]>
Commit | Line | Data |
---|---|---|
40a1f26c | 1 | ////////////////////////////////////////////////////////////////////// |
2 | //// //// | |
3 | //// File name "pciw_fifo_control.v" //// | |
4 | //// //// | |
5 | //// This file is part of the "PCI bridge" project //// | |
6 | //// http://www.opencores.org/cores/pci/ //// | |
7 | //// //// | |
8 | //// Author(s): //// | |
9 | //// - Miha Dolenc (mihad@opencores.org) //// | |
10 | //// //// | |
11 | //// All additional information is avaliable in the README //// | |
12 | //// file. //// | |
13 | //// //// | |
14 | //// //// | |
15 | ////////////////////////////////////////////////////////////////////// | |
16 | //// //// | |
17 | //// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org //// | |
18 | //// //// | |
19 | //// This source file may be used and distributed without //// | |
20 | //// restriction provided that this copyright statement is not //// | |
21 | //// removed from the file and that any derivative work contains //// | |
22 | //// the original copyright notice and the associated disclaimer. //// | |
23 | //// //// | |
24 | //// This source file is free software; you can redistribute it //// | |
25 | //// and/or modify it under the terms of the GNU Lesser General //// | |
26 | //// Public License as published by the Free Software Foundation; //// | |
27 | //// either version 2.1 of the License, or (at your option) any //// | |
28 | //// later version. //// | |
29 | //// //// | |
30 | //// This source is distributed in the hope that it will be //// | |
31 | //// useful, but WITHOUT ANY WARRANTY; without even the implied //// | |
32 | //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// | |
33 | //// PURPOSE. See the GNU Lesser General Public License for more //// | |
34 | //// details. //// | |
35 | //// //// | |
36 | //// You should have received a copy of the GNU Lesser General //// | |
37 | //// Public License along with this source; if not, download it //// | |
38 | //// from http://www.opencores.org/lgpl.shtml //// | |
39 | //// //// | |
40 | ////////////////////////////////////////////////////////////////////// | |
41 | // | |
42 | // CVS Revision History | |
43 | // | |
44 | // $Log: pci_pciw_fifo_control.v,v $ | |
45 | // Revision 1.1 2007-03-20 17:50:56 sithglan | |
46 | // add shit | |
47 | // | |
48 | // Revision 1.5 2003/08/14 13:06:03 simons | |
49 | // synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated. | |
50 | // | |
51 | // Revision 1.4 2003/08/08 16:36:33 tadejm | |
52 | // Added 'three_left_out' to pci_pciw_fifo signaling three locations before full. Added comparison between current registered cbe and next unregistered cbe to signal wb_master whether it is allowed to performe burst or not. Due to this, I needed 'three_left_out' so that writing to pci_pciw_fifo can be registered, otherwise timing problems would occure. | |
53 | // | |
54 | // Revision 1.3 2003/07/29 08:20:11 mihad | |
55 | // Found and simulated the problem in the synchronization logic. | |
56 | // Repaired the synchronization logic in the FIFOs. | |
57 | // | |
58 | // | |
59 | ||
60 | /* FIFO_CONTROL module provides read/write address and status generation for | |
61 | FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */ | |
62 | `include "pci_constants.v" | |
63 | // synopsys translate_off | |
64 | `include "timescale.v" | |
65 | // synopsys translate_on | |
66 | ||
67 | module pci_pciw_fifo_control | |
68 | ( | |
69 | rclock_in, | |
70 | wclock_in, | |
71 | renable_in, | |
72 | wenable_in, | |
73 | reset_in, | |
74 | almost_full_out, | |
75 | full_out, | |
76 | almost_empty_out, | |
77 | empty_out, | |
78 | waddr_out, | |
79 | raddr_out, | |
80 | rallow_out, | |
81 | wallow_out, | |
82 | three_left_out, | |
83 | two_left_out | |
84 | ); | |
85 | ||
86 | parameter ADDR_LENGTH = 7 ; | |
87 | ||
88 | // independent clock inputs - rclock_in = read clock, wclock_in = write clock | |
89 | input rclock_in, wclock_in; | |
90 | ||
91 | // enable inputs - read address changes on rising edge of rclock_in when reads are allowed | |
92 | // write address changes on rising edge of wclock_in when writes are allowed | |
