----------- +
        //    166 bytes, since every bit that needs to be send costs us a byte
        //
+
+
   // Prepare the tag modulation bits from the message
   GetParity(response_info->response, response_info->response_n, &(response_info->par));
   CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
   // Prepare the tag modulation bits from the message
   GetParity(response_info->response, response_info->response_n, &(response_info->par));
   CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
-  
+
   // Make sure we do not exceed the free buffer space
   if (ToSendMax > max_buffer_size) {
   // Make sure we do not exceed the free buffer space
   if (ToSendMax > max_buffer_size) {
-    Dbprintf("Out of memory, when modulating bits for tag answer:");
-    Dbhexdump(response_info->response_n, response_info->response, false);
-    return false;
+       Dbprintf("Out of memory, when modulating bits for tag answer:");
+       Dbhexdump(response_info->response_n, response_info->response, false);
+       return false;
   }
   }
-  
+
   // Copy the byte array, used for this modulation to the buffer position
   memcpy(response_info->modulation, ToSend, ToSendMax);
   // Copy the byte array, used for this modulation to the buffer position
   memcpy(response_info->modulation, ToSend, ToSendMax);
-  
+
   // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
   response_info->modulation_n = ToSendMax;
   response_info->ProxToAirDuration = LastProxToAirDuration;
   // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
   response_info->modulation_n = ToSendMax;
   response_info->ProxToAirDuration = LastProxToAirDuration;
-  
+
   return true;
 }
 
 
 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
   return true;
 }
 
 
 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
-// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
 // -> need 273 bytes buffer
 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
 // -> need 273 bytes buffer
 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
@@ -936,15 +935,15 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_
 
   // Retrieve and store the current buffer index
   response_info->modulation = *buffer;
 
   // Retrieve and store the current buffer index
   response_info->modulation = *buffer;
-  
+
   // Forward the prepare tag modulation function to the inner function
   if (prepare_tag_modulation(response_info, *max_buffer_size)) {
   // Forward the prepare tag modulation function to the inner function
   if (prepare_tag_modulation(response_info, *max_buffer_size)) {
-    // Update the free buffer offset and the remaining buffer size
-    *buffer += ToSendMax;
+       // Update the free buffer offset and the remaining buffer size
+       *buffer += ToSendMax;
        *max_buffer_size -= ToSendMax;
        *max_buffer_size -= ToSendMax;
-    return true;
+       return true;
   } else {
   } else {
-    return false;
+       return false;
   }
 }
 
   }
 }
 
@@ -958,7 +957,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
        uint8_t response1[2];
 
        // The first response contains the ATQA (note: bytes are transmitted in reverse order).
        uint8_t response1[2];
-       
+
        switch (tagType) {
                case 1: { // MIFARE Classic
                        // Says: I am Mifare 1k - original line
        switch (tagType) {
                case 1: { // MIFARE Classic
                        // Says: I am Mifare 1k - original line
@@ -989,19 +988,19 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                        response1[0] = 0x01;
                        response1[1] = 0x0f;
                        sak = 0x01;
                        response1[0] = 0x01;
                        response1[1] = 0x0f;
                        sak = 0x01;
-               } break;                
+               } break;
                default: {
                        Dbprintf("Error: unkown tagtype (%d)",tagType);
                        return;
                } break;
        }
                default: {
                        Dbprintf("Error: unkown tagtype (%d)",tagType);
                        return;
                } break;
        }
-       
+
        // The second response contains the (mandatory) first 24 bits of the UID
        uint8_t response2[5] = {0x00};
 
        // Check if the uid uses the (optional) part
        uint8_t response2a[5] = {0x00};
        // The second response contains the (mandatory) first 24 bits of the UID
        uint8_t response2[5] = {0x00};
 
        // Check if the uid uses the (optional) part
        uint8_t response2a[5] = {0x00};
-       
+
        if (uid_2nd) {
                response2[0] = 0x88;
                num_to_bytes(uid_1st,3,response2+1);
        if (uid_2nd) {
                response2[0] = 0x88;
                num_to_bytes(uid_1st,3,response2+1);
@@ -1032,8 +1031,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
        uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
        ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
 
        uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
-       uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: 
-       // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, 
+       uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
+       // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
        // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
        // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
        // TC(1) = 0x02: CID supported, NAD not supported
        // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
        // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
        // TC(1) = 0x02: CID supported, NAD not supported
@@ -1062,7 +1061,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                .modulation = dynamic_modulation_buffer,
                .modulation_n = 0
        };
                .modulation = dynamic_modulation_buffer,
                .modulation_n = 0
        };
-  
+
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
@@ -1098,7 +1097,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
        tag_response_info_t* p_response;
 
        LED_A_ON();
        tag_response_info_t* p_response;
 
        LED_A_ON();
-       for(;;) {
+       for (;;) {
                // Clean receive command buffer
                if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
                        DbpString("Button press");
                // Clean receive command buffer
                if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
                        DbpString("Button press");
@@ -1106,32 +1105,32 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                }
 
                p_response = NULL;
                }
 
                p_response = NULL;
-               
+
                // Okay, look at the command now.
                lastorder = order;
                if(receivedCmd[0] == 0x26) { // Received a REQUEST
                        p_response = &responses[0]; order = 1;
                } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
                        p_response = &responses[0]; order = 6;
                // Okay, look at the command now.
                lastorder = order;
                if(receivedCmd[0] == 0x26) { // Received a REQUEST
                        p_response = &responses[0]; order = 1;
                } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
                        p_response = &responses[0]; order = 6;
-               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {   // Received request for UID (cascade 1)
+               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {   // Received request for UID (cascade 1)
                        p_response = &responses[1]; order = 2;
                        p_response = &responses[1]; order = 2;
-               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) {   // Received request for UID (cascade 2)
+               } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) {   // Received request for UID (cascade 2)
                        p_response = &responses[2]; order = 20;
                        p_response = &responses[2]; order = 20;
-               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {   // Received a SELECT (cascade 1)
+               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {   // Received a SELECT (cascade 1)
                        p_response = &responses[3]; order = 3;
                        p_response = &responses[3]; order = 3;
-               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
+               } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {   // Received a SELECT (cascade 2)
                        p_response = &responses[4]; order = 30;
                        p_response = &responses[4]; order = 30;
-               } else if(receivedCmd[0] == 0x30) {     // Received a (plain) READ
-                       EmSendCmdEx(data+(4*receivedCmd[1]),16);
+               } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
+                       EmSendCmd(data+(4*receivedCmd[1]),16);
                        // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
                        // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
                        p_response = NULL;
                        // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
                        // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
                        p_response = NULL;
-               } else if(receivedCmd[0] == 0x50) {     // Received a HALT
+               } else if(receivedCmd[0] == 0x50) { // Received a HALT
                        p_response = NULL;
                        p_response = NULL;
-               } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
+               } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {   // Received an authentication request
                        p_response = &responses[5]; order = 7;
                        p_response = &responses[5]; order = 7;
-               } else if(receivedCmd[0] == 0xE0) {     // Received a RATS request
-                       if (tagType == 1 || tagType == 2) {     // RATS not supported
+               } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
+                       if (tagType == 1 || tagType == 2) { // RATS not supported
                                EmSend4bit(CARD_NACK_NA);
                                p_response = NULL;
                        } else {
                                EmSend4bit(CARD_NACK_NA);
                                p_response = NULL;
                        } else {
@@ -1165,7 +1164,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                  dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
                                  dynamic_response_info.response_n = 2;
                                } break;
                                  dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
                                  dynamic_response_info.response_n = 2;
                                } break;
-                                 
+
                                case 0xBA: { //
                                  memcpy(dynamic_response_info.response,"\xAB\x00",2);
                                  dynamic_response_info.response_n = 2;
                                case 0xBA: { //
                                  memcpy(dynamic_response_info.response,"\xAB\x00",2);
                                  dynamic_response_info.response_n = 2;
@@ -1185,7 +1184,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                        dynamic_response_info.response_n = 0;
                                } break;
                        }
                                        dynamic_response_info.response_n = 0;
                                } break;
                        }
-      
+
                        if (dynamic_response_info.response_n > 0) {
                                // Copy the CID from the reader query
                                dynamic_response_info.response[1] = receivedCmd[1];
                        if (dynamic_response_info.response_n > 0) {
                                // Copy the CID from the reader query
                                dynamic_response_info.response[1] = receivedCmd[1];
@@ -1193,7 +1192,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                                // Add CRC bytes, always used in ISO 14443A-4 compliant cards
                                AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
                                dynamic_response_info.response_n += 2;
                                // Add CRC bytes, always used in ISO 14443A-4 compliant cards
                                AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
                                dynamic_response_info.response_n += 2;
-        
+
                                if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
                                        Dbprintf("Error preparing tag response");
                                        break;
                                if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
                                        Dbprintf("Error preparing tag response");
                                        break;
@@ -1217,7 +1216,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
                if (p_response != NULL) {
                        EmSendPrecompiledCmd(p_response);
                }
                if (p_response != NULL) {
                        EmSendPrecompiledCmd(p_response);
                }
-               
+
                if (!get_tracing()) {
                        Dbprintf("Trace Full. Simulation stopped.");
                        break;
                if (!get_tracing()) {
                        Dbprintf("Trace Full. Simulation stopped.");
                        break;
@@ -1237,7 +1236,7 @@ static void PrepareDelayedTransfer(uint16_t delay)
        uint8_t bitmask = 0;
        uint8_t bits_to_shift = 0;
        uint8_t bits_shifted = 0;
        uint8_t bitmask = 0;
        uint8_t bits_to_shift = 0;
        uint8_t bits_shifted = 0;
-       
+
        delay &= 0x07;
        if (delay) {
                for (uint16_t i = 0; i < delay; i++) {
        delay &= 0x07;
        if (delay) {
                for (uint16_t i = 0; i < delay; i++) {
@@ -1258,37 +1257,38 @@ static void PrepareDelayedTransfer(uint16_t delay)
 // Transmit the command (to the tag) that was placed in ToSend[].
 // Parameter timing:
 // if NULL: transfer at next possible time, taking into account
 // Transmit the command (to the tag) that was placed in ToSend[].
 // Parameter timing:
 // if NULL: transfer at next possible time, taking into account
-//                     request guard time, startup frame guard time and frame delay time
-// if == 0:    transfer immediately and return time of transfer
+//          request guard time, startup frame guard time and frame delay time
+// if == 0: transfer immediately and return time of transfer
 // if != 0: delay transfer until time specified
 //-------------------------------------------------------------------------------------
 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
 {
 // if != 0: delay transfer until time specified
 //-------------------------------------------------------------------------------------
 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
 {
+       LED_B_ON();
        LED_D_ON();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
 
        uint32_t ThisTransferTime = 0;
 
        if (timing) {
        LED_D_ON();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
 
        uint32_t ThisTransferTime = 0;
 
        if (timing) {
-               if(*timing == 0) {                                                                              // Measure time
+               if(*timing == 0) {                                      // Measure time
                        *timing = (GetCountSspClk() + 8) & 0xfffffff8;
                } else {
                        *timing = (GetCountSspClk() + 8) & 0xfffffff8;
                } else {
-                       PrepareDelayedTransfer(*timing & 0x00000007);           // Delay transfer (fine tuning - up to 7 MF clock ticks)
+                       PrepareDelayedTransfer(*timing & 0x00000007);       // Delay transfer (fine tuning - up to 7 MF clock ticks)
                }
                if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
                }
                if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
-               while(GetCountSspClk() < (*timing & 0xfffffff8));               // Delay transfer (multiple of 8 MF clock ticks)
+               while (GetCountSspClk() < (*timing & 0xfffffff8));      // Delay transfer (multiple of 8 MF clock ticks)
                LastTimeProxToAirStart = *timing;
        } else {
                ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
                LastTimeProxToAirStart = *timing;
        } else {
                ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
-               while(GetCountSspClk() < ThisTransferTime);
+               while (GetCountSspClk() < ThisTransferTime);
                LastTimeProxToAirStart = ThisTransferTime;
        }
                LastTimeProxToAirStart = ThisTransferTime;
        }
-       
+
        // clear TXRDY
        AT91C_BASE_SSC->SSC_THR = SEC_Y;
 
        uint16_t c = 0;
        // clear TXRDY
        AT91C_BASE_SSC->SSC_THR = SEC_Y;
 
        uint16_t c = 0;
-       for(;;) {
+       for (;;) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = cmd[c];
                        c++;
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = cmd[c];
                        c++;
@@ -1297,8 +1297,9 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing
                        }
                }
        }
                        }
                }
        }
-       
+
        NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
        NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
+       LED_B_OFF();
 }
 
 
 }
 
 
@@ -1391,84 +1392,98 @@ static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, cons
 //-----------------------------------------------------------------------------
 int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 {
 //-----------------------------------------------------------------------------
 int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 {
+       uint32_t field_off_time = -1;
+       uint32_t samples = 0;
+       int ret = 0;
+       uint8_t b = 0;;
+       uint8_t dmaBuf[DMA_BUFFER_SIZE];
+       uint8_t *upTo = dmaBuf;
+
        *len = 0;
 
        *len = 0;
 
-       uint32_t timer = 0, vtime = 0;
-       int analogCnt = 0;
-       int analogAVG = 0;
+       // Run a 'software UART' on the stream of incoming samples.
+       UartInit(received, parity);
 
 
-       // Set ADC to read field strength
-       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
-       AT91C_BASE_ADC->ADC_MR =
-                               ADC_MODE_PRESCALE(63) |
-                               ADC_MODE_STARTUP_TIME(1) |
-                               ADC_MODE_SAMPLE_HOLD_TIME(15);
-       AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
        // start ADC
        AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
-       
-       // Run a 'software UART' on the stream of incoming samples.
-       UartInit(received, parity);
 
        // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
 
        // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
-       do {
-               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-                       AT91C_BASE_SSC->SSC_THR = SEC_F;
-                       uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; (void) b;
-               }
-       } while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3));
+       while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ;
 
        // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
        // only, since we are receiving, not transmitting).
 
        // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
        // only, since we are receiving, not transmitting).
-       // Signal field is off with the appropriate LED
-       LED_D_OFF();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
+       // clear receive register, measure time of next transfer
+       uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp;
+       while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
+       uint32_t start_time = GetCountSspClk() & 0xfffffff8;
+
+       // Setup and start DMA.
+       FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
+
        for(;;) {
        for(;;) {
-               WDT_HIT();
+               uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1);
 
 
-               if (BUTTON_PRESS()) return 1;
+               if (behindBy == 0) continue;
 
 
-               // test if the field exists
-               if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
-                       analogCnt++;
-                       analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW];
-                       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
-                       if (analogCnt >= 32) {
-                               if ((MAX_ADC_HF_VOLTAGE_LOW * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
-                                       vtime = GetTickCount();
-                                       if (!timer) timer = vtime;
-                                       // 50ms no field --> card to idle state
-                                       if (vtime - timer > 50) return 2;
-                               } else
-                                       if (timer) timer = 0;
-                               analogCnt = 0;
-                               analogAVG = 0;
+               b = *upTo++;
+
+               if(upTo >= dmaBuf + DMA_BUFFER_SIZE) {                   // we have read all of the DMA buffer content.
+                       upTo = dmaBuf;                                       // start reading the circular buffer from the beginning
+                       if(behindBy > (9*DMA_BUFFER_SIZE/10)) {
+                               Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+                               ret = 1;
+                               break;
                        }
                }
                        }
                }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {        // DMA Counter Register had reached 0, already rotated.
+                       AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;    // refresh the DMA Next Buffer and
+                       AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;      // DMA Next Counter registers
+               }
 
 
-               // receive and test the miller decoding
-        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-            uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       if(MillerDecoding(b, 0)) {
-                               *len = Uart.len;
-                               EmLogTraceReader();
-                               return 0;
+               if (BUTTON_PRESS()) {
+                       ret = 1;
+                       break;
+               }
+
+               // check reader's HF field
+               if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
+                       if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) {
+                               if (GetTickCount() - field_off_time > 50) {
+                                       ret = 2; // reader has switched off HF field for more than 50ms. Timeout
+                                       break;
+                               }
+                       } else {
+                               field_off_time = GetTickCount(); // HF field is still there. Reset timer
                        }
                        }
-        }
+                       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC
+               }
+
+               if (MillerDecoding(b, start_time + samples*8)) {
+                       *len = Uart.len;
+                       EmLogTraceReader();
+                       ret = 0;
+                       break;
+               }
 
 
+               samples++;
        }
        }
+
+       FpgaDisableSscDma();
+       return ret;
 }
 
 
 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
 {
 }
 
 
 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
 {
+       LED_C_ON();
+
        uint8_t b;
        uint16_t i = 0;
        bool correctionNeeded;
 
        // Modulate Manchester
        uint8_t b;
        uint16_t i = 0;
        bool correctionNeeded;
 
        // Modulate Manchester
-       LED_D_OFF();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
 
        // include correction bit if necessary
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
 
        // include correction bit if necessary
@@ -1483,73 +1498,61 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen)
                correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
        }
 
                correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
        }
 
-       if(correctionNeeded) {
+       if (correctionNeeded) {
                // 1236, so correction bit needed
                i = 0;
        } else {
                i = 1;
        }
 
                // 1236, so correction bit needed
                i = 0;
        } else {
                i = 1;
        }
 
-       // clear receiving shift register and holding register
-       while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+       // clear receiving shift register and holding register
        b = AT91C_BASE_SSC->SSC_RHR; (void) b;
        b = AT91C_BASE_SSC->SSC_RHR; (void) b;
-       while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+       while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
        b = AT91C_BASE_SSC->SSC_RHR; (void) b;
        b = AT91C_BASE_SSC->SSC_RHR; (void) b;
-       
+
        // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
        // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
-       for (uint16_t j = 0; j < 5; j++) {      // allow timeout - better late than never
-               while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
+       for (uint16_t j = 0; j < 5; j++) {  // allow timeout - better late than never
+               while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
                if (AT91C_BASE_SSC->SSC_RHR) break;
        }
 
        LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
 
        // send cycle
                if (AT91C_BASE_SSC->SSC_RHR) break;
        }
 
        LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
 
        // send cycle
-       for(; i < respLen; ) {
+       for (; i < respLen; ) {
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = resp[i++];
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                }
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = resp[i++];
                        FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                }
-       
+
                if(BUTTON_PRESS()) {
                        break;
                }
        }
 
                if(BUTTON_PRESS()) {
                        break;
                }
        }
 
+       LED_C_OFF();
        return 0;
 }
 
 
        return 0;
 }
 
 
-static int EmSend4bitEx(uint8_t resp){
+int EmSend4bit(uint8_t resp){
        Code4bitAnswerAsTag(resp);
        int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
        Code4bitAnswerAsTag(resp);
        int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
-       // do the tracing for the previous reader request and this tag answer:
+       // Log this tag answer and fix timing of previous reader command:
        EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
        return res;
 }
 
 
        EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
        return res;
 }
 
 
-int EmSend4bit(uint8_t resp){
-       return EmSend4bitEx(resp);
-}
-
-
 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
        CodeIso14443aAsTagPar(resp, respLen, par);
        int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
        CodeIso14443aAsTagPar(resp, respLen, par);
        int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
-       // do the tracing for the previous reader request and this tag answer:
+       // Log this tag answer and fix timing of previous reader command:
        EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
        return res;
 }
 
