From: pwpiwi Date: Sun, 8 Feb 2015 21:14:20 +0000 (+0100) Subject: Fixed: hf mf sim failed on fast reader responses X-Git-Tag: v2.0.0-rc1~27 X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/commitdiff_plain/0c8d25ebd826f709b8e6cc2c8c1f185c633e326c?ds=inline;hp=-c Fixed: hf mf sim failed on fast reader responses In Miller Decoder: don't wait too long for a stable signal In Miller Decoder: Don't accept sequences of four or more zeroes as start bit In EmSendCmd14443aRaw: don't wait for emptying the FPGA delay queue if it isn't filled --- 0c8d25ebd826f709b8e6cc2c8c1f185c633e326c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index b73495a3..103f25e6 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -310,26 +310,27 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.twoBits = (Uart.twoBits << 8) | bit; - if (Uart.state == STATE_UNSYNCD) { // not yet synced + if (Uart.state == STATE_UNSYNCD) { // not yet synced - if (Uart.highCnt < 7) { // wait for a stable unmodulated signal + if (Uart.highCnt < 2) { // wait for a stable unmodulated signal if (Uart.twoBits == 0xffff) { Uart.highCnt++; } else { Uart.highCnt = 0; } } else { - Uart.syncBit = 0xFFFF; // not set - // look for 00xx1111 (the start bit) - if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; - else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6; - else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5; - else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4; - else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3; - else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2; - else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1; - else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0; - if (Uart.syncBit != 0xFFFF) { + Uart.syncBit = 0xFFFF; // not set + // we look for a ...1111111100x11111xxxxxx pattern (the start bit) + if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx, + // check for 00x11111 xxxxxxxx + else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1' + else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ... + else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5; + else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4; + else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3; + else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2; + else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1; + if (Uart.syncBit != 0xFFFF) { // found a sync bit Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); Uart.startTime -= Uart.syncBit; Uart.endTime = Uart.startTime; @@ -342,11 +343,9 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error UartReset(); - Uart.highCnt = 6; } else { // Modulation in first half = Sequence Z = logic "0" if (Uart.state == STATE_MILLER_X) { // error - must not follow after X UartReset(); - Uart.highCnt = 6; } else { Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -401,12 +400,13 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) if (Uart.len) { return TRUE; // we are finished with decoding the raw data sequence } else { - UartReset(); // Nothing receiver - start over + UartReset(); // Nothing received - start over + Uart.highCnt = 1; } } if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC UartReset(); - Uart.highCnt = 6; + Uart.highCnt = 1; } else { // a logic "0" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -1425,6 +1425,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); } + //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) @@ -1447,9 +1448,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) // Set ADC to read field strength AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(32) | - ADC_MODE_STARTUP_TIME(16) | - ADC_MODE_SAMPLE_HOLD_TIME(8); + ADC_MODE_PRESCALE(63) | + ADC_MODE_STARTUP_TIME(1) | + ADC_MODE_SAMPLE_HOLD_TIME(15); AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); // start ADC AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; @@ -1459,7 +1460,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) // Clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + for(;;) { WDT_HIT(); @@ -1471,7 +1472,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; if (analogCnt >= 32) { - if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { + if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { vtime = GetTickCount(); if (!timer) timer = vtime; // 50ms no field --> card to idle state @@ -1546,14 +1547,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe } // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - for (i = 0; i < 2 ; ) { + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + for (i = 0; i <= fpga_queued_bits/8 + 1; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = SEC_F; FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; } } - + LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); return 0; @@ -1655,7 +1657,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + c = 0; for(;;) { WDT_HIT(); @@ -2264,6 +2266,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // free eventually allocated BigBuf memory but keep Emulator Memory BigBuf_free_keep_EM(); + // clear trace iso14a_clear_trace(); iso14a_set_tracing(TRUE); @@ -2328,10 +2331,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * WDT_HIT(); // find reader field - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV if (cardSTATE == MFEMUL_NOFIELD) { - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { cardSTATE_TO_IDLE(); LED_A_ON(); @@ -2406,6 +2407,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } + uint32_t ar = bytes_to_num(receivedCmd, 4); uint32_t nr = bytes_to_num(&receivedCmd[4], 4); @@ -2512,6 +2514,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); cardSTATE = MFEMUL_AUTH1; @@ -2692,7 +2695,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if(ar_nr_collected > 1) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID + ar_nr_responses[0], // UID ar_nr_responses[1], //NT ar_nr_responses[2], //AR1 ar_nr_responses[3], //NR1 @@ -2712,6 +2715,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); + }