93 | input renable_in, wenable_in; | |
94 | ||
95 | // reset input | |
96 | input reset_in; | |
97 | ||
98 | // almost full and empy status outputs | |
99 | output almost_full_out, almost_empty_out; | |
100 | ||
101 | // full and empty status outputs | |
102 | output full_out, empty_out; | |
103 | ||
104 | // read and write addresses outputs | |
105 | output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out; | |
106 | ||
107 | // read and write allow outputs | |
108 | output rallow_out, wallow_out ; | |
109 | ||
110 | // three and two locations left output indicator | |
111 | output three_left_out ; | |
112 | output two_left_out ; | |
113 | ||
114 | // read address register | |
115 | reg [(ADDR_LENGTH - 1):0] raddr ; | |
116 | ||
117 | // write address register | |
118 | reg [(ADDR_LENGTH - 1):0] waddr; | |
119 | reg [(ADDR_LENGTH - 1):0] waddr_plus1; | |
120 | assign waddr_out = waddr ; | |
121 | ||
122 | // grey code registers | |
123 | // grey code pipeline for write address | |
124 | reg [(ADDR_LENGTH - 1):0] wgrey_minus1 ; // previous | |
125 | reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current | |
126 | reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next | |
127 | ||
128 | reg [(ADDR_LENGTH - 1):0] wgrey_next_plus1 ; // next plus 1 | |
129 | ||
130 | ||
131 | // next write gray address calculation - bitwise xor between address and shifted address | |
132 | wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ; | |
133 | wire [(ADDR_LENGTH - 2):0] calc_wgrey_next_plus1 = waddr_plus1[(ADDR_LENGTH - 1):1] ^ waddr_plus1[(ADDR_LENGTH - 2):0] ; | |
134 | ||
135 | // grey code pipeline for read address | |
136 | reg [(ADDR_LENGTH - 1):0] rgrey_minus2 ; // two before current | |
137 | reg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before current | |
138 | reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current | |
139 | reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next | |
140 | ||
141 | // next read gray address calculation - bitwise xor between address and shifted address | |
142 | wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ; | |
143 | ||
144 | // write allow - writes are allowed when fifo is not full | |
145 | assign wallow_out = wenable_in & ~full_out ; | |
146 | ||
147 | // clear generation for FFs and registers | |
148 | wire clear = reset_in ; | |
149 | ||
150 | //rallow generation | |
151 | assign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty | |
152 | ||
153 | // at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary | |
154 | // when FIFO is empty, this register provides actual read address, so first location can be read | |
155 | reg [(ADDR_LENGTH - 1):0] raddr_plus_one ; | |
156 | ||
157 | ||
158 | // read address mux - when read is performed, next address is driven, so next data is available immediately after read | |
159 | // this is convenient for zero wait stait bursts | |
160 | assign raddr_out = rallow_out ? raddr_plus_one : raddr ; | |
161 | ||
162 | always@(posedge rclock_in or posedge clear) | |
163 | begin | |
164 | if (clear) | |
165 | begin | |
166 | // initial values seem a bit odd - they are this way to allow easier grey pipeline implementation and to allow min fifo size of 8 | |
167 | raddr_plus_one <= #`FF_DELAY 5 ; | |
168 | raddr <= #`FF_DELAY 4 ; | |
169 | // raddr_plus_one <= #`FF_DELAY 6 ; | |
170 | // raddr <= #`FF_DELAY 5 ; | |
171 | end | |
172 | else if (rallow_out) | |
173 | begin | |
174 | raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ; | |
175 | raddr <= #`FF_DELAY raddr_plus_one ; | |
176 | end | |
177 | end | |
178 | ||
179 | /*----------------------------------------------------------------------------------------------- | |
180 | Read address control consists of Read address counter and Grey Address pipeline | |
181 | There are 4 Grey addresses: | |
182 | - rgrey_minus2 is Grey Code of address two before current address | |
183 | - rgrey_minus1 is Grey Code of address one before current address | |
184 | - rgrey_addr is Grey Code of current read address | |
185 | - rgrey_next is Grey Code of next read address | |
186 | --------------------------------------------------------------------------------------------------*/ | |