 
        EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
        return res;
 }
 
 
-int EmSendCmdEx(uint8_t *resp, uint16_t respLen){
-       uint8_t par[MAX_PARITY_SIZE];
-       GetParity(resp, respLen, par);
-       return EmSendCmdExPar(resp, respLen, par);
-}
-
-
 int EmSendCmd(uint8_t *resp, uint16_t respLen){
        uint8_t par[MAX_PARITY_SIZE];
        GetParity(resp, respLen, par);
 int EmSendCmd(uint8_t *resp, uint16_t respLen){
        uint8_t par[MAX_PARITY_SIZE];
        GetParity(resp, respLen, par);
@@ -1564,7 +1567,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
 
 int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
        int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
 
 int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
        int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
-       // do the tracing for the previous reader request and this tag answer:
+       // Log this tag answer and fix timing of previous reader command:
        EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
        return ret;
 }
        EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
        return ret;
 }
@@ -1578,21 +1581,21 @@ int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
        uint32_t c;
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
        uint32_t c;
-       
+
        // Set FPGA mode to "reader listen mode", no modulation (listen
        // only, since we are receiving, not transmitting).
        // Signal field is on with the appropriate LED
        LED_D_ON();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
        // Set FPGA mode to "reader listen mode", no modulation (listen
        // only, since we are receiving, not transmitting).
        // Signal field is on with the appropriate LED
        LED_D_ON();
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-       
+
        // Now get the answer from the card
        DemodInit(receivedResponse, receivedResponsePar);
 
        // clear RXRDY:
        // Now get the answer from the card
        DemodInit(receivedResponse, receivedResponsePar);
 
        // clear RXRDY:
-    uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+       uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 
        c = 0;
 
        c = 0;
-       for(;;) {
+       for (;;) {
                WDT_HIT();
 
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
                WDT_HIT();
 
                if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
@@ -1601,7 +1604,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
                                return true;
                        } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
                                return true;
                        } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
-                               return false; 
+                               return false;
                        }
                }
        }
                        }
                }
        }
@@ -1611,12 +1614,12 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
 {
        CodeIso14443aBitsAsReaderPar(frame, bits, par);
 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
 {
        CodeIso14443aBitsAsReaderPar(frame, bits, par);
-  
+
        // Send command to tag
        TransmitFor14443a(ToSend, ToSendMax, timing);
        if(trigger)
                LED_A_ON();
        // Send command to tag
        TransmitFor14443a(ToSend, ToSendMax, timing);
        if(trigger)
                LED_A_ON();
-  
+
        // Log reader command in trace buffer
        LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
 }
        // Log reader command in trace buffer
        LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
 }
@@ -1665,24 +1668,24 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
 static void iso14a_set_ATS_times(uint8_t *ats) {
 
        uint8_t tb1;
 static void iso14a_set_ATS_times(uint8_t *ats) {
 
        uint8_t tb1;
-       uint8_t fwi, sfgi; 
+       uint8_t fwi, sfgi;
        uint32_t fwt, sfgt;
        uint32_t fwt, sfgt;
-       
-       if (ats[0] > 1) {                                                       // there is a format byte T0
-               if ((ats[1] & 0x20) == 0x20) {                  // there is an interface byte TB(1)
-                       if ((ats[1] & 0x10) == 0x10) {          // there is an interface byte TA(1) preceding TB(1)
+
+       if (ats[0] > 1) {                           // there is a format byte T0
+               if ((ats[1] & 0x20) == 0x20) {          // there is an interface byte TB(1)
+                       if ((ats[1] & 0x10) == 0x10) {      // there is an interface byte TA(1) preceding TB(1)
                                tb1 = ats[3];
                        } else {
                                tb1 = ats[2];
                        }
                                tb1 = ats[3];
                        } else {
                                tb1 = ats[2];
                        }
-                       fwi = (tb1 & 0xf0) >> 4;                        // frame waiting time integer (FWI)
+                       fwi = (tb1 & 0xf0) >> 4;            // frame waiting time integer (FWI)
                        if (fwi != 15) {
                        if (fwi != 15) {
-                               fwt = 256 * 16 * (1 << fwi);    // frame waiting time (FWT) in 1/fc
+                               fwt = 256 * 16 * (1 << fwi);    // frame waiting time (FWT) in 1/fc
                                iso14a_set_timeout(fwt/(8*16));
                        }
                                iso14a_set_timeout(fwt/(8*16));
                        }
-                       sfgi = tb1 & 0x0f;                                      // startup frame guard time integer (SFGI)
+                       sfgi = tb1 & 0x0f;                  // startup frame guard time integer (SFGI)
                        if (sfgi != 0 && sfgi != 15) {
                        if (sfgi != 0 && sfgi != 15) {
-                               sfgt = 256 * 16 * (1 << sfgi);  // startup frame guard time (SFGT) in 1/fc
+                               sfgt = 256 * 16 * (1 << sfgi);  // startup frame guard time (SFGT) in 1/fc
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
                        }
                }
                                NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
                        }
                }
@@ -1692,15 +1695,15 @@ static void iso14a_set_ATS_times(uint8_t *ats) {
 
 static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
 
 
 static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
 
-#define WUPA_RETRY_TIMEOUT     10      // 10ms
+#define WUPA_RETRY_TIMEOUT  10  // 10ms
        uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
 
        uint32_t save_iso14a_timeout = iso14a_get_timeout();
        uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
 
        uint32_t save_iso14a_timeout = iso14a_get_timeout();
-       iso14a_set_timeout(1236/(16*8)+1);              // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
-       
+       iso14a_set_timeout(1236/(16*8)+1);      // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
+
        uint32_t start_time = GetTickCount();
        int len;
        uint32_t start_time = GetTickCount();
        int len;
-       
+
        // we may need several tries if we did send an unknown command or a wrong authentication before...
        do {
                // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
        // we may need several tries if we did send an unknown command or a wrong authentication before...
        do {
                // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
@@ -1708,7 +1711,7 @@ static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
                // Receive the ATQA
                len = ReaderReceive(resp, resp_par);
        } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
                // Receive the ATQA
                len = ReaderReceive(resp, resp_par);
        } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
-                       
+
        iso14a_set_timeout(save_iso14a_timeout);
        return len;
 }
        iso14a_set_timeout(save_iso14a_timeout);
        return len;
 }
@@ -1717,7 +1720,7 @@ static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
 // performs iso14443a anticollision (optional) and card select procedure
 // fills the uid and cuid pointer unless NULL
 // fills the card info record unless NULL
 // performs iso14443a anticollision (optional) and card select procedure
 // fills the uid and cuid pointer unless NULL
 // fills the card info record unless NULL
-// if anticollision is false, then the UID must be provided in uid_ptr[] 
+// if anticollision is false, then the UID must be provided in uid_ptr[]
 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
 // requests ATS unless no_rats is true
 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
 // requests ATS unless no_rats is true
 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
@@ -1759,11 +1762,11 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
        if ((resp[0] & 0x1F) == 0) {
                return 3;
        }
        if ((resp[0] & 0x1F) == 0) {
                return 3;
        }
-       
+
        // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
        // which case we need to make a cascade 2 request and select - this is a long UID
        // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
        // which case we need to make a cascade 2 request and select - this is a long UID
-       // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
-       for(; sak & 0x04; cascade_level++) {
+       // While the UID is not complete, the 3rd bit (from the right) is set in the SAK.
+       for (; sak & 0x04; cascade_level++) {
                // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
                sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
                // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
                sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
 
@@ -1774,21 +1777,21 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                                return 0;
                        }
 
                                return 0;
                        }
 
-                       if (Demod.collisionPos) {                       // we had a collision and need to construct the UID bit by bit
+                       if (Demod.collisionPos) {           // we had a collision and need to construct the UID bit by bit
                                memset(uid_resp, 0, 4);
                                uint16_t uid_resp_bits = 0;
                                uint16_t collision_answer_offset = 0;
                                // anti-collision-loop:
                                while (Demod.collisionPos) {
                                        Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
                                memset(uid_resp, 0, 4);
                                uint16_t uid_resp_bits = 0;
                                uint16_t collision_answer_offset = 0;
                                // anti-collision-loop:
                                while (Demod.collisionPos) {
                                        Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
-                                       for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {      // add valid UID bits before collision point
+                                       for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) {  // add valid UID bits before collision point
                                                uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
                                                uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
                                        }
                                                uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
                                                uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
                                        }
-                                       uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                                  // next time select the card(s) with a 1 in the collision position
+                                       uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8);                  // next time select the card(s) with a 1 in the collision position
                                        uid_resp_bits++;
                                        // construct anticollosion command:
                                        uid_resp_bits++;
                                        // construct anticollosion command:
-                                       sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
+                                       sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07);     // length of data in bytes and bits
                                        for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
                                                sel_uid[2+i] = uid_resp[i];
                                        }
                                        for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
                                                sel_uid[2+i] = uid_resp[i];
                                        }
@@ -1804,7 +1807,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                                        uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
                                }
 
                                        uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
                                }
 
-                       } else {                // no collision, use the response to SELECT_ALL as current uid
+                       } else {        // no collision, use the response to SELECT_ALL as current uid
                                memcpy(uid_resp, resp, 4);
                        }
                } else {
                                memcpy(uid_resp, resp, 4);
                        }
                } else {
@@ -1823,10 +1826,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                }
 
                // Construct SELECT UID command
                }
 
                // Construct SELECT UID command
-               sel_uid[1] = 0x70;                                                                                                      // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
-               memcpy(sel_uid+2, uid_resp, 4);                                                                         // the UID received during anticollision, or the provided UID
-               sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];         // calculate and add BCC
-               AppendCrc14443a(sel_uid, 7);                                                                            // calculate and add CRC
+               sel_uid[1] = 0x70;                                                  // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
+               memcpy(sel_uid+2, uid_resp, 4);                                     // the UID received during anticollision, or the provided UID
+               sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5];     // calculate and add BCC
+               AppendCrc14443a(sel_uid, 7);                                        // calculate and add CRC
                ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
 
                // Receive the SAK
                ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
 
                // Receive the SAK
@@ -1834,14 +1837,14 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
                        return 0;
                }
                sak = resp[0];
                        return 0;
                }
                sak = resp[0];
-       
+
                // Test if more parts of the uid are coming
                if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
                        // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
                        // http://www.nxp.com/documents/application_note/AN10927.pdf
                        uid_resp[0] = uid_resp[1];
                        uid_resp[1] = uid_resp[2];
                // Test if more parts of the uid are coming
                if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
                        // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
                        // http://www.nxp.com/documents/application_note/AN10927.pdf
                        uid_resp[0] = uid_resp[1];
                        uid_resp[1] = uid_resp[2];
-                       uid_resp[2] = uid_resp[3]; 
+                       uid_resp[2] = uid_resp[3];
                        uid_resp_len = 3;
                }
 
                        uid_resp_len = 3;
                }
 
@@ -1860,7 +1863,7 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
        }
 
        // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
        }
 
        // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
-       if( (sak & 0x20) == 0) return 2; 
+       if( (sak & 0x20) == 0) return 2;
 
        if (!no_rats) {
                // Request for answer to select
 
        if (!no_rats) {
                // Request for answer to select
@@ -1881,9 +1884,9 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
                // set default timeout and delay next transfer based on ATS
                iso14a_set_ATS_times(resp);
 
                // set default timeout and delay next transfer based on ATS
                iso14a_set_ATS_times(resp);
-               
+
        }
        }
-       return 1;       
+       return 1;
 }
 
 
 }
 
 
@@ -1903,11 +1906,22 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
        }
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
 
        }
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
 
+       // Set ADC to read field strength
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+       AT91C_BASE_ADC->ADC_MR =
+                               ADC_MODE_PRESCALE(63) |
+                               ADC_MODE_STARTUP_TIME(1) |
+                               ADC_MODE_SAMPLE_HOLD_TIME(15);
+       AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
+
        // Start the timer
        StartCountSspClk();
        // Start the timer
        StartCountSspClk();
-       
+
        DemodReset();
        UartReset();
        DemodReset();
        UartReset();
+       LastTimeProxToAirStart = 0;
+       FpgaSendQueueDelay = 0;
+       LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd()
        NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
        iso14a_set_timeout(1060); // 10ms default
 }
        NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
        iso14a_set_timeout(1060); // 10ms default
 }
@@ -1932,17 +1946,17 @@ b8 b7 b6 b5 b4 b3 b2 b1
 b5 = ACK/NACK
 Coding of S-block:
 b8 b7 b6 b5 b4 b3 b2 b1
 b5 = ACK/NACK
 Coding of S-block:
 b8 b7 b6 b5 b4 b3 b2 b1
-1  1  x  x  x  0  1  0 
+1  1  x  x  x  0  1  0
 b5,b6 = 00 - DESELECT
 b5,b6 = 00 - DESELECT
-        11 - WTX 
-*/    
+               11 - WTX
+*/
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) {
        uint8_t parity[MAX_PARITY_SIZE];
        uint8_t real_cmd[cmd_len + 4];
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) {
        uint8_t parity[MAX_PARITY_SIZE];
        uint8_t real_cmd[cmd_len + 4];
-       
+
        if (cmd_len) {
                // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
        if (cmd_len) {
                // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
-               real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) 
+               real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
                if (send_chaining) {
                        real_cmd[0] |= 0x10;
                }
                if (send_chaining) {
                        real_cmd[0] |= 0x10;
                }
@@ -1951,11 +1965,11 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, u
                memcpy(real_cmd + 1, cmd, cmd_len);
        } else {
                // R-block. ACK
                memcpy(real_cmd + 1, cmd, cmd_len);
        } else {
                // R-block. ACK
-               real_cmd[0] = 0xA2; // r-block + ACK    
+               real_cmd[0] = 0xA2; // r-block + ACK
                real_cmd[0] |= iso14_pcb_blocknum;
        }
        AppendCrc14443a(real_cmd, cmd_len + 1);
                real_cmd[0] |= iso14_pcb_blocknum;
        }
        AppendCrc14443a(real_cmd, cmd_len + 1);
+
        ReaderTransmit(real_cmd, cmd_len + 3, NULL);
 
        size_t len = ReaderReceive(data, parity);
        ReaderTransmit(real_cmd, cmd_len + 3, NULL);
 
        size_t len = ReaderReceive(data, parity);
@@ -1963,20 +1977,20 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, u
 
        if (!len) {
                return 0; //DATA LINK ERROR
 
        if (!len) {
                return 0; //DATA LINK ERROR
-       } else{
-               // S-Block WTX 
-               while(len && ((data_bytes[0] & 0xF2) == 0xF2)) {
+       } else {
+               // S-Block WTX
+               while (len && ((data_bytes[0] & 0xF2) == 0xF2)) {
                        uint32_t save_iso14a_timeout = iso14a_get_timeout();
                        // temporarily increase timeout
                        iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
                        uint32_t save_iso14a_timeout = iso14a_get_timeout();
                        // temporarily increase timeout
                        iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
-                       // Transmit WTX back 
+                       // Transmit WTX back
                        // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
                        data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
                        // now need to fix CRC.
                        AppendCrc14443a(data_bytes, len - 2);
                        // transmit S-Block
                        ReaderTransmit(data_bytes, len, NULL);
                        // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
                        data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
                        // now need to fix CRC.
                        AppendCrc14443a(data_bytes, len - 2);
                        // transmit S-Block
                        ReaderTransmit(data_bytes, len, NULL);
-                       // retrieve the result again (with increased timeout) 
+                       // retrieve the result again (with increased timeout)
                        len = ReaderReceive(data, parity);
                        data_bytes = data;
                        // restore timeout
                        len = ReaderReceive(data, parity);
                        data_bytes = data;
                        // restore timeout
@@ -1986,13 +2000,13 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, u
                // if we received an I- or R(ACK)-Block with a block number equal to the
                // current block number, toggle the current block number
                if (len >= 3 // PCB+CRC = 3 bytes
                // if we received an I- or R(ACK)-Block with a block number equal to the
                // current block number, toggle the current block number
                if (len >= 3 // PCB+CRC = 3 bytes
-                && ((data_bytes[0] & 0xC0) == 0 // I-Block
-                    || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
-                && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+                        && ((data_bytes[0] & 0xC0) == 0 // I-Block
+                                || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+                        && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
                {
                        iso14_pcb_blocknum ^= 1;
                }
                {
                        iso14_pcb_blocknum ^= 1;
                }
-               
+
                // if we received I-block with chaining we need to send ACK and receive another block of data
                if (res)
                        *res = data_bytes[0];
                // if we received I-block with chaining we need to send ACK and receive another block of data
                if (res)
                        *res = data_bytes[0];
@@ -2001,9 +2015,9 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, u
                if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
                        return -1;
                }
                if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
                        return -1;
                }
-               
+
        }
        }
-       
+
        if (len) {
                // cut frame byte
                len -= 1;
        if (len) {
                // cut frame byte
                len -= 1;
@@ -2011,7 +2025,7 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, u
                for (int i = 0; i < len; i++)
                        data_bytes[i] = data_bytes[i + 1];
        }
                for (int i = 0; i < len; i++)
                        data_bytes[i] = data_bytes[i + 1];
        }
-               
+
        return len;
 }
 
        return len;
 }
 
@@ -2031,9 +2045,9 @@ void ReaderIso14443a(UsbCommand *c)
        byte_t buf[USB_CMD_DATA_SIZE] = {0};
        uint8_t par[MAX_PARITY_SIZE];
        bool cantSELECT = false;
        byte_t buf[USB_CMD_DATA_SIZE] = {0};
        uint8_t par[MAX_PARITY_SIZE];
        bool cantSELECT = false;
-  
+
        set_tracing(true);
        set_tracing(true);
-       
+
        if(param & ISO14A_CLEAR_TRACE) {
                clear_trace();
        }
        if(param & ISO14A_CLEAR_TRACE) {
                clear_trace();
        }
@@ -2084,29 +2098,29 @@ void ReaderIso14443a(UsbCommand *c)
                        len += 2;
                        if (lenbits) lenbits += 16;
                }
                        len += 2;
                        if (lenbits) lenbits += 16;
                }
-               if(lenbits>0) {                         // want to send a specific number of bits (e.g. short commands)
+               if(lenbits>0) {             // want to send a specific number of bits (e.g. short commands)
                        if(param & ISO14A_TOPAZMODE) {
                                int bits_to_send = lenbits;
                                uint16_t i = 0;
                        if(param & ISO14A_TOPAZMODE) {
                                int bits_to_send = lenbits;
                                uint16_t i = 0;
-                               ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);             // first byte is always short (7bits) and no parity
+                               ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);     // first byte is always short (7bits) and no parity
                                bits_to_send -= 7;
                                while (bits_to_send > 0) {
                                bits_to_send -= 7;
                                while (bits_to_send > 0) {
-                                       ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);     // following bytes are 8 bit and no parity
+                                       ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
                                        bits_to_send -= 8;
                                }
                        } else {
                                GetParity(cmd, lenbits/8, par);
                                        bits_to_send -= 8;
                                }
                        } else {
                                GetParity(cmd, lenbits/8, par);
-                               ReaderTransmitBitsPar(cmd, lenbits, par, NULL);                                                 // bytes are 8 bit with odd parity
+                               ReaderTransmitBitsPar(cmd, lenbits, par, NULL);                         // bytes are 8 bit with odd parity
                        }
                        }
-               } else {                                        // want to send complete bytes only
+               } else {                    // want to send complete bytes only
                        if(param & ISO14A_TOPAZMODE) {
                                uint16_t i = 0;
                        if(param & ISO14A_TOPAZMODE) {
                                uint16_t i = 0;
-                               ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);                                                // first byte: 7 bits, no paritiy
+                               ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);                        // first byte: 7 bits, no paritiy
                                while (i < len) {
                                while (i < len) {
-                                       ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);                                        // following bytes: 8 bits, no paritiy
+                                       ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);                    // following bytes: 8 bits, no paritiy
                                }
                        } else {
                                }
                        } else {
-                               ReaderTransmit(cmd,len, NULL);                                                                                  // 8 bits, odd parity
+                               ReaderTransmit(cmd,len, NULL);                                          // 8 bits, odd parity
                        }
                }
                arg0 = ReaderReceive(buf, par);
                        }
                }
                arg0 = ReaderReceive(buf, par);
@@ -2142,14 +2156,14 @@ static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
 
        nttmp1 = nt1;
        nttmp2 = nt2;
 
        nttmp1 = nt1;
        nttmp2 = nt2;
-       
+
        for (i = 1; i < 32768; i++) {
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
                if (nttmp2 == nt1) return -i;
                }
        for (i = 1; i < 32768; i++) {
                nttmp1 = prng_successor(nttmp1, 1);
                if (nttmp1 == nt2) return i;
                nttmp2 = prng_successor(nttmp2, 1);
                if (nttmp2 == nt1) return -i;
                }
-       
+
        return(-99999); // either nt1 or nt2 are invalid nonces
 }
 
        return(-99999); // either nt1 or nt2 are invalid nonces
 }
 
@@ -2171,15 +2185,15 @@ void ReaderMifare(bool first_try)
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
        iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
 
        iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
-       
+
        // free eventually allocated BigBuf memory. We want all for tracing.
        BigBuf_free();
        // free eventually allocated BigBuf memory. We want all for tracing.
        BigBuf_free();
-       
+
        clear_trace();
        set_tracing(true);
 
        uint8_t nt_diff = 0;
        clear_trace();
        set_tracing(true);
 
        uint8_t nt_diff = 0;
-       uint8_t par[1] = {0};   // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
+       uint8_t par[1] = {0};   // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
        static uint8_t par_low = 0;
        bool led_on = true;
        uint8_t uid[10]  ={0};
        static uint8_t par_low = 0;
        bool led_on = true;
        uint8_t uid[10]  ={0};
@@ -2200,10 +2214,10 @@ void ReaderMifare(bool first_try)
        uint16_t consecutive_resyncs = 0;
        int isOK = 0;
 
        uint16_t consecutive_resyncs = 0;
        int isOK = 0;
 
