//-----------------------------------------------------------------------------
static tUart Uart;
+// Lookup-Table to decide if 4 raw bits are a modulation.
+// We accept two or three consecutive "0" in any position with the rest "1"
+const bool Mod_Miller_LUT[] = {
+ TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
+ TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
+};
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+
void UartReset()
{
Uart.state = STATE_UNSYNCD;
Uart.endTime = 0;
}
-inline RAMFUNC Modulation_t MillerModulation(uint8_t b)
+/* inline RAMFUNC Modulation_t MillerModulation(uint8_t b)
{
// switch (b & 0x88) {
// case 0x00: return MILLER_MOD_BOTH_HALVES;
default: return MOD_NOMOD;
}
}
-
+ */
// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
{
if (Uart.syncBit != 0xFFFF) {
Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Uart.startTime -= Uart.syncBit;
+ Uart.endTime = Uart.startTime;
Uart.state = STATE_START_OF_COMMUNICATION;
}
}
} else {
- switch (MillerModulation(Uart.twoBits >> Uart.syncBit)) {
- case MOD_FIRST_HALF: // Sequence Z = 0
+ if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
+ if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
+ UartReset();
+ Uart.highCnt = 6;
+ } else { // Modulation in first half = Sequence Z = logic "0"
if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
UartReset();
Uart.highCnt = 6;
Uart.shiftReg = 0;
}
}
- break;
- case MOD_SECOND_HALF: // Sequence X = 1
+ }
+ } else {
+ if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
Uart.bitCount++;
Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
Uart.state = STATE_MILLER_X;
Uart.bitCount = 0;
Uart.shiftReg = 0;
}
- break;
- case MOD_NOMOD: // no modulation in both halves - Sequence Y
+ } else { // no modulation in both halves - Sequence Y
if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
Uart.state = STATE_UNSYNCD;
if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
Uart.parityBits <<= 1; // no parity bit - add "0"
- Uart.bitCount--; // last "0" was part of the EOC sequence
+ Uart.bitCount--; // last "0" was part of the EOC sequence
}
return TRUE;
}
Uart.shiftReg = 0;
}
}
- break;
- case MOD_BOTH_HALVES: // Error
- UartReset();
- Uart.highCnt = 6;
- return FALSE;
+ }
}
}
// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
static tDemod Demod;
+// Lookup-Table to decide if 4 raw bits are a modulation.
+// We accept three or four consecutive "1" in any position
const bool Mod_Manchester_LUT[] = {
- FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE,
- FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE
+ FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
+ FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE
};
#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
- if (Demod.syncBit < 8) {
+ if (Demod.syncBit != 0xFFFF) {
Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
Demod.startTime -= Demod.syncBit;
Demod.bitCount = offset; // number of decoded data bits
}
Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
} else { // no modulation in both halves - End of communication
- if(Demod.bitCount > 0) { // if we decoded bits
- Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
- Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
- // No parity bit, so just shift a 0
- Demod.parityBits <<= 1;
+ if (Demod.len > 0 || Demod.bitCount > 0) { // received something
+ if(Demod.bitCount > 0) { // if we decoded bits
+ Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
+ Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
+ // No parity bit, so just shift a 0
+ Demod.parityBits <<= 1;
+ }
+ return TRUE; // we are finished with decoding the raw data sequence
+ } else { // nothing received. Start over
+ DemodReset();
}
- Demod.state = DEMOD_UNSYNCD; // start from the beginning
- Demod.twoBits = 0;
- return TRUE; // we are finished with decoding the raw data sequence
}
}
wire adc_clk;
assign adc_clk = ck_1356meg;
-reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3, after_hysteresis_prev4;
+reg after_hysteresis, pre_after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3, after_hysteresis_prev4;
reg [11:0] has_been_low_for;
reg [8:0] saw_deep_modulation;
reg [2:0] deep_counter;
begin
if(& adc_d[7:6]) after_hysteresis <= 1'b1; // adc_d >= 196 (U >= 3,28V) -> after_hysteris = 1
else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15 (U <= 1,13V) -> after_hysteresis = 0
+
+ pre_after_hysteresis <= after_hysteresis;
if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V)
begin
reg temp_buffer_reset;
reg sendbit;
reg [3:0] sub_carrier_cnt;
+reg[3:0] reader_falling_edge_time;
// ADC data appears on the rising edge, so sample it on the falling edge
always @(negedge adc_clk)
sendbit = 1'b0;
end
+
+
+ // check timing of a falling edge in reader signal
+ if (pre_after_hysteresis && ~after_hysteresis)
+ reader_falling_edge_time[3:0] <= negedge_cnt[3:0];
+ else
+ reader_falling_edge_time[3:0] <= 4'd8;
+
+
+
+ // sync clock to external reader's clock:
+ if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_MOD || mod_type == `TAGSIM_LISTEN))
+ begin
+ // adjust clock if necessary:
+ if (reader_falling_edge_time < 4'd8 && reader_falling_edge_time > 4'd1)
+ begin
+ negedge_cnt <= negedge_cnt; // freeze time
+ end
+ else if (reader_falling_edge_time == 4'd8)
+ begin
+ negedge_cnt <= negedge_cnt + 1; // the desired state. Advance as usual;
+ end
+ else
+ begin
+ negedge_cnt[3:0] <= 4'd15; // time warp
+ end
+ reader_falling_edge_time <= 4'd8; // only once per detected rising edge
+ end
+
+
+
//------------------------------------------------------------------------------------------------------------------------------------------
// Prepare 8 Bits to communicate to ARM
-
- // in SNIFFER mode: 4 Bits data sniffed as Tag, 4 Bits data sniffed as Reader
- if(mod_type == `SNIFFER)
+ if (negedge_cnt == 7'd63)
begin
- if (negedge_cnt == 7'd63)
+ if (mod_type == `SNIFFER)
begin
if(deep_modulation) // a reader is sending (or there's no field at all)
begin
else
begin
to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,bit1,bit2,bit3,bit4};
- end
+ end
negedge_cnt <= 0;
end
else
begin
negedge_cnt <= negedge_cnt + 1;
end
- end
- else
- // other modes: 8 Bits info on queue delay
+ end
+ else if(negedge_cnt == 7'd127)
begin
- if(negedge_cnt == 7'd127)
+ if (mod_type == `TAGSIM_MOD)
begin
- if (mod_type == `TAGSIM_MOD)
- begin
- to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]};
- end
- else
- begin
- to_arm[7:0] <= 8'd0;
- end
+ to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]};
negedge_cnt <= 0;
end
else
begin
- negedge_cnt <= negedge_cnt + 1;
+ to_arm[7:0] <= 8'd0;
+ negedge_cnt <= negedge_cnt + 1;
end
end
+ else
+ begin
+ negedge_cnt <= negedge_cnt + 1;
+ end
+
if(negedge_cnt == 7'd1)
begin