-       if (first_try) { 
+       if (first_try) {
                mf_nr_ar3 = 0;
                par[0] = par_low = 0;
                mf_nr_ar3 = 0;
                par[0] = par_low = 0;
-               sync_cycles = PRNG_SEQUENCE_LENGTH;                                                     // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
+               sync_cycles = PRNG_SEQUENCE_LENGTH;                         // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
                nt_attacked = 0;
        }
        else {
                nt_attacked = 0;
        }
        else {
@@ -2216,13 +2230,13 @@ void ReaderMifare(bool first_try)
        LED_A_ON();
        LED_B_OFF();
        LED_C_OFF();
        LED_A_ON();
        LED_B_OFF();
        LED_C_OFF();
-       
 
 
-       #define MAX_UNEXPECTED_RANDOM   4               // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
-       #define MAX_SYNC_TRIES                  32
-       #define SYNC_TIME_BUFFER                16              // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
-       #define NUM_DEBUG_INFOS                 8               // per strategy
-       #define MAX_STRATEGY                    3
+
+       #define MAX_UNEXPECTED_RANDOM   4       // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
+       #define MAX_SYNC_TRIES          32
+       #define SYNC_TIME_BUFFER        16      // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
+       #define NUM_DEBUG_INFOS         8       // per strategy
+       #define MAX_STRATEGY            3
        uint16_t unexpected_random = 0;
        uint16_t sync_tries = 0;
        int16_t debug_info_nr = -1;
        uint16_t unexpected_random = 0;
        uint16_t sync_tries = 0;
        int16_t debug_info_nr = -1;
@@ -2230,9 +2244,9 @@ void ReaderMifare(bool first_try)
        int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
        uint32_t select_time;
        uint32_t halt_time;
        int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
        uint32_t select_time;
        uint32_t halt_time;
-       
-       for(uint16_t i = 0; true; i++) {
-               
+
+       for (uint16_t i = 0; true; i++) {
+
                LED_C_ON();
                WDT_HIT();
 
                LED_C_ON();
                WDT_HIT();
 
@@ -2241,7 +2255,7 @@ void ReaderMifare(bool first_try)
                        isOK = -1;
                        break;
                }
                        isOK = -1;
                        break;
                }
-               
+
                if (strategy == 2) {
                        // test with additional hlt command
                        halt_time = 0;
                if (strategy == 2) {
                        // test with additional hlt command
                        halt_time = 0;
@@ -2258,9 +2272,9 @@ void ReaderMifare(bool first_try)
                        iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
                        SpinDelay(100);
                }
                        iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
                        SpinDelay(100);
                }
-               
+
                if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
                if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
-                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
+                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Can't select card");
                        continue;
                }
                select_time = GetCountSspClk();
                        continue;
                }
                select_time = GetCountSspClk();
@@ -2276,11 +2290,11 @@ void ReaderMifare(bool first_try)
                                sync_time = (sync_time & 0xfffffff8) + sync_cycles;
                        }
 
                                sync_time = (sync_time & 0xfffffff8) + sync_cycles;
                        }
 
-                       // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) 
+                       // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
                        ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
                } else {
                        // collect some information on tag nonces for debugging:
                        ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
                } else {
                        // collect some information on tag nonces for debugging:
-                       #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
+                       #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
                        if (strategy == 0) {
                                // nonce distances at fixed time after card select:
                                sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
                        if (strategy == 0) {
                                // nonce distances at fixed time after card select:
                                sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
@@ -2295,11 +2309,11 @@ void ReaderMifare(bool first_try)
                                sync_time = DEBUG_FIXED_SYNC_CYCLES;
                        }
                        ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
                                sync_time = DEBUG_FIXED_SYNC_CYCLES;
                        }
                        ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
-               }                       
+               }
 
                // Receive the (4 Byte) "random" nonce
                if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
 
                // Receive the (4 Byte) "random" nonce
                if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
-                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Couldn't receive tag nonce");
+                       if (MF_DBGLEVEL >= 1)   Dbprintf("Mifare: Couldn't receive tag nonce");
                        continue;
                  }
 
                        continue;
                  }
 
@@ -2317,17 +2331,17 @@ void ReaderMifare(bool first_try)
                                if (nt_distance == -99999) { // invalid nonce received
                                        unexpected_random++;
                                        if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
                                if (nt_distance == -99999) { // invalid nonce received
                                        unexpected_random++;
                                        if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
-                                               isOK = -3;              // Card has an unpredictable PRNG. Give up      
+                                               isOK = -3;      // Card has an unpredictable PRNG. Give up
                                                break;
                                        } else {
                                                break;
                                        } else {
-                                               continue;               // continue trying...
+                                               continue;       // continue trying...
                                        }
                                }
                                if (++sync_tries > MAX_SYNC_TRIES) {
                                        if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
                                        }
                                }
                                if (++sync_tries > MAX_SYNC_TRIES) {
                                        if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
-                                               isOK = -4;                      // Card's PRNG runs at an unexpected frequency or resets unexpectedly
+                                               isOK = -4;          // Card's PRNG runs at an unexpected frequency or resets unexpectedly
                                                break;
                                                break;
-                                       } else {                                // continue for a while, just to collect some debug info
+                                       } else {                // continue for a while, just to collect some debug info
                                                debug_info[strategy][debug_info_nr] = nt_distance;
                                                debug_info_nr++;
                                                if (debug_info_nr == NUM_DEBUG_INFOS) {
                                                debug_info[strategy][debug_info_nr] = nt_distance;
                                                debug_info_nr++;
                                                if (debug_info_nr == NUM_DEBUG_INFOS) {
@@ -2348,9 +2362,9 @@ void ReaderMifare(bool first_try)
                        }
                }
 
                        }
                }
 
-               if ((nt != nt_attacked) && nt_attacked) {       // we somehow lost sync. Try to catch up again...
+               if ((nt != nt_attacked) && nt_attacked) {   // we somehow lost sync. Try to catch up again...
                        catch_up_cycles = -dist_nt(nt_attacked, nt);
                        catch_up_cycles = -dist_nt(nt_attacked, nt);
-                       if (catch_up_cycles == 99999) {                 // invalid nonce received. Don't resync on that one.
+                       if (catch_up_cycles == 99999) {         // invalid nonce received. Don't resync on that one.
                                catch_up_cycles = 0;
                                continue;
                        }
                                catch_up_cycles = 0;
                                continue;
                        }
@@ -2360,12 +2374,12 @@ void ReaderMifare(bool first_try)
                        }
                        else {
                                last_catch_up = catch_up_cycles;
                        }
                        else {
                                last_catch_up = catch_up_cycles;
-                           consecutive_resyncs = 0;
+                               consecutive_resyncs = 0;
                        }
                        if (consecutive_resyncs < 3) {
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
                        }
                        }
                        if (consecutive_resyncs < 3) {
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
                        }
-                       else {  
+                       else {
                                sync_cycles = sync_cycles + catch_up_cycles;
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
                                last_catch_up = 0;
                                sync_cycles = sync_cycles + catch_up_cycles;
                                if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
                                last_catch_up = 0;
@@ -2374,13 +2388,13 @@ void ReaderMifare(bool first_try)
                        }
                        continue;
                }
                        }
                        continue;
                }
+
                consecutive_resyncs = 0;
                consecutive_resyncs = 0;
-               
+
                // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
                if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
                // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
                if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
-                       catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
-       
+                       catch_up_cycles = 8;    // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
+
                        if (nt_diff == 0) {
                                par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
                        }
                        if (nt_diff == 0) {
                                par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
                        }
@@ -2404,7 +2418,7 @@ void ReaderMifare(bool first_try)
                        if (nt_diff == 0 && first_try)
                        {
                                par[0]++;
                        if (nt_diff == 0 && first_try)
                        {
                                par[0]++;
-                               if (par[0] == 0x00) {           // tried all 256 possible parities without success. Card doesn't send NACK.
+                               if (par[0] == 0x00) {       // tried all 256 possible parities without success. Card doesn't send NACK.
                                        isOK = -2;
                                        break;
                                }
                                        isOK = -2;
                                        break;
                                }
@@ -2420,13 +2434,13 @@ void ReaderMifare(bool first_try)
        if (isOK == -4) {
                if (MF_DBGLEVEL >= 3) {
                        for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
        if (isOK == -4) {
                if (MF_DBGLEVEL >= 3) {
                        for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
-                               for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
+                               for (uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
                                        Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
                                }
                        }
                }
        }
                                        Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
                                }
                        }
                }
        }
-       
+
        FpgaDisableTracing();
 
        uint8_t buf[32];
        FpgaDisableTracing();
 
        uint8_t buf[32];
@@ -2435,7 +2449,7 @@ void ReaderMifare(bool first_try)
        memcpy(buf + 8,  par_list, 8);
        memcpy(buf + 16, ks_list, 8);
        memcpy(buf + 24, mf_nr_ar, 8);
        memcpy(buf + 8,  par_list, 8);
        memcpy(buf + 16, ks_list, 8);
        memcpy(buf + 24, mf_nr_ar, 8);
-               
+
        cmd_send(CMD_ACK, isOK, 0, 0, buf, 32);
 
        // Thats it...
        cmd_send(CMD_ACK, isOK, 0, 0, buf, 32);
 
        // Thats it...
@@ -2447,8 +2461,8 @@ void ReaderMifare(bool first_try)
 
 
 //-----------------------------------------------------------------------------
 
 
 //-----------------------------------------------------------------------------
-// MIFARE sniffer. 
-// 
+// MIFARE sniffer.
+//
 //-----------------------------------------------------------------------------
 void RAMFUNC SniffMifare(uint8_t param) {
        // param:
 //-----------------------------------------------------------------------------
 void RAMFUNC SniffMifare(uint8_t param) {
        // param:
@@ -2458,7 +2472,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
        // C(red) A(yellow) B(green)
        LEDsoff();
        LED_A_ON();
        // C(red) A(yellow) B(green)
        LEDsoff();
        LED_A_ON();
-       
+
        // init trace buffer
        clear_trace();
        set_tracing(true);
        // init trace buffer
        clear_trace();
        set_tracing(true);
@@ -2498,19 +2512,19 @@ void RAMFUNC SniffMifare(uint8_t param) {
        MfSniffInit();
 
        // And now we loop, receiving samples.
        MfSniffInit();
 
        // And now we loop, receiving samples.
-       for(uint32_t sniffCounter = 0; true; ) {
-       
+       for (uint32_t sniffCounter = 0; true; ) {
+
                if(BUTTON_PRESS()) {
                        DbpString("Canceled by button.");
                        break;
                }
 
                WDT_HIT();
                if(BUTTON_PRESS()) {
                        DbpString("Canceled by button.");
                        break;
                }
 
                WDT_HIT();
-               
-               if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
+
+               if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
                        // check if a transaction is completed (timeout after 2000ms).
                        // if yes, stop the DMA transfer and send what we have so far to the client
                        // check if a transaction is completed (timeout after 2000ms).
                        // if yes, stop the DMA transfer and send what we have so far to the client
-                       if (MfSniffSend(2000)) {                        
+                       if (MfSniffSend(2000)) {
                                // Reset everything - we missed some sniffed data anyway while the DMA was stopped
                                sniffCounter = 0;
                                data = dmaBuf;
                                // Reset everything - we missed some sniffed data anyway while the DMA was stopped
                                sniffCounter = 0;
                                data = dmaBuf;
@@ -2520,17 +2534,17 @@ void RAMFUNC SniffMifare(uint8_t param) {
                                FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
                        }
                }
                                FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
                        }
                }
-               
-               int register readBufDataP = data - dmaBuf;      // number of bytes we have processed so far
+
+               int register readBufDataP = data - dmaBuf;  // number of bytes we have processed so far
                int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
                int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
-               if (readBufDataP <= dmaBufDataP){                       // we are processing the same block of data which is currently being transferred
-                       dataLen = dmaBufDataP - readBufDataP;   // number of bytes still to be processed
-               } else {                                                                        
+               if (readBufDataP <= dmaBufDataP){           // we are processing the same block of data which is currently being transferred
+                       dataLen = dmaBufDataP - readBufDataP;   // number of bytes still to be processed
+               } else {
                        dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
                }
                // test for length of buffer
                        dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
                }
                // test for length of buffer
-               if(dataLen > maxDataLen) {                                      // we are more behind than ever...
-                       maxDataLen = dataLen;                                   
+               if(dataLen > maxDataLen) {                  // we are more behind than ever...
+                       maxDataLen = dataLen;
                        if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
                        if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
                                Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
                                break;
@@ -2552,7 +2566,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
                if (sniffCounter & 0x01) {
 
 
                if (sniffCounter & 0x01) {
 
-                       if(!TagIsActive) {              // no need to try decoding tag data if the reader is sending
+                       if(!TagIsActive) {      // no need to try decoding tag data if the reader is sending
                                uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
                                if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
 
                                uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
                                if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
 
@@ -2560,14 +2574,14 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
                                        /* And ready to receive another command. */
                                        UartInit(receivedCmd, receivedCmdPar);
 
                                        /* And ready to receive another command. */
                                        UartInit(receivedCmd, receivedCmdPar);
-                                       
+
                                        /* And also reset the demod code */
                                        DemodReset();
                                }
                                ReaderIsActive = (Uart.state != STATE_UNSYNCD);
                        }
                                        /* And also reset the demod code */
                                        DemodReset();
                                }
                                ReaderIsActive = (Uart.state != STATE_UNSYNCD);
                        }
-                       
-                       if(!ReaderIsActive) {           // no need to try decoding tag data if the reader is sending
+
+                       if(!ReaderIsActive) {       // no need to try decoding tag data if the reader is sending
                                uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
                                if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
 
                                uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
                                if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
 
@@ -2598,6 +2612,6 @@ void RAMFUNC SniffMifare(uint8_t param) {
        DbpString("COMMAND FINISHED.");
 
        MfSniffEnd();
        DbpString("COMMAND FINISHED.");
 
        MfSniffEnd();
-       
+
        Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
 }
        Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
 }
index 6954a29b29e2b242901cf82b2e8776dc96e861c9..df2dcbea60dc147eef88c01fe47cc63af3409169 100644 (file)
@@ -41,7 +41,6 @@ extern void ReaderMifare(bool first_try);
 
 extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity);
 extern int EmSendCmd(uint8_t *resp, uint16_t respLen);
 
 extern int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity);
 extern int EmSendCmd(uint8_t *resp, uint16_t respLen);
-extern int EmSendCmdEx(uint8_t *resp, uint16_t respLen);
 extern int EmSend4bit(uint8_t resp);
 extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
 extern int EmSendPrecompiledCmd(tag_response_info_t *response_info);
 extern int EmSend4bit(uint8_t resp);
 extern int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
 extern int EmSendPrecompiledCmd(tag_response_info_t *response_info);
index c92648363e04a5b4609a5d8fe005963fbc9c70ca..6f97e1b4f5bdabc2da7f06ecc66043e615a3dbb9 100644 (file)
 #include "apps.h"
 
 //mifare emulator states
 #include "apps.h"
 
 //mifare emulator states
-#define MFEMUL_NOFIELD      0
-#define MFEMUL_IDLE         1
-#define MFEMUL_SELECT1      2
-#define MFEMUL_SELECT2      3
-#define MFEMUL_SELECT3      4
-#define MFEMUL_AUTH1        5
-#define MFEMUL_AUTH2        6
-#define MFEMUL_WORK            7
-#define MFEMUL_WRITEBL2     8
-#define MFEMUL_INTREG_INC   9
-#define MFEMUL_INTREG_DEC  10
-#define MFEMUL_INTREG_REST 11
-#define MFEMUL_HALTED      12
-
-#define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); }
+#define MFEMUL_NOFIELD           0
+#define MFEMUL_IDLE              1
+#define MFEMUL_SELECT1           2
+#define MFEMUL_SELECT2           3
+#define MFEMUL_SELECT3           4
+#define MFEMUL_AUTH1             5
+#define MFEMUL_AUTH2             6
+#define MFEMUL_WORK              7
+#define MFEMUL_WRITEBL2          8
+#define MFEMUL_INTREG_INC        9
+#define MFEMUL_INTREG_DEC       10
+#define MFEMUL_INTREG_REST      11
+#define MFEMUL_HALTED           12
 
 #define AC_DATA_READ             0
 #define AC_DATA_WRITE            1
 
 #define AC_DATA_READ             0
 #define AC_DATA_WRITE            1
-#define AC_DATA_INC                             2
-#define AC_DATA_DEC_TRANS_REST  3
+#define AC_DATA_INC              2
+#define AC_DATA_DEC_TRANS_REST   3
 #define AC_KEYA_READ             0
 #define AC_KEYA_WRITE            1
 #define AC_KEYB_READ             2
 #define AC_KEYA_READ             0
 #define AC_KEYA_WRITE            1
 #define AC_KEYB_READ             2
 #define AUTHKEYNONE              0xff
 
 
 #define AUTHKEYNONE              0xff
 
 
+static int ParamCardSizeBlocks(const char c) {
+       int numBlocks = 16 * 4;
+       switch (c) {
+               case '0' : numBlocks = 5 * 4; break;
+               case '2' : numBlocks = 32 * 4; break;
+               case '4' : numBlocks = 32 * 4 + 8 * 16; break;
+               default:   numBlocks = 16 * 4;
+       }
+       return numBlocks;
+}
+
+static uint8_t BlockToSector(int block_num) {
+       if (block_num < 32 * 4) {    // 4 blocks per sector
+               return (block_num / 4);
+       } else {                     // 16 blocks per sector
+               return 32 + (block_num - 32 * 4) / 16;
+       }
+}
+
 static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
        uint8_t sector_trailer[16];
        emlGetMem(sector_trailer, blockNo, 1);
        uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
 static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
        uint8_t sector_trailer[16];
        emlGetMem(sector_trailer, blockNo, 1);
        uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
-                  | ((sector_trailer[8] >> 2) & 0x02)
+                          | ((sector_trailer[8] >> 2) & 0x02)
                           | ((sector_trailer[8] >> 7) & 0x01);
        switch (action) {
                case AC_KEYA_READ: {
                           | ((sector_trailer[8] >> 7) & 0x01);
        switch (action) {
                case AC_KEYA_READ: {
@@ -69,8 +86,8 @@ static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t act
                        break;
                }
                case AC_KEYA_WRITE: {
                        break;
                }
                case AC_KEYA_WRITE: {
-                       return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01)) 
-                            || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
+                       return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
+                                || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
                        break;
                }
                case AC_KEYB_READ: {
                        break;
                }
                case AC_KEYB_READ: {
@@ -79,17 +96,17 @@ static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t act
                }
                case AC_KEYB_WRITE: {
                        return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04))
                }
                case AC_KEYB_WRITE: {
                        return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04))
-                            || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
+                                || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
                        break;
                }
                case AC_AC_READ: {
                        return ((keytype == AUTHKEYA)
                        break;
                }
                case AC_AC_READ: {
                        return ((keytype == AUTHKEYA)
-                            || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
+                                || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
                        break;
                }
                case AC_AC_WRITE: {
                        return ((keytype == AUTHKEYA && (AC == 0x01))
                        break;
                }
                case AC_AC_WRITE: {
                        return ((keytype == AUTHKEYA && (AC == 0x01))
-                            || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
+                                || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
                        break;
                }
                default: return false;
                        break;
                }
                default: return false;
@@ -129,33 +146,33 @@ static bool IsDataAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action
                           | ((sector_trailer[8] >> 6) & 0x01);
                        break;
                }
                           | ((sector_trailer[8] >> 6) & 0x01);
                        break;
                }
-               default: 
+               default:
                        return false;
        }
                        return false;
        }
-       
+
        switch (action) {
                case AC_DATA_READ: {
                        return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
        switch (action) {
                case AC_DATA_READ: {
                        return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
-                            || (keytype == AUTHKEYB && !(AC == 0x07)));
+                                || (keytype == AUTHKEYB && !(AC == 0x07)));
                        break;
                }
                case AC_DATA_WRITE: {
                        return ((keytype == AUTHKEYA && (AC == 0x00))
                        break;
                }
                case AC_DATA_WRITE: {
                        return ((keytype == AUTHKEYA && (AC == 0x00))
-                            || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
+                                || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
                        break;
                }
                case AC_DATA_INC: {
                        return ((keytype == AUTHKEYA && (AC == 0x00))
                        break;
                }
                case AC_DATA_INC: {
                        return ((keytype == AUTHKEYA && (AC == 0x00))
-                            || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
+                                || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
                        break;
                }
                case AC_DATA_DEC_TRANS_REST: {
                        return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
                        break;
                }
                case AC_DATA_DEC_TRANS_REST: {
                        return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
-                            || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
+                                || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
                        break;
                }
        }
                        break;
                }
        }
-       
+
        return false;
 }
 
        return false;
 }
 
@@ -169,18 +186,18 @@ static bool IsAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
 }
 
 
 }
 
 
-static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) {
+static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t cardsize) {
 
 
-       #define TAG_RESPONSE_COUNT 5                                                            // number of precompiled responses
-       static uint8_t rATQA[]    = {0x04, 0x00};                                       // indicate Mifare classic 1k 4Byte UID
-       static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00};     // UID 1st cascade level
-       static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00};     // UID 2nd cascade level
-       static uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd};                         // mifare 1k indicated
-       static uint8_t rSAK1[]    = {0x04, 0xda, 0x17};                         // indicate UID not finished
+       #define TAG_RESPONSE_COUNT 5                                // number of precompiled responses
+       static uint8_t rATQA[]    = {0x00, 0x00};
+       static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
+       static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
+       static uint8_t rSAKfinal[]= {0x00, 0x00, 0x00};             // SAK after UID complete
+       static uint8_t rSAK1[]    = {0x00, 0x00, 0x00};             // indicate UID not finished
 
        *uid_len = 4;
        // UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long
 
        *uid_len = 4;
        // UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long
-       if (flags & FLAG_4B_UID_IN_DATA) {      // get UID from datain
+       if (flags & FLAG_4B_UID_IN_DATA) {  // get UID from datain
                memcpy(rUIDBCC1, datain, 4);
        } else if (flags & FLAG_7B_UID_IN_DATA) {
                rUIDBCC1[0] = 0x88;
                memcpy(rUIDBCC1, datain, 4);
        } else if (flags & FLAG_7B_UID_IN_DATA) {
                rUIDBCC1[0] = 0x88;
@@ -189,10 +206,10 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
                *uid_len = 7;
        } else {
                uint8_t probable_atqa;
                *uid_len = 7;
        } else {
                uint8_t probable_atqa;
-               emlGetMemBt(&probable_atqa, 7, 1);      // get UID from emul memory - weak guess at length
-               if (probable_atqa == 0x00) {            // ---------- 4BUID
+               emlGetMemBt(&probable_atqa, 7, 1);  // get UID from emul memory - weak guess at length
+               if (probable_atqa == 0x00) {        // ---------- 4BUID
                        emlGetMemBt(rUIDBCC1, 0, 4);
                        emlGetMemBt(rUIDBCC1, 0, 4);
-               } else {                                // ---------- 7BUID
+               } else {                            // ---------- 7BUID
                        rUIDBCC1[0] = 0x88;
                        emlGetMemBt(rUIDBCC1+1, 0, 3);
                        emlGetMemBt(rUIDBCC2, 3, 4);
                        rUIDBCC1[0] = 0x88;
                        emlGetMemBt(rUIDBCC1+1, 0, 3);
                        emlGetMemBt(rUIDBCC2, 3, 4);
@@ -204,37 +221,65 @@ static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **
                case 4:
                        *cuid = bytes_to_num(rUIDBCC1, 4);
                        rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
                case 4:
                        *cuid = bytes_to_num(rUIDBCC1, 4);
                        rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
-                       if (MF_DBGLEVEL >= 2)   {
-                               Dbprintf("4B UID: %02x%02x%02x%02x", 
-                                       rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]      );
+                       if (MF_DBGLEVEL >= MF_DBG_INFO)   {
+                               Dbprintf("4B UID: %02x%02x%02x%02x",
+                                       rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]  );
                        }
                        break;
                case 7:
                        }
                        break;
                case 7:
-                       rATQA[0] |= 0x40;
                        *cuid = bytes_to_num(rUIDBCC2, 4);
                        *cuid = bytes_to_num(rUIDBCC2, 4);
-                       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; 
-                       rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; 
-                       if (MF_DBGLEVEL >= 2)   {
+                       rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+                       rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+                       if (MF_DBGLEVEL >= MF_DBG_INFO)   {
                                Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
                                        rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]  );
                        }
                        break;
                                Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
                                        rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]  );
                        }
                        break;
-               default: 
+               default:
                        break;
        }
                        break;
        }
-       
+
+       // set SAK based on cardsize
+       switch (cardsize) {
+               case '0': rSAKfinal[0] = 0x09; break; // Mifare Mini
+               case '2': rSAKfinal[0] = 0x10; break; // Mifare 2K
+               case '4': rSAKfinal[0] = 0x18; break; // Mifare 4K
+               default: rSAKfinal[0] = 0x08;         // Mifare 1K
+       }
+       ComputeCrc14443(CRC_14443_A, rSAKfinal, 1, rSAKfinal + 1, rSAKfinal + 2);
+       if (MF_DBGLEVEL >= MF_DBG_INFO)   {
+               Dbprintf("SAK:    %02x", rSAKfinal[0]);
+       }
+
+       // set SAK for incomplete UID
+       rSAK1[0] = 0x04;                          // Bit 3 indicates incomplete UID
+       ComputeCrc14443(CRC_14443_A, rSAK1, 1, rSAK1 + 1, rSAK1 + 2);
+
+       // set ATQA based on cardsize and UIDlen
+       if (cardsize == '4') {
+               rATQA[0] = 0x02;
+       } else {
+               rATQA[0] = 0x04;
+       }
+       if (*uid_len == 7) {
+               rATQA[0] |= 0x40;
+       }
+       if (MF_DBGLEVEL >= MF_DBG_INFO)   {
+               Dbprintf("ATQA:   %02x %02x", rATQA[1], rATQA[0]);
+       }
+
        static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
        static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
-               { .response = rATQA,     .response_n = sizeof(rATQA)  },                // Answer to request - respond with card type
-               { .response = rUIDBCC1,  .response_n = sizeof(rUIDBCC1) },              // Anticollision cascade1 - respond with first part of uid
-               { .response = rUIDBCC2,  .response_n = sizeof(rUIDBCC2) },              // Anticollision cascade2 - respond with 2nd part of uid 
-               { .response = rSAKfinal, .response_n = sizeof(rSAKfinal)  },    // Acknowledge select - last cascade
-               { .response = rSAK1,     .response_n = sizeof(rSAK1) }                  // Acknowledge select - previous cascades
+               { .response = rATQA,     .response_n = sizeof(rATQA)  },        // Answer to request - respond with card type
+               { .response = rUIDBCC1,  .response_n = sizeof(rUIDBCC1) },      // Anticollision cascade1 - respond with first part of uid
+               { .response = rUIDBCC2,  .response_n = sizeof(rUIDBCC2) },      // Anticollision cascade2 - respond with 2nd part of uid
+               { .response = rSAKfinal, .response_n = sizeof(rSAKfinal)  },    // Acknowledge select - last cascade
+               { .response = rSAK1,     .response_n = sizeof(rSAK1) }          // Acknowledge select - previous cascades
        };
 
        // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT
        };
 
        // Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT
-       // There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) 
+       // There are 5 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
        // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits  ->   need 177 bytes buffer
        // 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits  ->   need 177 bytes buffer
-       #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177        // number of bytes required for precompiled responses
+       #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177    // number of bytes required for precompiled responses
 
        uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
        size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
 
        uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
        size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
@@ -262,22 +307,23 @@ static bool HasValidCRC(uint8_t *receivedCmd, uint16_t receivedCmd_len) {
 
 
 /**
 
 
 /**
-  *MIFARE 1K simulate.
+  *MIFARE simulate.
   *
   *@param flags :
   *
   *@param flags :
-  *    FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
+  * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
   * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
   * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
   * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
   * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
-  * FLAG_10B_UID_IN_DATA       - use 10-byte UID in the data-section not finished
-  *    FLAG_NR_AR_ATTACK  - means we should collect NR_AR responses for bruteforcing later
+  * FLAG_NR_AR_ATTACK  - means we should collect NR_AR responses for bruteforcing later
   * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
   *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
   * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
   */
   * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
   *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
   * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
   */
-void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
+void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain)
 {
 {
+       LED_A_ON();
+
        tag_response_info_t *responses;
        tag_response_info_t *responses;
-       uint8_t uid_len = 4; 
+       uint8_t uid_len = 4;
        uint32_t cuid = 0;
        uint8_t cardWRBL = 0;
        uint8_t cardAUTHSC = 0;
        uint32_t cuid = 0;
        uint8_t cardWRBL = 0;
        uint8_t cardAUTHSC = 0;
@@ -288,48 +334,47 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        uint32_t cardINTREG = 0;
        uint8_t cardINTBLOCK = 0;
        struct Crypto1State mpcs = {0, 0};
        uint32_t cardINTREG = 0;
        uint8_t cardINTBLOCK = 0;
        struct Crypto1State mpcs = {0, 0};
-       struct Crypto1State *pcs;
-       pcs = &mpcs;
-       uint32_t numReads = 0;//Counts numer of times reader reads a block
+       struct Crypto1State *pcs = &mpcs;
+       uint32_t numReads = 0; //Counts numer of times reader reads a block
        uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
        uint16_t receivedCmd_len;
        uint8_t response[MAX_MIFARE_FRAME_SIZE];
        uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
        uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE];
        uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
        uint16_t receivedCmd_len;
        uint8_t response[MAX_MIFARE_FRAME_SIZE];
        uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
-       
-       uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
-       uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
-               
-       //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
+       uint8_t fixed_nonce[] = {0x01, 0x02, 0x03, 0x04};
+
+       int num_blocks = ParamCardSizeBlocks(cardsize);
+
+       // Here we collect UID, sector, keytype, NT, AR, NR, NT2, AR2, NR2
        // This will be used in the reader-only attack.
 
        // This will be used in the reader-only attack.
 
-       //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
+       // allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
        #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
        #define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
-       nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
+       nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // *2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
        memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
 
        memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
 
-       uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius)
+       uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // *2 for 2nd attack type (moebius)
        memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
        memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
-       uint8_t nonce1_count = 0;
-       uint8_t nonce2_count = 0;
-       uint8_t moebius_n_count = 0;
+       uint8_t nonce1_count = 0;
+       uint8_t nonce2_count = 0;
+       uint8_t moebius_n_count = 0;
        bool gettingMoebius = false;
        bool gettingMoebius = false;
-       uint8_t mM = 0; //moebius_modifier for collection storage
+       uint8_t mM = 0; // moebius_modifier for collection storage
 
        // Authenticate response - nonce
        uint32_t nonce;
        if (flags & FLAG_RANDOM_NONCE) {
                nonce = prand();
        } else {
 
        // Authenticate response - nonce
        uint32_t nonce;
        if (flags & FLAG_RANDOM_NONCE) {
                nonce = prand();
        } else {
-               nonce = bytes_to_num(rAUTH_NT, 4);
+               nonce = bytes_to_num(fixed_nonce, 4);
        }
 
        // free eventually allocated BigBuf memory but keep Emulator Memory
        BigBuf_free_keep_EM();
 
        }
 
        // free eventually allocated BigBuf memory but keep Emulator Memory
        BigBuf_free_keep_EM();
 
-       MifareSimInit(flags, datain, &responses, &cuid, &uid_len);
-       
+       MifareSimInit(flags, datain, &responses, &cuid, &uid_len, cardsize);
+
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
        // We need to listen to the high-frequency, peak-detected path.
        iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
@@ -337,7 +382,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        clear_trace();
        set_tracing(true);
        ResetSspClk();
        clear_trace();
        set_tracing(true);
        ResetSspClk();
-       
+
        bool finished = false;
        bool button_pushed = BUTTON_PRESS();
        int cardSTATE = MFEMUL_NOFIELD;
        bool finished = false;
        bool button_pushed = BUTTON_PRESS();
        int cardSTATE = MFEMUL_NOFIELD;
@@ -345,25 +390,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
        while (!button_pushed && !finished && !usb_poll_validate_length()) {
                WDT_HIT();
 
        while (!button_pushed && !finished && !usb_poll_validate_length()) {
                WDT_HIT();
 
-               // find reader field
                if (cardSTATE == MFEMUL_NOFIELD) {
                if (cardSTATE == MFEMUL_NOFIELD) {
+                       // wait for reader HF field
                        int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
                        if (vHf > MF_MINFIELDV) {
                        int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
                        if (vHf > MF_MINFIELDV) {
-                               LED_A_ON();
-                               cardSTATE_TO_IDLE();
+                               LED_D_ON();
+                               cardSTATE = MFEMUL_IDLE;
                        }
                        button_pushed = BUTTON_PRESS();
                        continue;
                }
 
                //Now, get data
                        }
                        button_pushed = BUTTON_PRESS();
                        continue;
                }
 
                //Now, get data
+               FpgaEnableTracing();
                int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par);
                int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par);
-               
-               if (res == 2) { //Field is off!
-                       LEDsoff();
+
+               if (res == 2) { //  Reader has dropped the HF field. Power off.
+                       FpgaDisableTracing();
+                       LED_D_OFF();
                        cardSTATE = MFEMUL_NOFIELD;
                        continue;
                } else if (res == 1) { // button pressed
                        cardSTATE = MFEMUL_NOFIELD;
                        continue;
                } else if (res == 1) { // button pressed
+                       FpgaDisableTracing();
                        button_pushed = true;
                        break;
                }
                        button_pushed = true;
                        break;
                }
@@ -371,6 +419,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                // WUPA in HALTED state or REQA or WUPA in any other state
                if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
                        EmSendPrecompiledCmd(&responses[ATQA]);
                // WUPA in HALTED state or REQA or WUPA in any other state
                if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
                        EmSendPrecompiledCmd(&responses[ATQA]);
+                       FpgaDisableTracing();
 
                        // init crypto block
                        crypto1_destroy(pcs);
 
                        // init crypto block
                        crypto1_destroy(pcs);
@@ -378,66 +427,68 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                        if (flags & FLAG_RANDOM_NONCE) {
                                nonce = prand();
                        }
                        if (flags & FLAG_RANDOM_NONCE) {
                                nonce = prand();
                        }
-                       LED_B_OFF();
-                       LED_C_OFF();
                        cardSTATE = MFEMUL_SELECT1;
                        continue;
                }
                        cardSTATE = MFEMUL_SELECT1;
                        continue;
                }
-               
+
                switch (cardSTATE) {
                        case MFEMUL_NOFIELD:
                        case MFEMUL_HALTED:
                        case MFEMUL_IDLE:{
                                break;
                        }
                switch (cardSTATE) {
                        case MFEMUL_NOFIELD:
                        case MFEMUL_HALTED:
                        case MFEMUL_IDLE:{
                                break;
                        }
+
                        case MFEMUL_SELECT1:{
                                // select all - 0x93 0x20
                                if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
                        case MFEMUL_SELECT1:{
                                // select all - 0x93 0x20
                                if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("SELECT ALL CL1 received");
                                        EmSendPrecompiledCmd(&responses[UIDBCC1]);
                                        EmSendPrecompiledCmd(&responses[UIDBCC1]);
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED)   Dbprintf("SELECT ALL CL1 received");
                                        break;
                                }
                                // select card - 0x93 0x70 ...
                                if (receivedCmd_len == 9 &&
                                                (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) {
                                        break;
                                }
                                // select card - 0x93 0x70 ...
                                if (receivedCmd_len == 9 &&
                                                (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) {
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
                                        if (uid_len == 4) {
                                                EmSendPrecompiledCmd(&responses[SAKfinal]);
                                        if (uid_len == 4) {
                                                EmSendPrecompiledCmd(&responses[SAKfinal]);
-                                               LED_B_ON();
                                                cardSTATE = MFEMUL_WORK;
                                                cardSTATE = MFEMUL_WORK;
-                                               break;
                                        } else if (uid_len == 7) {
                                                EmSendPrecompiledCmd(&responses[SAK1]);
                                        } else if (uid_len == 7) {
                                                EmSendPrecompiledCmd(&responses[SAK1]);
-                                               cardSTATE       = MFEMUL_SELECT2;
-                                               break;
+                                               cardSTATE = MFEMUL_SELECT2;
                                        }
                                        }
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
+                                       break;
                                }
                                }
-                               cardSTATE_TO_IDLE();
+                               cardSTATE = MFEMUL_IDLE;
                                break;
                        }
                                break;
                        }
+
                        case MFEMUL_SELECT2:{
                                // select all cl2 - 0x95 0x20
                                if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
                        case MFEMUL_SELECT2:{
                                // select all cl2 - 0x95 0x20
                                if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("SELECT ALL CL2 received");
                                        EmSendPrecompiledCmd(&responses[UIDBCC2]);
                                        EmSendPrecompiledCmd(&responses[UIDBCC2]);
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED)   Dbprintf("SELECT ALL CL2 received");
                                        break;
                                }
                                // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
                                        break;
                                }
                                // select cl2 card - 0x95 0x70 xxxxxxxxxxxx
-                               if (receivedCmd_len == 9 && 
+                               if (receivedCmd_len == 9 &&
                                                (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) {
                                        if (uid_len == 7) {
                                                (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) {
                                        if (uid_len == 7) {
-                                               if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
                                                EmSendPrecompiledCmd(&responses[SAKfinal]);
                                                EmSendPrecompiledCmd(&responses[SAKfinal]);
-                                               LED_B_ON();
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
                                                cardSTATE = MFEMUL_WORK;
                                                break;
                                        }
                                }
                                                cardSTATE = MFEMUL_WORK;
                                                break;
                                        }
                                }
-                               cardSTATE_TO_IDLE();
+                               cardSTATE = MFEMUL_IDLE;
                                break;
                        }
                                break;
                        }
+
                        case MFEMUL_WORK:{
                        case MFEMUL_WORK:{
-                               if (receivedCmd_len != 4) {     // all commands must have exactly 4 bytes
+                               if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes
                                        break;
                                }
                                bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ;
                                        break;
                                }
                                bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ;
@@ -448,76 +499,92 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
                                }
                                if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC
                                        memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
                                }
                                if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC
-                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                       EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_TR));
                                        break;
                                }
                                        break;
                                }
+
                                if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) {
                                        // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
                                if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) {
                                        // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
-                                       if (receivedCmd_dec[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) {
+                                       if (receivedCmd_dec[1] >= num_blocks && !(flags & FLAG_NR_AR_ATTACK)) {
                                                //is this the correct response to an auth on a out of range block? marshmellow
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                //is this the correct response to an auth on a out of range block? marshmellow
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
                                                break;
                                        }
                                                break;
                                        }
-                                       cardAUTHSC = receivedCmd_dec[1] / 4;  // received block num
+                                       cardAUTHSC = BlockToSector(receivedCmd_dec[1]);  // received block num
                                        cardAUTHKEY = receivedCmd_dec[0] & 0x01;
                                        crypto1_destroy(pcs);//Added by martin
                                        crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
                                        if (!encrypted_data) { // first authentication
                                        cardAUTHKEY = receivedCmd_dec[0] & 0x01;
                                        crypto1_destroy(pcs);//Added by martin
                                        crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
                                        if (!encrypted_data) { // first authentication
-                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
-                                               crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
-                                               num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
+                                               crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state
+                                               num_to_bytes(nonce, 4, response);   // Send unencrypted nonce
+                                               EmSendCmd(response, sizeof(nonce));
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
                                        } else { // nested authentication
                                        } else { // nested authentication
-                                               if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
-                                               ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
-                                               num_to_bytes(ans, 4, rAUTH_AT);
+                                               num_to_bytes(nonce, sizeof(nonce), response);
+                                               uint8_t pcs_in[4] = {0};
+                                               num_to_bytes(cuid ^ nonce, sizeof(nonce), pcs_in);
+                                               mf_crypto1_encryptEx(pcs, response, pcs_in, sizeof(nonce), response_par);
+                                               EmSendCmdPar(response, sizeof(nonce), response_par); // send encrypted nonce
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
                                        }
                                        }
-                                       EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
                                        cardSTATE = MFEMUL_AUTH1;
                                        break;
                                }
                                        cardSTATE = MFEMUL_AUTH1;
                                        break;
                                }
-                               if (!encrypted_data) { // all other commands must be encrypted (authenticated)
+
+                               // halt can be sent encrypted or in clear
+                               if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED)   Dbprintf("--> HALTED.");
+                                       cardSTATE = MFEMUL_HALTED;
                                        break;
                                }
                                        break;
                                }
+
                                if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
                                        || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
                                        || receivedCmd_dec[0] == MIFARE_CMD_INC
                                        || receivedCmd_dec[0] == MIFARE_CMD_DEC
                                        || receivedCmd_dec[0] == MIFARE_CMD_RESTORE
                                        || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
                                if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
                                        || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
                                        || receivedCmd_dec[0] == MIFARE_CMD_INC
                                        || receivedCmd_dec[0] == MIFARE_CMD_DEC
                                        || receivedCmd_dec[0] == MIFARE_CMD_RESTORE
                                        || receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
-                                       if (receivedCmd_dec[1] >= 16 * 4) {
+                                       if (receivedCmd_dec[1] >= num_blocks) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
                                                break;
                                        }
                                                break;
                                        }
-                                       if (receivedCmd_dec[1] / 4 != cardAUTHSC) {
+                                       if (BlockToSector(receivedCmd_dec[1]) != cardAUTHSC) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC);
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC);
                                                break;
                                        }
                                }
                                                break;
                                        }
                                }
+
                                if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
                                        uint8_t blockNo = receivedCmd_dec[1];
                                if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
                                        uint8_t blockNo = receivedCmd_dec[1];
-                                       if (MF_DBGLEVEL >= 4) {
-                                               Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
-                                       }
                                        emlGetMem(response, blockNo, 1);
                                        if (IsSectorTrailer(blockNo)) {
                                        emlGetMem(response, blockNo, 1);
                                        if (IsSectorTrailer(blockNo)) {
-                                               memset(response, 0x00, 6);      // keyA can never be read
+                                               memset(response, 0x00, 6);  // keyA can never be read
                                                if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) {
                                                if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) {
-                                                       memset(response+10, 0x00, 6);   // keyB cannot be read
+                                                       memset(response+10, 0x00, 6);   // keyB cannot be read
                                                }
                                                if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) {
                                                }
                                                if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) {
-                                                       memset(response+6, 0x00, 4);    // AC bits cannot be read
+                                                       memset(response+6, 0x00, 4);    // AC bits cannot be read
                                                }
                                        } else {
                                                if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) {
                                                }
                                        } else {
                                                if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) {
-                                                       memset(response, 0x00, 16);             // datablock cannot be read
+                                                       memset(response, 0x00, 16);     // datablock cannot be read
                                                }
                                        }
                                        AppendCrc14443a(response, 16);
                                        mf_crypto1_encrypt(pcs, response, 18, response_par);
                                        EmSendCmdPar(response, 18, response_par);
                                                }
                                        }
                                        AppendCrc14443a(response, 16);
                                        mf_crypto1_encrypt(pcs, response, 18, response_par);
                                        EmSendCmdPar(response, 18, response_par);
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
+                                               Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
+                                       }
                                        numReads++;
                                        if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
                                                Dbprintf("%d reads done, exiting", numReads);
                                        numReads++;
                                        if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
                                                Dbprintf("%d reads done, exiting", numReads);
@@ -525,23 +592,33 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                        }
                                        break;
                                }
                                        }
                                        break;
                                }
+
                                if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
                                        uint8_t blockNo = receivedCmd_dec[1];
                                if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
                                        uint8_t blockNo = receivedCmd_dec[1];
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
                                        EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
                                        EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
                                        cardWRBL = blockNo;
                                        cardSTATE = MFEMUL_WRITEBL2;
                                        break;
                                }
                                        cardWRBL = blockNo;
                                        cardSTATE = MFEMUL_WRITEBL2;
                                        break;
                                }
+
                                if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
                                        uint8_t blockNo = receivedCmd_dec[1];
                                if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
                                        uint8_t blockNo = receivedCmd_dec[1];
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
                                        if (emlCheckValBl(blockNo)) {
                                        if (emlCheckValBl(blockNo)) {
-                                               if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                                               FpgaDisableTracing();
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
+                                                       Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
+                                               }
+                                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
                                                break;
                                        }
                                        EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
                                                break;
                                        }
                                        EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
+                                               Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
+                                       }
                                        cardWRBL = blockNo;
                                        if (receivedCmd_dec[0] == MIFARE_CMD_INC)
                                                cardSTATE = MFEMUL_INTREG_INC;
                                        cardWRBL = blockNo;
                                        if (receivedCmd_dec[0] == MIFARE_CMD_INC)
                                                cardSTATE = MFEMUL_INTREG_INC;
@@ -551,31 +628,29 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                cardSTATE = MFEMUL_INTREG_REST;
                                        break;
                                }
                                                cardSTATE = MFEMUL_INTREG_REST;
                                        break;
                                }
+
                                if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
                                        uint8_t blockNo = receivedCmd_dec[1];
                                if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
                                        uint8_t blockNo = receivedCmd_dec[1];
-                                       if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
                                        if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]))
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                        else
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
                                        if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]))
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                        else
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
                                        break;
                                }
                                        break;
                                }
-                               // halt
-                               if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
-                                       if (MF_DBGLEVEL >= 4)   Dbprintf("--> HALTED.");
-                                       LED_B_OFF();
-                                       LED_C_OFF();
-                                       cardSTATE = MFEMUL_HALTED;
-                                       break;
-                               }
+
                                // command not allowed
                                // command not allowed
-                               if (MF_DBGLEVEL >= 4)   Dbprintf("Received command not allowed, nacking");
                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+                               FpgaDisableTracing();
+                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking");
+                               cardSTATE = MFEMUL_IDLE;
                                break;
                        }
                                break;
                        }
+
                        case MFEMUL_AUTH1:{
                                if (receivedCmd_len != 8) {
                        case MFEMUL_AUTH1:{
                                if (receivedCmd_len != 8) {
-                                       cardSTATE_TO_IDLE();
+                                       cardSTATE = MFEMUL_IDLE;
                                        break;
                                }
 
                                        break;
                                }
 
@@ -590,7 +665,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                        if (ar_nr_collected[i+mM] < 2) {
                                                                // if we haven't already collected 2 nonces for this sector
                                                                if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
                                                        if (ar_nr_collected[i+mM] < 2) {
                                                                // if we haven't already collected 2 nonces for this sector
                                                                if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
-                                                                       // Avoid duplicates... probably not necessary, ar should vary. 
+                                                                       // Avoid duplicates... probably not necessary, ar should vary.
                                                                        if (ar_nr_collected[i+mM]==0) {
                                                                                // first nonce collect
                                                                                ar_nr_resp[i+mM].cuid = cuid;
                                                                        if (ar_nr_collected[i+mM]==0) {
                                                                                // first nonce collect
                                                                                ar_nr_resp[i+mM].cuid = cuid;
@@ -618,7 +693,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                                                        if ( nonce2_count == nonce1_count ) {
                                                                                                // done collecting std test switch to moebius
                                                                                                // first finish incrementing last sample
                                                                                        if ( nonce2_count == nonce1_count ) {
                                                                                                // done collecting std test switch to moebius
                                                                                                // first finish incrementing last sample
-                                                                                               ar_nr_collected[i+mM]++; 
+                                                                                               ar_nr_collected[i+mM]++;
                                                                                                // switch to moebius collection
                                                                                                gettingMoebius = true;
                                                                                                mM = ATTACK_KEY_COUNT;
                                                                                                // switch to moebius collection
                                                                                                gettingMoebius = true;
                                                                                                mM = ATTACK_KEY_COUNT;
@@ -650,25 +725,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
                                // test if auth OK
                                if (cardRr != prng_successor(nonce, 64)){
 
                                // test if auth OK
                                if (cardRr != prng_successor(nonce, 64)){
-                                       if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+                                       FpgaDisableTracing();
+                                       if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
                                                        cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
                                                        cardRr, prng_successor(nonce, 64));
                                        // Shouldn't we respond anything here?
                                        // Right now, we don't nack or anything, which causes the
                                        // reader to do a WUPA after a while. /Martin
                                        // -- which is the correct response. /piwi
                                                        cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
                                                        cardRr, prng_successor(nonce, 64));
                                        // Shouldn't we respond anything here?
                                        // Right now, we don't nack or anything, which causes the
                                        // reader to do a WUPA after a while. /Martin
                                        // -- which is the correct response. /piwi
-                                       cardAUTHKEY = AUTHKEYNONE;      // not authenticated
-                                       cardSTATE_TO_IDLE();
+                                       cardAUTHKEY = AUTHKEYNONE;  // not authenticated
+                                       cardSTATE = MFEMUL_IDLE;
                                        break;
                                }
                                        break;
                                }
-                               ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
-                               num_to_bytes(ans, 4, rAUTH_AT);
-                               EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
-                               if (MF_DBGLEVEL >= 4)   Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
-                               LED_C_ON();
+                               ans = prng_successor(nonce, 96);
+                               num_to_bytes(ans, 4, response);
+                               mf_crypto1_encrypt(pcs, response, 4, response_par);
+                               EmSendCmdPar(response, 4, response_par);
+                               FpgaDisableTracing();
+                               if (MF_DBGLEVEL >= MF_DBG_EXTENDED)   Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
                                cardSTATE = MFEMUL_WORK;
                                break;
                        }
                                cardSTATE = MFEMUL_WORK;
                                break;
                        }
+
                        case MFEMUL_WRITEBL2:{
                                if (receivedCmd_len == 18) {
                                        mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
                        case MFEMUL_WRITEBL2:{
                                if (receivedCmd_len == 18) {
                                        mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
@@ -676,73 +754,80 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                if (IsSectorTrailer(cardWRBL)) {
                                                        emlGetMem(response, cardWRBL, 1);
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
                                                if (IsSectorTrailer(cardWRBL)) {
                                                        emlGetMem(response, cardWRBL, 1);
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
-                                                               memcpy(receivedCmd_dec, response, 6);   // don't change KeyA
+                                                               memcpy(receivedCmd_dec, response, 6);   // don't change KeyA
                                                        }
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
                                                        }
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
-                                                               memcpy(receivedCmd_dec+10, response+10, 6);     // don't change KeyA
+                                                               memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA
                                                        }
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
                                                        }
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
-                                                               memcpy(receivedCmd_dec+6, response+6, 4);       // don't change AC bits
+                                                               memcpy(receivedCmd_dec+6, response+6, 4);   // don't change AC bits
                                                        }
                                                } else {
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
                                                        }
                                                } else {
                                                        if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
-                                                               memcpy(receivedCmd_dec, response, 16);  // don't change anything
+                                                               memcpy(receivedCmd_dec, response, 16);  // don't change anything
                                                        }
                                                }
                                                emlSetMem(receivedCmd_dec, cardWRBL, 1);
                                                        }
                                                }
                                                emlSetMem(receivedCmd_dec, cardWRBL, 1);
-                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));      // always ACK?
+                                               EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));  // always ACK?
                                                cardSTATE = MFEMUL_WORK;
                                                break;
                                        }
                                }
                                                cardSTATE = MFEMUL_WORK;
                                                break;
                                        }
                                }
-                               cardSTATE_TO_IDLE();
+                               cardSTATE = MFEMUL_IDLE;
                                break;
                        }
                                break;
                        }
+
                        case MFEMUL_INTREG_INC:{
                                if (receivedCmd_len == 6) {
                                        mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
                                        if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                        case MFEMUL_INTREG_INC:{
                                if (receivedCmd_len == 6) {
                                        mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
                                        if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               cardSTATE_TO_IDLE();
+                                               cardSTATE = MFEMUL_IDLE;
                                                break;
                                        }
                                        cardINTREG = cardINTREG + ans;
                                                break;
                                        }
                                        cardINTREG = cardINTREG + ans;
+                                       cardSTATE = MFEMUL_WORK;
                                }
                                }
-                               cardSTATE = MFEMUL_WORK;
                                break;
                        }
                                break;
                        }
+
                        case MFEMUL_INTREG_DEC:{
                                if (receivedCmd_len == 6) {
                                        mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
                                        if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                        case MFEMUL_INTREG_DEC:{
                                if (receivedCmd_len == 6) {
                                        mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
                                        if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
                                                EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                               cardSTATE_TO_IDLE();
+                                               cardSTATE = MFEMUL_IDLE;
                                                break;
                                        }
                                                break;
                                        }
+                                       cardINTREG = cardINTREG - ans;
+                                       cardSTATE = MFEMUL_WORK;
                                }
                                }
-                               cardINTREG = cardINTREG - ans;
-                               cardSTATE = MFEMUL_WORK;
                                break;
                        }
                                break;
                        }
+
                        case MFEMUL_INTREG_REST:{
                                mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
                                if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
                                        EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
                        case MFEMUL_INTREG_REST:{
                                mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
                                if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
                                        EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
-                                       cardSTATE_TO_IDLE();
+                                       cardSTATE = MFEMUL_IDLE;
                                        break;
                                }
                                cardSTATE = MFEMUL_WORK;
                                break;
                        }
                                        break;
                                }
                                cardSTATE = MFEMUL_WORK;
                                break;
                        }
-               }
+
+               } // end of switch
+
+               FpgaDisableTracing();
                button_pushed = BUTTON_PRESS();
                button_pushed = BUTTON_PRESS();
-       }
+
+       } // end of while
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
 
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 
-       if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
-               for ( uint8_t   i = 0; i < ATTACK_KEY_COUNT; i++) {
+       if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= MF_DBG_INFO) {
+               for ( uint8_t   i = 0; i < ATTACK_KEY_COUNT; i++) {
                        if (ar_nr_collected[i] == 2) {
                                Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
                                Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
                        if (ar_nr_collected[i] == 2) {
                                Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
                                Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
@@ -754,11 +839,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                                                ar_nr_resp[i].ar2    //AR2
                                                );
                        }
                                                ar_nr_resp[i].ar2    //AR2
                                                );
                        }
-               }       
-               for ( uint8_t   i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+               }
+               for ( uint8_t   i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
                        if (ar_nr_collected[i] == 2) {
                                Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
                        if (ar_nr_collected[i] == 2) {
                                Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
-                               Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+                               Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x %08x",
                                                ar_nr_resp[i].cuid,  //UID
                                                ar_nr_resp[i].nonce, //NT
                                                ar_nr_resp[i].nr,    //NR1
                                                ar_nr_resp[i].cuid,  //UID
                                                ar_nr_resp[i].nonce, //NT
                                                ar_nr_resp[i].nr,    //NR1
@@ -770,10 +855,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
                        }
                }
        }
                        }
                }
        }
-       if (MF_DBGLEVEL >= 1)   Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", get_tracing(), BigBuf_get_traceLen());
+       if (MF_DBGLEVEL >= MF_DBG_INFO) Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ", get_tracing(), BigBuf_get_traceLen());
 
        if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
                //Send the collected ar_nr in the response
 
        if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
                //Send the collected ar_nr in the response
-               cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp));
+               cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp));
        }
        }
+
+       LED_A_OFF();
 }
 }
index 1e17a882ad0ecf10e2c8037a28291cf08f766533..8f089b85c939fbd6aca1eaf5b9412cde7afed4f1 100644 (file)
@@ -15,6 +15,6 @@
 
 #include <stdint.h>
 
 
 #include <stdint.h>
 
-extern void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain);
+extern void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain);
 
 #endif
 
 #endif
index ab04aee45917a1ec9497e339284e06176f124266..36e29721044272f017073452310ee75dc701e494 100644 (file)
 #include "crapto1/crapto1.h"\r
 #include "mbedtls/des.h"\r
 \r
 #include "crapto1/crapto1.h"\r
 #include "mbedtls/des.h"\r
 \r
-int MF_DBGLEVEL = MF_DBG_ALL;\r
+int MF_DBGLEVEL = MF_DBG_INFO;\r
 \r
 // crypto1 helpers\r
 void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){\r
 \r
 // crypto1 helpers\r
 void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out){\r
-       uint8_t bt = 0;\r
+       uint8_t bt = 0;\r
        int i;\r
        int i;\r
-       \r
+\r
        if (len != 1) {\r
                for (i = 0; i < len; i++)\r
                        data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i];\r
        if (len != 1) {\r
                for (i = 0; i < len; i++)\r
                        data_out[i] = crypto1_byte(pcs, 0x00, 0) ^ data_in[i];\r
@@ -37,7 +37,7 @@ void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, u
                bt = 0;\r
                for (i = 0; i < 4; i++)\r
                        bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], i)) << i;\r
                bt = 0;\r
                for (i = 0; i < 4; i++)\r
                        bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data_in[0], i)) << i;\r
-                               \r
+\r
                data_out[0] = bt;\r
        }\r
        return;\r
                data_out[0] = bt;\r
        }\r
        return;\r
@@ -47,28 +47,32 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len){
        mf_crypto1_decryptEx(pcs, data, len, data);\r
 }\r
 \r
        mf_crypto1_decryptEx(pcs, data, len, data);\r
 }\r
 \r
-void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) {\r
+void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in, uint16_t len, uint8_t *par) {\r
        uint8_t bt = 0;\r
        int i;\r
        par[0] = 0;\r
        uint8_t bt = 0;\r
        int i;\r
        par[0] = 0;\r
-       \r
+\r
        for (i = 0; i < len; i++) {\r
                bt = data[i];\r
        for (i = 0; i < len; i++) {\r
                bt = data[i];\r
-               data[i] = crypto1_byte(pcs, 0x00, 0) ^ data[i];\r
-               if((i&0x0007) == 0) \r
+               data[i] = crypto1_byte(pcs, in==NULL?0x00:in[i], 0) ^ data[i];\r
+               if((i&0x0007) == 0)\r
                        par[i>>3] = 0;\r
                par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007)));\r
                        par[i>>3] = 0;\r
                par[i>>3] |= (((filter(pcs->odd) ^ oddparity8(bt)) & 0x01)<<(7-(i&0x0007)));\r
-       }       \r
+       }\r
        return;\r
 }\r
 \r
        return;\r
 }\r
 \r
+void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par) {\r
+       mf_crypto1_encryptEx(pcs, data, NULL, len, par);\r
+}\r
+\r
 uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {\r
        uint8_t bt = 0;\r
        int i;\r
 \r
        for (i = 0; i < 4; i++)\r
                bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i;\r
 uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {\r
        uint8_t bt = 0;\r
        int i;\r
 \r
        for (i = 0; i < 4; i++)\r
                bt |= (crypto1_bit(pcs, 0, 0) ^ BIT(data, i)) << i;\r
-               \r
+\r
        return bt;\r
 }\r
 \r
        return bt;\r
 }\r
 \r
@@ -94,20 +98,20 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
 {\r
        uint8_t dcmd[4], ecmd[4];\r
        uint16_t pos, res;\r
 {\r
        uint8_t dcmd[4], ecmd[4];\r
        uint16_t pos, res;\r
-       uint8_t par[1];                 // 1 Byte parity is enough here\r
+       uint8_t par[1];         // 1 Byte parity is enough here\r
        dcmd[0] = cmd;\r
        dcmd[1] = data;\r
        AppendCrc14443a(dcmd, 2);\r
        dcmd[0] = cmd;\r
        dcmd[1] = data;\r
        AppendCrc14443a(dcmd, 2);\r
-       \r
+\r
        memcpy(ecmd, dcmd, sizeof(dcmd));\r
        memcpy(ecmd, dcmd, sizeof(dcmd));\r
-       \r
+\r
        if (crypted) {\r
                par[0] = 0;\r
                for (pos = 0; pos < 4; pos++)\r
                {\r
                        ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];\r
                        par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos));\r
        if (crypted) {\r
                par[0] = 0;\r
                for (pos = 0; pos < 4; pos++)\r
                {\r
                        ecmd[pos] = crypto1_byte(pcs, 0x00, 0) ^ dcmd[pos];\r
                        par[0] |= (((filter(pcs->odd) ^ oddparity8(dcmd[pos])) & 0x01) << (7-pos));\r
-               }       \r
+               }\r
 \r
                ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);\r
 \r
 \r
                ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);\r
 \r
@@ -116,17 +120,17 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
        }\r
 \r
        int len = ReaderReceive(answer, par);\r
        }\r
 \r
        int len = ReaderReceive(answer, par);\r
-       \r
+\r
        if (answer_parity) *answer_parity = par[0];\r
        if (answer_parity) *answer_parity = par[0];\r
-       \r
+\r
        if (crypted == CRYPT_ALL) {\r
                if (len == 1) {\r
                        res = 0;\r
                        for (pos = 0; pos < 4; pos++)\r
                                res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos;\r
        if (crypted == CRYPT_ALL) {\r
                if (len == 1) {\r
                        res = 0;\r
                        for (pos = 0; pos < 4; pos++)\r
                                res |= (crypto1_bit(pcs, 0, 0) ^ BIT(answer[0], pos)) << pos;\r
-                               \r
+\r
                        answer[0] = res;\r
                        answer[0] = res;\r
-                       \r
+\r
                } else {\r
                        for (pos = 0; pos < len; pos++)\r
                        {\r
                } else {\r
                        for (pos = 0; pos < len; pos++)\r
                        {\r
@@ -134,41 +138,41 @@ int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd,
                        }\r
                }\r
        }\r
                        }\r
                }\r
        }\r
-       \r
+\r
        return len;\r
 }\r
 \r
 // mifare classic commands\r
        return len;\r
 }\r
 \r
 // mifare classic commands\r
-int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested) \r
+int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested)\r
 {\r
        return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);\r
 }\r
 \r
 {\r
        return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);\r
 }\r
 \r
-int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing) \r
+int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint8_t isNested, uint32_t *ntptr, uint32_t *timing)\r
 {\r
        // variables\r
 {\r
        // variables\r
-       int len;        \r
+       int len;\r
        uint32_t pos;\r
        uint8_t tmp4[4];\r
        uint8_t par[1] = {0x00};\r
        byte_t nr[4];\r
        uint32_t nt, ntpp; // Supplied tag nonce\r
        uint32_t pos;\r
        uint8_t tmp4[4];\r
        uint8_t par[1] = {0x00};\r
        byte_t nr[4];\r
        uint32_t nt, ntpp; // Supplied tag nonce\r
-       \r
+\r
        uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
        uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
-       \r
+\r
        // Transmit MIFARE_CLASSIC_AUTH\r
        len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);\r
        // Transmit MIFARE_CLASSIC_AUTH\r
        len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, receivedAnswerPar, timing);\r
-       if (MF_DBGLEVEL >= 4)   Dbprintf("rand tag nonce len: %x", len);  \r
+       if (MF_DBGLEVEL >= 4)   Dbprintf("rand tag nonce len: %x", len);\r
        if (len != 4) return 1;\r
        if (len != 4) return 1;\r
-       \r
+\r
        // "random" reader nonce:\r
        nr[0] = 0x55;\r
        nr[1] = 0x41;\r
        nr[2] = 0x49;\r
        // "random" reader nonce:\r
        nr[0] = 0x55;\r
        nr[1] = 0x41;\r
        nr[2] = 0x49;\r
-       nr[3] = 0x92; \r
-       \r
+       nr[3] = 0x92;\r
+\r
        // Save the tag nonce (nt)\r
        nt = bytes_to_num(receivedAnswer, 4);\r
 \r
        // Save the tag nonce (nt)\r
        nt = bytes_to_num(receivedAnswer, 4);\r
 \r
@@ -180,7 +184,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
        crypto1_create(pcs, ui64Key);\r
 \r
        if (isNested == AUTH_NESTED) {\r
        crypto1_create(pcs, ui64Key);\r
 \r
        if (isNested == AUTH_NESTED) {\r
-               // decrypt nt with help of new key \r
+               // decrypt nt with help of new key\r
                nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt;\r
        } else {\r
                // Load (plain) uid^nt into the cipher\r
                nt = crypto1_word(pcs, nt ^ uid, 1) ^ nt;\r
        } else {\r
                // Load (plain) uid^nt into the cipher\r
@@ -189,8 +193,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
 \r
        // some statistic\r
        if (!ntptr && (MF_DBGLEVEL >= 3))\r
 \r
        // some statistic\r
        if (!ntptr && (MF_DBGLEVEL >= 3))\r
-               Dbprintf("auth uid: %08x nt: %08x", uid, nt);  \r
-       \r
+               Dbprintf("auth uid: %08x nt: %08x", uid, nt);\r
+\r
        // save Nt\r
        if (ntptr)\r
                *ntptr = nt;\r
        // save Nt\r
        if (ntptr)\r
                *ntptr = nt;\r
@@ -201,8 +205,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
        {\r
                mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];\r
                par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos));\r
        {\r
                mf_nr_ar[pos] = crypto1_byte(pcs, nr[pos], 0) ^ nr[pos];\r
                par[0] |= (((filter(pcs->odd) ^ oddparity8(nr[pos])) & 0x01) << (7-pos));\r
-       }       \r
-               \r
+       }\r
+\r
        // Skip 32 bits in pseudo random generator\r
        nt = prng_successor(nt,32);\r
 \r
        // Skip 32 bits in pseudo random generator\r
        nt = prng_successor(nt,32);\r
 \r
@@ -212,8 +216,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
                nt = prng_successor(nt,8);\r
                mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);\r
                par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));\r
                nt = prng_successor(nt,8);\r
                mf_nr_ar[pos] = crypto1_byte(pcs,0x00,0) ^ (nt & 0xff);\r
                par[0] |= (((filter(pcs->odd) ^ oddparity8(nt)) & 0x01) << (7-pos));\r
-       }       \r
-               \r
+       }\r
+\r
        // Transmit reader nonce and reader answer\r
        ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);\r
 \r
        // Transmit reader nonce and reader answer\r
        ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);\r
 \r
@@ -221,48 +225,48 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
        len = ReaderReceive(receivedAnswer, receivedAnswerPar);\r
        if (!len)\r
        {\r
        len = ReaderReceive(receivedAnswer, receivedAnswerPar);\r
        if (!len)\r
        {\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Authentication failed. Card timeout.");\r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Authentication failed. Card timeout.");\r
                return 2;\r
        }\r
                return 2;\r
        }\r
-       \r
+\r
        memcpy(tmp4, receivedAnswer, 4);\r
        ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0);\r
        memcpy(tmp4, receivedAnswer, 4);\r
        ntpp = prng_successor(nt, 32) ^ crypto1_word(pcs, 0,0);\r
-       \r
+\r
        if (ntpp != bytes_to_num(tmp4, 4)) {\r
        if (ntpp != bytes_to_num(tmp4, 4)) {\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Authentication failed. Error card response.");\r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Authentication failed. Error card response.");\r
                return 3;\r
        }\r
 \r
        return 0;\r
 }\r
 \r
                return 3;\r
        }\r
 \r
        return 0;\r
 }\r
 \r
-int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) \r
+int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)\r
 {\r
        // variables\r
 {\r
        // variables\r
-       int len;        \r
-       uint8_t bt[2];\r
-       \r
+       int len;\r
+       uint8_t bt[2];\r
+\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
-       \r
+\r
        // command MIFARE_CLASSIC_READBLOCK\r
        len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);\r
        if (len == 1) {\r
        // command MIFARE_CLASSIC_READBLOCK\r
        len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, receivedAnswerPar, NULL);\r
        if (len == 1) {\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd Error: %02x", receivedAnswer[0]);  \r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd Error: %02x", receivedAnswer[0]);\r
                return 1;\r
        }\r
        if (len != 18) {\r
                return 1;\r
        }\r
        if (len != 18) {\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd Error: card timeout. len: %x", len);  \r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd Error: card timeout. len: %x", len);\r
                return 2;\r
        }\r
 \r
        memcpy(bt, receivedAnswer + 16, 2);\r
        AppendCrc14443a(receivedAnswer, 16);\r
        if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {\r
                return 2;\r
        }\r
 \r
        memcpy(bt, receivedAnswer + 16, 2);\r
        AppendCrc14443a(receivedAnswer, 16);\r
        if (bt[0] != receivedAnswer[16] || bt[1] != receivedAnswer[17]) {\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd CRC response error.");  \r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd CRC response error.");\r
                return 3;\r
        }\r
                return 3;\r
        }\r
-       \r
+\r
        memcpy(blockData, receivedAnswer, 16);\r
        return 0;\r
 }\r
        memcpy(blockData, receivedAnswer, 16);\r
        return 0;\r
 }\r
@@ -277,7 +281,7 @@ int mifare_ul_ev1_auth(uint8_t *keybytes, uint8_t *pack){
        memcpy(key, keybytes, 4);\r
 \r
        if (MF_DBGLEVEL >= MF_DBG_EXTENDED)\r
        memcpy(key, keybytes, 4);\r
 \r
        if (MF_DBGLEVEL >= MF_DBG_EXTENDED)\r
-               Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]);\r
+               Dbprintf("EV1 Auth : %02x%02x%02x%02x", key[0], key[1], key[2], key[3]);\r
        len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL);\r
        //len = mifare_sendcmd_short_mfuev1auth(NULL, 0, 0x1B, key, resp, respPar, NULL);\r
        if (len != 4) {\r
        len = mifare_sendcmd(0x1B, key, sizeof(key), resp, respPar, NULL);\r
        //len = mifare_sendcmd_short_mfuev1auth(NULL, 0, 0x1B, key, resp, respPar, NULL);\r
        if (len != 4) {\r
@@ -322,12 +326,12 @@ int mifare_ultra_auth(uint8_t *keybytes){
        // decrypt nonce.\r
        // tdes_2key_dec(random_b, enc_random_b, sizeof(random_b), key, IV );\r
        mbedtls_des3_set2key_dec(&ctx, key);\r
        // decrypt nonce.\r
        // tdes_2key_dec(random_b, enc_random_b, sizeof(random_b), key, IV );\r
        mbedtls_des3_set2key_dec(&ctx, key);\r
-       mbedtls_des3_crypt_cbc(&ctx     // des3_context\r
-               , MBEDTLS_DES_DECRYPT           // int mode\r
-               , sizeof(random_b)      // length\r
-               , IV                    // iv[8]\r
-               , enc_random_b          // input\r
-               , random_b                      // output\r
+       mbedtls_des3_crypt_cbc(&ctx     // des3_context\r
+               , MBEDTLS_DES_DECRYPT       // int mode\r
+               , sizeof(random_b)  // length\r
+               , IV                // iv[8]\r
+               , enc_random_b      // input\r
+               , random_b          // output\r
                );\r
 \r
        rol(random_b,8);\r
                );\r
 \r
        rol(random_b,8);\r
@@ -351,12 +355,12 @@ int mifare_ultra_auth(uint8_t *keybytes){
        // encrypt    out, in, length, key, iv\r
        //tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b);\r
        mbedtls_des3_set2key_enc(&ctx, key);\r
        // encrypt    out, in, length, key, iv\r
        //tdes_2key_enc(rnd_ab, rnd_ab, sizeof(rnd_ab), key, enc_random_b);\r
        mbedtls_des3_set2key_enc(&ctx, key);\r
-       mbedtls_des3_crypt_cbc(&ctx     // des3_context\r
-               , MBEDTLS_DES_ENCRYPT           // int mode\r
-               , sizeof(rnd_ab)        // length\r
-               , enc_random_b          // iv[8]\r
-               , rnd_ab                        // input\r
-               , rnd_ab                        // output\r
+       mbedtls_des3_crypt_cbc(&ctx     // des3_context\r
+               , MBEDTLS_DES_ENCRYPT       // int mode\r
+               , sizeof(rnd_ab)    // length\r
+               , enc_random_b      // iv[8]\r
+               , rnd_ab            // input\r
+               , rnd_ab            // output\r
                );\r
 \r
        //len = mifare_sendcmd_short_mfucauth(NULL, 1, 0xAF, rnd_ab, resp, respPar, NULL);\r
                );\r
 \r
        //len = mifare_sendcmd_short_mfucauth(NULL, 1, 0xAF, rnd_ab, resp, respPar, NULL);\r
@@ -370,15 +374,15 @@ int mifare_ultra_auth(uint8_t *keybytes){
        uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 };\r
        memcpy(enc_resp, resp+1, 8);\r
 \r
        uint8_t resp_random_a[8] = { 0,0,0,0,0,0,0,0 };\r
        memcpy(enc_resp, resp+1, 8);\r
 \r
-       // decrypt    out, in, length, key, iv \r
+       // decrypt    out, in, length, key, iv\r
        // tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b);\r
        mbedtls_des3_set2key_dec(&ctx, key);\r
        // tdes_2key_dec(resp_random_a, enc_resp, 8, key, enc_random_b);\r
        mbedtls_des3_set2key_dec(&ctx, key);\r
-       mbedtls_des3_crypt_cbc(&ctx     // des3_context\r
-               , MBEDTLS_DES_DECRYPT           // int mode\r
-               , 8                                     // length\r
-               , enc_random_b          // iv[8]\r
-               , enc_resp                      // input\r
-               , resp_random_a         // output\r
+       mbedtls_des3_crypt_cbc(&ctx     // des3_context\r
+               , MBEDTLS_DES_DECRYPT       // int mode\r
+               , 8                 // length\r
+               , enc_random_b      // iv[8]\r
+               , enc_resp          // input\r
+               , resp_random_a     // output\r
                );\r
        if ( memcmp(resp_random_a, random_a, 8) != 0 ) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication");\r
                );\r
        if ( memcmp(resp_random_a, random_a, 8) != 0 ) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("failed authentication");\r
@@ -386,7 +390,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
        }\r
 \r
        if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {\r
        }\r
 \r
        if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {\r
-               Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x", \r
+               Dbprintf("e_AB: %02x %02x %02x %02x %02x %02x %02x %02x",\r
                                rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3],\r
                                rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]);\r
 \r
                                rnd_ab[0],rnd_ab[1],rnd_ab[2],rnd_ab[3],\r
                                rnd_ab[4],rnd_ab[5],rnd_ab[6],rnd_ab[7]);\r
 \r
@@ -410,7 +414,7 @@ int mifare_ultra_auth(uint8_t *keybytes){
 int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)\r
 {\r
        uint16_t len;\r
 int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)\r
 {\r
        uint16_t len;\r
-       uint8_t bt[2];\r
+       uint8_t bt[2];\r
        uint8_t receivedAnswer[MAX_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_PARITY_SIZE];\r
        uint8_t retries;\r
        uint8_t receivedAnswer[MAX_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_PARITY_SIZE];\r
        uint8_t retries;\r
@@ -451,55 +455,55 @@ int mifare_ultra_readblock(uint8_t blockNo, uint8_t *blockData)
        return 0;\r
 }\r
 \r
        return 0;\r
 }\r
 \r
-int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData) \r
+int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData)\r
 {\r
        // variables\r
 {\r
        // variables\r
-       uint16_t len, i;        \r
+       uint16_t len, i;\r
        uint32_t pos;\r
        uint32_t pos;\r
-       uint8_t par[3] = {0};           // enough for 18 Bytes to send\r
+       uint8_t par[3] = {0};       // enough for 18 Bytes to send\r
        byte_t res;\r
        byte_t res;\r
-       \r
+\r
        uint8_t d_block[18], d_block_enc[18];\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
        uint8_t d_block[18], d_block_enc[18];\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
-       \r
+\r
        // command MIFARE_CLASSIC_WRITEBLOCK\r
        len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);\r
 \r
        if ((len != 1) || (receivedAnswer[0] != 0x0A)) {   //  0x0a - ACK\r
        // command MIFARE_CLASSIC_WRITEBLOCK\r
        len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, receivedAnswerPar, NULL);\r
 \r
        if ((len != 1) || (receivedAnswer[0] != 0x0A)) {   //  0x0a - ACK\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd Error: %02x", receivedAnswer[0]);  \r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd Error: %02x", receivedAnswer[0]);\r
                return 1;\r
        }\r
                return 1;\r
        }\r
-       \r
+\r
        memcpy(d_block, blockData, 16);\r
        AppendCrc14443a(d_block, 16);\r
        memcpy(d_block, blockData, 16);\r
        AppendCrc14443a(d_block, 16);\r
-       \r
+\r
        // crypto\r
        for (pos = 0; pos < 18; pos++)\r
        {\r
                d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];\r
                par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));\r
        // crypto\r
        for (pos = 0; pos < 18; pos++)\r
        {\r
                d_block_enc[pos] = crypto1_byte(pcs, 0x00, 0) ^ d_block[pos];\r
                par[pos>>3] |= (((filter(pcs->odd) ^ oddparity8(d_block[pos])) & 0x01) << (7 - (pos&0x0007)));\r
-       }       \r
+       }\r
 \r
        ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);\r
 \r
        // Receive the response\r
 \r
        ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);\r
 \r
        // Receive the response\r
-       len = ReaderReceive(receivedAnswer, receivedAnswerPar); \r
+       len = ReaderReceive(receivedAnswer, receivedAnswerPar);\r
 \r
        res = 0;\r
        for (i = 0; i < 4; i++)\r
                res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i;\r
 \r
        if ((len != 1) || (res != 0x0A)) {\r
 \r
        res = 0;\r
        for (i = 0; i < 4; i++)\r
                res |= (crypto1_bit(pcs, 0, 0) ^ BIT(receivedAnswer[0], i)) << i;\r
 \r
        if ((len != 1) || (res != 0x0A)) {\r
-               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd send data2 Error: %02x", res);  \r
+               if (MF_DBGLEVEL >= 1)   Dbprintf("Cmd send data2 Error: %02x", res);\r
                return 2;\r
        }\r
                return 2;\r
        }\r
-       \r
+\r
        return 0;\r
 }\r
 \r
 /* // command not needed, but left for future testing\r
        return 0;\r
 }\r
 \r
 /* // command not needed, but left for future testing\r
-int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData) \r
+int mifare_ultra_writeblock_compat(uint8_t blockNo, uint8_t *blockData)\r
 {\r
        uint16_t len;\r
        uint8_t par[3] = {0};  // enough for 18 parity bits\r
 {\r
        uint16_t len;\r
        uint8_t par[3] = {0};  // enough for 18 parity bits\r
@@ -553,16 +557,16 @@ int mifare_ultra_writeblock(uint8_t blockNo, uint8_t *blockData)
        return 0;\r
 }\r
 \r
        return 0;\r
 }\r
 \r
-int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid) \r
+int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)\r
 {\r
 {\r
-       uint16_t len;   \r
+       uint16_t len;\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
 \r
        len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);\r
        if (len != 0) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
 \r
        len = mifare_sendcmd_short(pcs, pcs == NULL ? false:true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);\r
        if (len != 0) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
-                       Dbprintf("halt error. response len: %x", len);  \r
+                       Dbprintf("halt error. response len: %x", len);\r
                return 1;\r
        }\r
 \r
                return 1;\r
        }\r
 \r
@@ -574,7 +578,7 @@ int mifare_ultra_halt()
        uint16_t len;\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
        uint16_t len;\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
-    \r
+\r
        len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);\r
        if (len != 0) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
        len = mifare_sendcmd_short(NULL, true, 0x50, 0x00, receivedAnswer, receivedAnswerPar, NULL);\r
        if (len != 0) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
@@ -587,21 +591,21 @@ int mifare_ultra_halt()
 \r
 // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),\r
 // plus evtl. 8 sectors with 16 blocks each (4k cards)\r
 \r
 // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),\r
 // plus evtl. 8 sectors with 16 blocks each (4k cards)\r
-uint8_t NumBlocksPerSector(uint8_t sectorNo) \r
+uint8_t NumBlocksPerSector(uint8_t sectorNo)\r
 {\r
 {\r
-       if (sectorNo < 32) \r
+       if (sectorNo < 32)\r
                return 4;\r
        else\r
                return 16;\r
 }\r
 \r
                return 4;\r
        else\r
                return 16;\r
 }\r
 \r
-uint8_t FirstBlockOfSector(uint8_t sectorNo) \r
+uint8_t FirstBlockOfSector(uint8_t sectorNo)\r
 {\r
        if (sectorNo < 32)\r
                return sectorNo * 4;\r
        else\r
                return 32*4 + (sectorNo - 32) * 16;\r
 {\r
        if (sectorNo < 32)\r
                return sectorNo * 4;\r
        else\r
                return 32*4 + (sectorNo - 32) * 16;\r
-               \r
+\r
 }\r
 \r
 uint8_t SectorTrailer(uint8_t blockNo)\r
 }\r
 \r
 uint8_t SectorTrailer(uint8_t blockNo)\r
@@ -644,7 +648,7 @@ int emlCheckValBl(int blockNum) {
                        (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) ||\r
                        (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) ||\r
                        (data[12] != (data[15] ^ 0xff))\r
                        (data[3] != (data[7] ^ 0xff)) || (data[3] != data[11]) ||\r
                        (data[12] != (data[13] ^ 0xff)) || (data[12] != data[14]) ||\r
                        (data[12] != (data[15] ^ 0xff))\r
-                ) \r
+                )\r
                return 1;\r
        return 0;\r
 }\r
                return 1;\r
        return 0;\r
 }\r
@@ -652,11 +656,11 @@ int emlCheckValBl(int blockNum) {
 int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
        uint8_t* data = emCARD + blockNum * 16;\r
 int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
        uint8_t* data = emCARD + blockNum * 16;\r
-       \r
+\r
        if (emlCheckValBl(blockNum)) {\r
                return 1;\r
        }\r
        if (emlCheckValBl(blockNum)) {\r
                return 1;\r
        }\r
-       \r
+\r
        memcpy(blReg, data, 4);\r
        *blBlock = data[12];\r
        return 0;\r
        memcpy(blReg, data, 4);\r
        *blBlock = data[12];\r
        return 0;\r
@@ -665,41 +669,41 @@ int emlGetValBl(uint32_t *blReg, uint8_t *blBlock, int blockNum) {
 int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
        uint8_t* data = emCARD + blockNum * 16;\r
 int emlSetValBl(uint32_t blReg, uint8_t blBlock, int blockNum) {\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
        uint8_t* data = emCARD + blockNum * 16;\r
-       \r
+\r
        memcpy(data + 0, &blReg, 4);\r
        memcpy(data + 8, &blReg, 4);\r
        blReg = blReg ^ 0xffffffff;\r
        memcpy(data + 4, &blReg, 4);\r
        memcpy(data + 0, &blReg, 4);\r
        memcpy(data + 8, &blReg, 4);\r
        blReg = blReg ^ 0xffffffff;\r
        memcpy(data + 4, &blReg, 4);\r
-       \r
+\r
        data[12] = blBlock;\r
        data[13] = blBlock ^ 0xff;\r
        data[14] = blBlock;\r
        data[15] = blBlock ^ 0xff;\r
        data[12] = blBlock;\r
        data[13] = blBlock ^ 0xff;\r
        data[14] = blBlock;\r
        data[15] = blBlock ^ 0xff;\r
-       \r
+\r
        return 0;\r
 }\r
 \r
 uint64_t emlGetKey(int sectorNum, int keyType) {\r
        uint8_t key[6];\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
        return 0;\r
 }\r
 \r
 uint64_t emlGetKey(int sectorNum, int keyType) {\r
        uint8_t key[6];\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
-       \r
+\r
        memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);\r
        return bytes_to_num(key, 6);\r
 }\r
 \r
 void emlClearMem(void) {\r
        int b;\r
        memcpy(key, emCARD + 16 * (FirstBlockOfSector(sectorNum) + NumBlocksPerSector(sectorNum) - 1) + keyType * 10, 6);\r
        return bytes_to_num(key, 6);\r
 }\r
 \r
 void emlClearMem(void) {\r
        int b;\r
-       \r
+\r
        const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};\r
        const uint8_t uid[]   =   {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
        const uint8_t trailer[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x07, 0x80, 0x69, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};\r
        const uint8_t uid[]   =   {0xe6, 0x84, 0x87, 0xf3, 0x16, 0x88, 0x04, 0x00, 0x46, 0x8e, 0x45, 0x55, 0x4d, 0x70, 0x41, 0x04};\r
        uint8_t* emCARD = BigBuf_get_EM_addr();\r
-       \r
+\r
        memset(emCARD, 0, CARD_MEMORY_SIZE);\r
        memset(emCARD, 0, CARD_MEMORY_SIZE);\r
-       \r
+\r
        // fill sectors trailer data\r
        for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {\r
                emlSetMem((uint8_t *)trailer, b , 1);\r
        // fill sectors trailer data\r
        for(b = 3; b < 256; b<127?(b+=4):(b+=16)) {\r
                emlSetMem((uint8_t *)trailer, b , 1);\r
-       }       \r
+       }\r
 \r
        // uid\r
        emlSetMem((uint8_t *)uid, 0, 1);\r
 \r
        // uid\r
        emlSetMem((uint8_t *)uid, 0, 1);\r
@@ -710,35 +714,35 @@ void emlClearMem(void) {
 // Mifare desfire commands\r
 int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)\r
 {\r
 // Mifare desfire commands\r
 int mifare_sendcmd_special(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer, uint8_t *answer_parity, uint32_t *timing)\r
 {\r
-    uint8_t dcmd[5] = {0x00};\r
-    dcmd[0] = cmd;\r
-    memcpy(dcmd+1,data,2);\r
+       uint8_t dcmd[5] = {0x00};\r
+       dcmd[0] = cmd;\r
+       memcpy(dcmd+1,data,2);\r
        AppendCrc14443a(dcmd, 3);\r
        AppendCrc14443a(dcmd, 3);\r
-       \r
+\r
        ReaderTransmit(dcmd, sizeof(dcmd), NULL);\r
        int len = ReaderReceive(answer, answer_parity);\r
        if(!len) {\r
        ReaderTransmit(dcmd, sizeof(dcmd), NULL);\r
        int len = ReaderReceive(answer, answer_parity);\r
        if(!len) {\r
-               if (MF_DBGLEVEL >= MF_DBG_ERROR) \r
+               if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
                        Dbprintf("Authentication failed. Card timeout.");\r
                return 1;\r
                        Dbprintf("Authentication failed. Card timeout.");\r
                return 1;\r
-    }\r
+       }\r
        return len;\r
 }\r
 \r
 int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing)\r
 {\r
        return len;\r
 }\r
 \r
 int mifare_sendcmd_special2(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t* data, uint8_t* answer,uint8_t *answer_parity, uint32_t *timing)\r
 {\r
-    uint8_t dcmd[20] = {0x00};\r
-    dcmd[0] = cmd;\r
-    memcpy(dcmd+1,data,17);\r
+       uint8_t dcmd[20] = {0x00};\r
+       dcmd[0] = cmd;\r
+       memcpy(dcmd+1,data,17);\r
        AppendCrc14443a(dcmd, 18);\r
 \r
        ReaderTransmit(dcmd, sizeof(dcmd), NULL);\r
        int len = ReaderReceive(answer, answer_parity);\r
        if(!len){\r
        AppendCrc14443a(dcmd, 18);\r
 \r
        ReaderTransmit(dcmd, sizeof(dcmd), NULL);\r
        int len = ReaderReceive(answer, answer_parity);\r
        if(!len){\r
-        if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
+               if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
                        Dbprintf("Authentication failed. Card timeout.");\r
                return 1;\r
                        Dbprintf("Authentication failed. Card timeout.");\r
                return 1;\r
-    }\r
+       }\r
        return len;\r
 }\r
 \r
        return len;\r
 }\r
 \r
@@ -749,23 +753,23 @@ int mifare_desfire_des_auth1(uint32_t uid, uint8_t *blockData){
        uint8_t data[2]={0x0a, 0x00};\r
        uint8_t receivedAnswer[MAX_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_PARITY_SIZE];\r
        uint8_t data[2]={0x0a, 0x00};\r
        uint8_t receivedAnswer[MAX_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_PARITY_SIZE];\r
-       \r
+\r
        len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL);\r
        if (len == 1) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
                        Dbprintf("Cmd Error: %02x", receivedAnswer[0]);\r
                return 1;\r
        }\r
        len = mifare_sendcmd_special(NULL, 1, 0x02, data, receivedAnswer,receivedAnswerPar,NULL);\r
        if (len == 1) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
                        Dbprintf("Cmd Error: %02x", receivedAnswer[0]);\r
                return 1;\r
        }\r
-       \r
+\r
        if (len == 12) {\r
        if (len == 12) {\r
-               if (MF_DBGLEVEL >= MF_DBG_EXTENDED)     {\r
+               if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {\r
                        Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",\r
                                receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4],\r
                                receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9],\r
                                receivedAnswer[10],receivedAnswer[11]);\r
                        }\r
                        memcpy(blockData, receivedAnswer, 12);\r
                        Dbprintf("Auth1 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",\r
                                receivedAnswer[0],receivedAnswer[1],receivedAnswer[2],receivedAnswer[3],receivedAnswer[4],\r
                                receivedAnswer[5],receivedAnswer[6],receivedAnswer[7],receivedAnswer[8],receivedAnswer[9],\r
                                receivedAnswer[10],receivedAnswer[11]);\r
                        }\r
                        memcpy(blockData, receivedAnswer, 12);\r
-               return 0;\r
+                       return 0;\r
        }\r
        return 1;\r
 }\r
        }\r
        return 1;\r
 }\r
@@ -776,18 +780,18 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData){
        uint8_t data[17] = {0x00};\r
        data[0] = 0xAF;\r
        memcpy(data+1,key,16);\r
        uint8_t data[17] = {0x00};\r
        data[0] = 0xAF;\r
        memcpy(data+1,key,16);\r
-       \r
+\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
        uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];\r
        uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];\r
-       \r
+\r
        len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL);\r
        len = mifare_sendcmd_special2(NULL, 1, 0x03, data, receivedAnswer, receivedAnswerPar ,NULL);\r
-       \r
+\r
        if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
                        Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]);\r
                return 1;\r
        }\r
        if ((receivedAnswer[0] == 0x03) && (receivedAnswer[1] == 0xae)) {\r
                if (MF_DBGLEVEL >= MF_DBG_ERROR)\r
                        Dbprintf("Auth Error: %02x %02x", receivedAnswer[0], receivedAnswer[1]);\r
                return 1;\r
        }\r
-       \r
+\r
        if (len == 12){\r
                if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {\r
                        Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",\r
        if (len == 12){\r
                if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {\r
                        Dbprintf("Auth2 Resp: %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",\r
@@ -816,7 +820,7 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
        if (*cascade_levels == 0) { // need a full select cycle to get the uid first\r
                iso14a_card_select_t card_info;\r
                if(!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {\r
        if (*cascade_levels == 0) { // need a full select cycle to get the uid first\r
                iso14a_card_select_t card_info;\r
                if(!iso14443a_select_card(uid, &card_info, cuid, true, 0, true)) {\r
-                       if (debugLevel >= 1)    Dbprintf("ChkKeys: Can't select card");\r
+                       if (debugLevel >= 1)    Dbprintf("ChkKeys: Can't select card");\r
                        return  1;\r
                }\r
                switch (card_info.uidlen) {\r
                        return  1;\r
                }\r
                switch (card_info.uidlen) {\r
@@ -827,26 +831,26 @@ int MifareChkBlockKey(uint8_t *uid, uint32_t *cuid, uint8_t *cascade_levels, uin
                }\r
        } else { // no need for anticollision. We can directly select the card\r
                if(!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {\r
                }\r
        } else { // no need for anticollision. We can directly select the card\r
                if(!iso14443a_select_card(uid, NULL, NULL, false, *cascade_levels, true)) {\r
-                       if (debugLevel >= 1)    Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);\r
+                       if (debugLevel >= 1)    Dbprintf("ChkKeys: Can't select card (UID) lvl=%d", *cascade_levels);\r
                        return  1;\r
                }\r
        }\r
                        return  1;\r
                }\r
        }\r
-       \r
+\r
        if(mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {\r
        if(mifare_classic_auth(pcs, *cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {\r
-//             SpinDelayUs(AUTHENTICATION_TIMEOUT); // it not needs because mifare_classic_auth have timeout from iso14a_set_timeout()\r
+//      SpinDelayUs(AUTHENTICATION_TIMEOUT); // it not needs because mifare_classic_auth have timeout from iso14a_set_timeout()\r
                return 2;\r
        } else {\r
                return 2;\r
        } else {\r
-/*             // let it be here. it like halt command, but maybe it will work in some strange cases\r
+/*      // let it be here. it like halt command, but maybe it will work in some strange cases\r
                uint8_t dummy_answer = 0;\r
                ReaderTransmit(&dummy_answer, 1, NULL);\r
                uint8_t dummy_answer = 0;\r
                ReaderTransmit(&dummy_answer, 1, NULL);\r
-               int timeout = GetCountSspClk() + AUTHENTICATION_TIMEOUT;                        \r
+               int timeout = GetCountSspClk() + AUTHENTICATION_TIMEOUT;\r
                // wait for the card to become ready again\r
                while(GetCountSspClk() < timeout) {};\r
 */\r
                // it needs after success authentication\r
                mifare_classic_halt(pcs, *cuid);\r
        }\r
                // wait for the card to become ready again\r
                while(GetCountSspClk() < timeout) {};\r
 */\r
                // it needs after success authentication\r
                mifare_classic_halt(pcs, *cuid);\r
        }\r
-       \r
+\r
        return 0;\r
 }\r
 \r
        return 0;\r
 }\r
 \r
@@ -861,14 +865,14 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
        for (uint8_t i = 0; i < keyCount; i++) {\r
 \r
                // Allow button press / usb cmd to interrupt device\r
        for (uint8_t i = 0; i < keyCount; i++) {\r
 \r
                // Allow button press / usb cmd to interrupt device\r
-               if (BUTTON_PRESS() && !usb_poll_validate_length()) { \r
+               if (BUTTON_PRESS() && !usb_poll_validate_length()) {\r
                        Dbprintf("ChkKeys: Cancel operation. Exit...");\r
                        return -2;\r
                }\r
 \r
                ui64Key = bytes_to_num(keys + i * 6, 6);\r
                int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, debugLevel);\r
                        Dbprintf("ChkKeys: Cancel operation. Exit...");\r
                        return -2;\r
                }\r
 \r
                ui64Key = bytes_to_num(keys + i * 6, 6);\r
                int res = MifareChkBlockKey(uid, &cuid, &cascade_levels, ui64Key, blockNo, keyType, debugLevel);\r
-               \r
+\r
                // can't select\r
                if (res == 1) {\r
                        retryCount++;\r
                // can't select\r
                if (res == 1) {\r
                        retryCount++;\r
@@ -879,10 +883,10 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
                        --i; // try the same key once again\r
 \r
                        SpinDelay(20);\r
                        --i; // try the same key once again\r
 \r
                        SpinDelay(20);\r
-//                     Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);\r
+//          Dbprintf("ChkKeys: block=%d key=%d. Try the same key once again...", blockNo, keyType);\r
                        continue;\r
                }\r
                        continue;\r
                }\r
-               \r
+\r
                // can't authenticate\r
                if (res == 2) {\r
                        retryCount = 0;\r
                // can't authenticate\r
                if (res == 2) {\r
                        retryCount = 0;\r
@@ -891,15 +895,15 @@ int MifareChkBlockKeys(uint8_t *keys, uint8_t keyCount, uint8_t blockNo, uint8_t
 \r
                return i + 1;\r
        }\r
 \r
                return i + 1;\r
        }\r
-       \r
+\r
        return 0;\r
 }\r
 \r
 // multisector multikey check\r
 int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint8_t debugLevel, TKeyIndex *keyIndex) {\r
        int res = 0;\r
        return 0;\r
 }\r
 \r
 // multisector multikey check\r
 int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, uint8_t keyType, uint8_t debugLevel, TKeyIndex *keyIndex) {\r
        int res = 0;\r
-       \r
-//     int clk = GetCountSspClk();\r
+\r
+//  int clk = GetCountSspClk();\r
 \r
        for(int sc = 0; sc < SectorCount; sc++){\r
                WDT_HIT();\r
 \r
        for(int sc = 0; sc < SectorCount; sc++){\r
                WDT_HIT();\r
@@ -915,9 +919,9 @@ int MifareMultisectorChk(uint8_t *keys, uint8_t keyCount, uint8_t SectorCount, u
                        }\r
                } while(--keyAB > 0);\r
        }\r
                        }\r
                } while(--keyAB > 0);\r
        }\r
-       \r
-//     Dbprintf("%d %d", GetCountSspClk() - clk, (GetCountSspClk() - clk)/(SectorCount*keyCount*(keyType==2?2:1)));\r
-       \r
+\r
+//  Dbprintf("%d %d", GetCountSspClk() - clk, (GetCountSspClk() - clk)/(SectorCount*keyCount*(keyType==2?2:1)));\r
+\r
        return 0;\r
 }\r
 \r
        return 0;\r
 }\r
 \r
index b2912895888fc47f948d9f5d68155cc946034564..589f780b6fab290182a8de9d2d7ec72357d75a10 100644 (file)
 #define MF_MINFIELDV      4000\r
 \r
 // debug\r
 #define MF_MINFIELDV      4000\r
 \r
 // debug\r
-// 0 - no debug messages 1 - error messages 2 - all messages 4 - extended debug mode\r
-#define MF_DBG_NONE          0\r
-#define MF_DBG_ERROR         1\r
-#define MF_DBG_ALL           2\r
-#define MF_DBG_EXTENDED      4\r
+#define MF_DBG_NONE          0  // no messages\r
+#define MF_DBG_ERROR         1  // errors only\r
+#define MF_DBG_INFO          2  // errors + info messages\r
+#define MF_DBG_DEBUG         3  // errors + info + debug messages\r
+#define MF_DBG_EXTENDED      4  // errors + info + debug + breaking debug messages\r
 \r
 extern int MF_DBGLEVEL;\r
 \r
 \r
 extern int MF_DBGLEVEL;\r
 \r
@@ -71,6 +71,7 @@ int mifare_desfire_des_auth2(uint32_t uid, uint8_t *key, uint8_t *blockData);
 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len);\r
 void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out);\r
 void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);\r
 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *receivedCmd, int len);\r
 void mf_crypto1_decryptEx(struct Crypto1State *pcs, uint8_t *data_in, int len, uint8_t *data_out);\r
 void mf_crypto1_encrypt(struct Crypto1State *pcs, uint8_t *data, uint16_t len, uint8_t *par);\r
+void mf_crypto1_encryptEx(struct Crypto1State *pcs, uint8_t *data, uint8_t *in, uint16_t len, uint8_t *par);\r
 uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);\r
 \r
 // Mifare memory structure\r
 uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data);\r
 \r
 // Mifare memory structure\r
index 1aa501e656eb8b41b4072d386d54ea49a40ba81e..4499cd0d82595099298a3933302fee902a4e77f9 100644 (file)
@@ -937,7 +937,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
        char line[16][110];
 
        for (int j = 0; j < data_len && j/16 < 16; j++) {
        char line[16][110];
 
        for (int j = 0; j < data_len && j/16 < 16; j++) {
-
                uint8_t parityBits = parityBytes[j>>3];
                if (protocol != ISO_14443B
                        && protocol != ISO_15693
                uint8_t parityBits = parityBytes[j>>3];
                if (protocol != ISO_14443B
                        && protocol != ISO_15693
@@ -948,7 +947,6 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
                } else {
                        snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]);
                }
                } else {
                        snprintf(line[j/16]+(( j % 16) * 4), 110, " %02x ", frame[j]);
                }
-
        }
 
        if (markCRCBytes) {
        }
 
        if (markCRCBytes) {
@@ -961,6 +959,13 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
                }
        }
 
                }
        }
 
+       // mark short bytes (less than 8 Bit + Parity)
+       if (protocol == ISO_14443A || protocol == PROTO_MIFARE) {
+               if (duration < 128 * (9 * data_len)) {
+                       line[(data_len-1)/16][((data_len-1)%16) * 4 + 3] = '\'';
+               }       
+       }
+       
        if (data_len == 0) {
                sprintf(line[0]," <empty trace - possible error>");
        }
        if (data_len == 0) {
                sprintf(line[0]," <empty trace - possible error>");
        }
@@ -990,7 +995,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
        int num_lines = MIN((data_len - 1)/16 + 1, 16);
        for (int j = 0; j < num_lines ; j++) {
                if (j == 0) {
        int num_lines = MIN((data_len - 1)/16 + 1, 16);
        for (int j = 0; j < num_lines ; j++) {
                if (j == 0) {
-                       PrintAndLog(" %10d | %10d | %s |%-64s | %s| %s",
+                       PrintAndLog(" %10" PRIu32 " | %10" PRIu32 " | %s |%-64s | %s| %s",
                                (timestamp - first_timestamp),
                                (EndOfTransmissionTimestamp - first_timestamp),
                                (isResponse ? "Tag" : "Rdr"),
                                (timestamp - first_timestamp),
                                (EndOfTransmissionTimestamp - first_timestamp),
                                (isResponse ? "Tag" : "Rdr"),
@@ -1004,7 +1009,7 @@ uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *trace, ui
                                (j == num_lines-1) ? explanation : "");
                }
        }
                                (j == num_lines-1) ? explanation : "");
                }
        }
-
+               
        if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) {
                memset(explanation, 0x00, sizeof(explanation));
                if (!isResponse) {
        if (DecodeMifareData(frame, data_len, parityBytes, isResponse, mfData, &mfDataLen)) {
                memset(explanation, 0x00, sizeof(explanation));
                if (!isResponse) {
@@ -1222,7 +1227,7 @@ int CmdHFList(const char *Cmd)
                PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
                PrintAndLog("iClass    - Timings are not as accurate");
                PrintAndLog("");
                PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
                PrintAndLog("iClass    - Timings are not as accurate");
                PrintAndLog("");
-               PrintAndLog("      Start |        End | Src | Data (! denotes parity error)                                   | CRC | Annotation         |");
+               PrintAndLog("      Start |        End | Src | Data (! denotes parity error, ' denotes short bytes)            | CRC | Annotation         |");
                PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|");
 
                ClearAuthData();
                PrintAndLog("------------|------------|-----|-----------------------------------------------------------------|-----|--------------------|");
 
                ClearAuthData();
index 1c006fbf6924d15c46009c5d048b447474a067f7..903e8575c4f6797d15553ce55bf560661e2846c7 100644 (file)
@@ -254,14 +254,14 @@ uint8_t NumBlocksPerSector(uint8_t sectorNo)
 }\r
 \r
 static int ParamCardSizeSectors(const char c) {\r
 }\r
 \r
 static int ParamCardSizeSectors(const char c) {\r
-       int numBlocks = 16;\r
+       int numSectors = 16;\r
        switch (c) {\r
        switch (c) {\r
-               case '0' : numBlocks = 5; break;\r
-               case '2' : numBlocks = 32; break;\r
-               case '4' : numBlocks = 40; break;\r
-               default:   numBlocks = 16;\r
+               case '0' : numSectors = 5; break;\r
+               case '2' : numSectors = 32; break;\r
+               case '4' : numSectors = 40; break;\r
+               default:   numSectors = 16;\r
        }\r
        }\r
-       return numBlocks;\r
+       return numSectors;\r
 }\r
 \r
 static int ParamCardSizeBlocks(const char c) {\r
 }\r
 \r
 static int ParamCardSizeBlocks(const char c) {\r
@@ -1421,11 +1421,12 @@ void readerAttack(nonces_t ar_resp[], bool setEmulatorMem, bool doStandardAttack
        }*/\r
 }\r
 \r
        }*/\r
 }\r
 \r
-int usage_hf14_mf1ksim(void) {\r
-       PrintAndLog("Usage:  hf mf sim h u <uid (8, 14, or 20 hex symbols)> n <numreads> i x");\r
+int usage_hf14_mfsim(void) {\r
+       PrintAndLog("Usage:  hf mf sim [h] [*<card memory>] [u <uid (8, 14, or 20 hex symbols)>] [n <numreads>] [i] [x]");\r
        PrintAndLog("options:");\r
        PrintAndLog("options:");\r
-       PrintAndLog("      h    this help");\r
-       PrintAndLog("      u    (Optional) UID 4,7 or 10 bytes. If not specified, the UID 4B from emulator memory will be used");\r
+       PrintAndLog("      h    (Optional) this help");\r
+       PrintAndLog("      card memory: 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other, default> - 1K");\r
+       PrintAndLog("      u    (Optional) UID 4 or 7 bytes. If not specified, the UID 4B from emulator memory will be used");\r
        PrintAndLog("      n    (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");\r
        PrintAndLog("      i    (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");\r
        PrintAndLog("      x    (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");\r
        PrintAndLog("      n    (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");\r
        PrintAndLog("      i    (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");\r
        PrintAndLog("      x    (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");\r
@@ -1434,21 +1435,20 @@ int usage_hf14_mf1ksim(void) {
        PrintAndLog("      r    (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works.");\r
        PrintAndLog("samples:");\r
        PrintAndLog("           hf mf sim u 0a0a0a0a");\r
        PrintAndLog("      r    (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works.");\r
        PrintAndLog("samples:");\r
        PrintAndLog("           hf mf sim u 0a0a0a0a");\r
+       PrintAndLog("           hf mf sim *4");\r
        PrintAndLog("           hf mf sim u 11223344556677");\r
        PrintAndLog("           hf mf sim u 11223344556677");\r
-       PrintAndLog("           hf mf sim u 112233445566778899AA");\r
        PrintAndLog("           hf mf sim f uids.txt");\r
        PrintAndLog("           hf mf sim u 0a0a0a0a e");\r
 \r
        return 0;\r
 }\r
 \r
        PrintAndLog("           hf mf sim f uids.txt");\r
        PrintAndLog("           hf mf sim u 0a0a0a0a e");\r
 \r
        return 0;\r
 }\r
 \r
-int CmdHF14AMf1kSim(const char *Cmd) {\r
+int CmdHF14AMfSim(const char *Cmd) {\r
        UsbCommand resp;\r
        UsbCommand resp;\r
-       uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};\r
+       uint8_t uid[7] = {0};\r
        uint8_t exitAfterNReads = 0;\r
        uint8_t flags = 0;\r
        int uidlen = 0;\r
        uint8_t exitAfterNReads = 0;\r
        uint8_t flags = 0;\r
        int uidlen = 0;\r
-       uint8_t pnr = 0;\r
        bool setEmulatorMem = false;\r
        bool attackFromFile = false;\r
        FILE *f;\r
        bool setEmulatorMem = false;\r
        bool attackFromFile = false;\r
        FILE *f;\r
@@ -1459,9 +1459,21 @@ int CmdHF14AMf1kSim(const char *Cmd) {
 \r
        uint8_t cmdp = 0;\r
        bool errors = false;\r
 \r
        uint8_t cmdp = 0;\r
        bool errors = false;\r
+       uint8_t cardsize = '1';\r
 \r
        while(param_getchar(Cmd, cmdp) != 0x00) {\r
                switch(param_getchar(Cmd, cmdp)) {\r
 \r
        while(param_getchar(Cmd, cmdp) != 0x00) {\r
                switch(param_getchar(Cmd, cmdp)) {\r
+               case '*': \r
+                       cardsize = param_getchar(Cmd + 1, cmdp);\r
+                       switch(cardsize) {\r
+                               case '0':\r
+                               case '1':\r
+                               case '2':\r
+                               case '4': break;\r
+                               default: cardsize = '1';\r
+                       }\r
+                       cmdp++;\r
+                       break;\r
                case 'e':\r
                case 'E':\r
                        setEmulatorMem = true;\r
                case 'e':\r
                case 'E':\r
                        setEmulatorMem = true;\r
@@ -1485,7 +1497,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
                        break;\r
                case 'h':\r
                case 'H':\r
                        break;\r
                case 'h':\r
                case 'H':\r
-                       return usage_hf14_mf1ksim();\r
+                       return usage_hf14_mfsim();\r
                case 'i':\r
                case 'I':\r
                        flags |= FLAG_INTERACTIVE;\r
                case 'i':\r
                case 'I':\r
                        flags |= FLAG_INTERACTIVE;\r
@@ -1493,7 +1505,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
                        break;\r
                case 'n':\r
                case 'N':\r
                        break;\r
                case 'n':\r
                case 'N':\r
-                       exitAfterNReads = param_get8(Cmd, pnr+1);\r
+                       exitAfterNReads = param_get8(Cmd, cmdp+1);\r
                        cmdp += 2;\r
                        break;\r
                case 'r':\r
                        cmdp += 2;\r
                        break;\r
                case 'r':\r
@@ -1505,10 +1517,9 @@ int CmdHF14AMf1kSim(const char *Cmd) {
                case 'U':\r
                        param_gethex_ex(Cmd, cmdp+1, uid, &uidlen);\r
                        switch(uidlen) {\r
                case 'U':\r
                        param_gethex_ex(Cmd, cmdp+1, uid, &uidlen);\r
                        switch(uidlen) {\r
-                               case 20: flags = FLAG_10B_UID_IN_DATA;  break; //not complete\r
                                case 14: flags = FLAG_7B_UID_IN_DATA; break;\r
                                case  8: flags = FLAG_4B_UID_IN_DATA; break;\r
                                case 14: flags = FLAG_7B_UID_IN_DATA; break;\r
                                case  8: flags = FLAG_4B_UID_IN_DATA; break;\r
-                               default: return usage_hf14_mf1ksim();\r
+                               default: return usage_hf14_mfsim();\r
                        }\r
                        cmdp += 2;\r
                        break;\r
                        }\r
                        cmdp += 2;\r
                        break;\r
@@ -1525,7 +1536,7 @@ int CmdHF14AMf1kSim(const char *Cmd) {
                if(errors) break;\r
        }\r
        //Validations\r
                if(errors) break;\r
        }\r
        //Validations\r
-       if(errors) return usage_hf14_mf1ksim();\r
+       if(errors) return usage_hf14_mfsim();\r
 \r
        //get uid from file\r
        if (attackFromFile) {\r
 \r
        //get uid from file\r
        if (attackFromFile) {\r
@@ -1552,7 +1563,6 @@ int CmdHF14AMf1kSim(const char *Cmd) {
 \r
                        uidlen = strlen(buf)-1;\r
                        switch(uidlen) {\r
 \r
                        uidlen = strlen(buf)-1;\r
                        switch(uidlen) {\r
-                               case 20: flags |= FLAG_10B_UID_IN_DATA; break; //not complete\r
                                case 14: flags |= FLAG_7B_UID_IN_DATA; break;\r
                                case  8: flags |= FLAG_4B_UID_IN_DATA; break;\r
                                default:\r
                                case 14: flags |= FLAG_7B_UID_IN_DATA; break;\r
                                case  8: flags |= FLAG_4B_UID_IN_DATA; break;\r
                                default:\r
@@ -1565,18 +1575,22 @@ int CmdHF14AMf1kSim(const char *Cmd) {
                                sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]);\r
                        }\r
 \r
                                sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]);\r
                        }\r
 \r
-                       PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort",\r
-                                       flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):\r
-                                               flags & FLAG_7B_UID_IN_DATA     ? sprint_hex(uid,7):\r
-                                                       flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A"\r
-                                       , exitAfterNReads, flags, flags);\r
+                       PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort",\r
+                               cardsize == '0' ? "Mini" :\r
+                                       cardsize == '2' ? "2K" :\r
+                                               cardsize == '4' ? "4K" : "1K",\r
+                               flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):\r
+                                       flags & FLAG_7B_UID_IN_DATA     ? sprint_hex(uid,7): "N/A",\r
+                               exitAfterNReads,\r
+                               flags,\r
+                               flags);\r
 \r
 \r
-                       UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};\r
+                       UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};\r
                        memcpy(c.d.asBytes, uid, sizeof(uid));\r
                        clearCommandBuffer();\r
                        SendCommand(&c);\r
 \r
                        memcpy(c.d.asBytes, uid, sizeof(uid));\r
                        clearCommandBuffer();\r
                        SendCommand(&c);\r
 \r
-                       while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {\r
+                       while (! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {\r
                                //We're waiting only 1.5 s at a time, otherwise we get the\r
                                // annoying message about "Waiting for a response... "\r
                        }\r
                                //We're waiting only 1.5 s at a time, otherwise we get the\r
                                // annoying message about "Waiting for a response... "\r
                        }\r
@@ -1593,22 +1607,27 @@ int CmdHF14AMf1kSim(const char *Cmd) {
                        count++;\r
                }\r
                fclose(f);\r
                        count++;\r
                }\r
                fclose(f);\r
-       } else { //not from file\r
 \r
 \r
-               PrintAndLog("mf 1k sim uid: %s, numreads:%d, flags:%d (0x%02x) ",\r
-                               flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):\r
-                                       flags & FLAG_7B_UID_IN_DATA     ? sprint_hex(uid,7):\r
-                                               flags & FLAG_10B_UID_IN_DATA ? sprint_hex(uid,10): "N/A"\r
-                               , exitAfterNReads, flags, flags);\r
+       } else { //not from file\r
 \r
 \r
-               UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads,0}};\r
+               PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ",\r
+                       cardsize == '0' ? "Mini" :\r
+                               cardsize == '2' ? "2K" :\r
+                                       cardsize == '4' ? "4K" : "1K",\r
+                       flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):\r
+                               flags & FLAG_7B_UID_IN_DATA     ? sprint_hex(uid,7): "N/A",\r
+                       exitAfterNReads,\r
+                       flags,\r
+                       flags);\r
+\r
+               UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};\r
                memcpy(c.d.asBytes, uid, sizeof(uid));\r
                clearCommandBuffer();\r
                SendCommand(&c);\r
 \r
                if(flags & FLAG_INTERACTIVE) {\r
                        PrintAndLog("Press pm3-button to abort simulation");\r
                memcpy(c.d.asBytes, uid, sizeof(uid));\r
                clearCommandBuffer();\r
                SendCommand(&c);\r
 \r
                if(flags & FLAG_INTERACTIVE) {\r
                        PrintAndLog("Press pm3-button to abort simulation");\r
-                       while(! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {\r
+                       while(! WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {\r
                                //We're waiting only 1.5 s at a time, otherwise we get the\r
                                // annoying message about "Waiting for a response... "\r
                        }\r
                                //We're waiting only 1.5 s at a time, otherwise we get the\r
                                // annoying message about "Waiting for a response... "\r
                        }\r
@@ -1745,7 +1764,7 @@ int CmdHF14AMfELoad(const char *Cmd)
                }\r
        }\r
 \r
                }\r
        }\r
 \r
-       len = param_getstr(Cmd,nameParamNo,filename,sizeof(filename));\r
+       len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename));\r
 \r
        if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;\r
 \r
 \r
        if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;\r
 \r
@@ -2925,8 +2944,8 @@ static command_t CommandTable[] =
   {"hardnested",       CmdHF14AMfNestedHard,    0, "Nested attack for hardened Mifare cards"},\r
   {"nested",           CmdHF14AMfNested,        0, "Test nested authentication"},\r
   {"sniff",            CmdHF14AMfSniff,         0, "Sniff card-reader communication"},\r
   {"hardnested",       CmdHF14AMfNestedHard,    0, "Nested attack for hardened Mifare cards"},\r
   {"nested",           CmdHF14AMfNested,        0, "Test nested authentication"},\r
   {"sniff",            CmdHF14AMfSniff,         0, "Sniff card-reader communication"},\r
-  {"sim",              CmdHF14AMf1kSim,         0, "Simulate MIFARE card"},\r
-  {"eclr",             CmdHF14AMfEClear,        0, "Clear simulator memory block"},\r
+  {"sim",              CmdHF14AMfSim,           0, "Simulate MIFARE card"},\r
+  {"eclr",             CmdHF14AMfEClear,        0, "Clear simulator memory"},\r
   {"eget",             CmdHF14AMfEGet,          0, "Get simulator memory block"},\r
   {"eset",             CmdHF14AMfESet,          0, "Set simulator memory block"},\r
   {"eload",            CmdHF14AMfELoad,         0, "Load from file emul dump"},\r
   {"eget",             CmdHF14AMfEGet,          0, "Get simulator memory block"},\r
   {"eset",             CmdHF14AMfESet,          0, "Set simulator memory block"},\r
   {"eload",            CmdHF14AMfELoad,         0, "Load from file emul dump"},\r
index ef282256cc23b6b7145d8c2250bd883d940e40d3..9ef929b918e3f1c6fd23f032cfefb1d0d39c3907 100644 (file)
@@ -226,12 +226,11 @@ typedef struct{
 
 
 //Mifare simulation flags
 
 
 //Mifare simulation flags
-#define FLAG_INTERACTIVE      0x01
-#define FLAG_4B_UID_IN_DATA   0x02
-#define FLAG_7B_UID_IN_DATA   0x04
-#define FLAG_10B_UID_IN_DATA  0x08
-#define FLAG_NR_AR_ATTACK     0x10
-#define FLAG_RANDOM_NONCE     0x20
+#define FLAG_INTERACTIVE                (1<<0)
+#define FLAG_4B_UID_IN_DATA             (1<<1)
+#define FLAG_7B_UID_IN_DATA             (1<<2)
+#define FLAG_NR_AR_ATTACK               (1<<4)
+#define FLAG_RANDOM_NONCE               (1<<5)
 
 
 //Iclass reader flags
 
 
 //Iclass reader flags
Impressum, Datenschutz