187 | // grey coded address pipeline for status generation in read clock domain | |
188 | always@(posedge rclock_in or posedge clear) | |
189 | begin | |
190 | if (clear) | |
191 | begin | |
192 | rgrey_minus2 <= #1 0 ; | |
193 | rgrey_minus1 <= #`FF_DELAY 1 ; | |
194 | rgrey_addr <= #1 3 ; | |
195 | rgrey_next <= #`FF_DELAY 2 ; | |
196 | end | |
197 | else | |
198 | if (rallow_out) | |
199 | begin | |
200 | rgrey_minus2 <= #1 rgrey_minus1 ; | |
201 | rgrey_minus1 <= #`FF_DELAY rgrey_addr ; | |
202 | rgrey_addr <= #1 rgrey_next ; | |
203 | rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ; | |
204 | end | |
205 | end | |
206 | ||
207 | /*-------------------------------------------------------------------------------------------- | |
208 | Write address control consists of write address counter and 3 Grey Code Registers: | |
209 | - wgrey_minus1 represents previous Grey coded write address | |
210 | - wgrey_addr represents current Grey Coded write address | |
211 | - wgrey_next represents next Grey Coded write address | |
212 | ||
213 | - wgrey_next_plus1 represents second next Grey Coded write address | |
214 | ||
215 | ----------------------------------------------------------------------------------------------*/ | |
216 | // grey coded address pipeline for status generation in write clock domain | |
217 | always@(posedge wclock_in or posedge clear) | |
218 | begin | |
219 | if (clear) | |
220 | begin | |
221 | wgrey_minus1 <= #`FF_DELAY 1 ; | |
222 | wgrey_addr <= #`FF_DELAY 3 ; | |
223 | wgrey_next <= #`FF_DELAY 2 ; | |
224 | ||
225 | wgrey_next_plus1 <= #`FF_DELAY 6; | |
226 | ||
227 | end | |
228 | else | |
229 | if (wallow_out) | |
230 | begin | |
231 | wgrey_minus1 <= #`FF_DELAY wgrey_addr ; | |
232 | wgrey_addr <= #`FF_DELAY wgrey_next ; | |
233 | ||
234 | wgrey_next <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ; | |
235 | // wgrey_next <= #`FF_DELAY wgrey_next_plus1 ; | |
236 | wgrey_next_plus1 <= #`FF_DELAY {waddr_plus1[(ADDR_LENGTH - 1)], calc_wgrey_next_plus1} ; | |
237 | ||
238 | end | |
239 | end | |
240 | ||
241 | // write address counter - nothing special except initial value | |
242 | always@(posedge wclock_in or posedge clear) | |
243 | begin | |
244 | if (clear) | |
245 | begin | |
246 | // initial value 5 | |
247 | ||
248 | waddr <= #`FF_DELAY 4 ; | |
249 | waddr_plus1 <= #`FF_DELAY 5 ; | |
250 | end | |
251 | else | |
252 | if (wallow_out) | |
253 | begin | |
254 | waddr <= #`FF_DELAY waddr + 1'b1 ; | |
255 | waddr_plus1 <= #`FF_DELAY waddr_plus1 + 1'b1 ; | |
256 | end | |
257 | end | |
258 | ||
259 | /*------------------------------------------------------------------------------------------------------------------------------ | |
260 | Gray coded address of read address decremented by two is synchronized to write clock domain and compared to: | |
261 | - previous grey coded write address - if they are equal, the fifo is full | |
262 | ||
263 | - gray coded write address. If they are equal, fifo is almost full. | |
264 | ||
265 | - grey coded next write address. If they are equal, the fifo has two free locations left. | |
266 | --------------------------------------------------------------------------------------------------------------------------------*/ | |
267 | wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus2 ; | |
268 | reg [(ADDR_LENGTH - 1):0] wclk_rgrey_minus2 ; | |
269 | ||
270 | pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus2 | |
271 | ( | |
272 | .data_in (rgrey_minus2), | |
273 | .clk_out (wclock_in), | |
274 | .sync_data_out (wclk_sync_rgrey_minus2), | |
275 | .async_reset (clear) | |
276 | ) ; | |
277 | ||
278 | always@(posedge wclock_in or posedge clear) | |
279 | begin | |
280 | if (clear) | |
281 | begin | |
282 | wclk_rgrey_minus2 <= #`FF_DELAY 0 ; | |
283 | end | |
284 | else | |
285 | begin | |
286 | wclk_rgrey_minus2 <= #`FF_DELAY wclk_sync_rgrey_minus2 ; | |
287 | end | |
288 | end | |
289 | ||
290 | assign full_out = (wgrey_minus1 == wclk_rgrey_minus2) ; | |
291 | assign almost_full_out = (wgrey_addr == wclk_rgrey_minus2) ; | |
292 | assign two_left_out = (wgrey_next == wclk_rgrey_minus2) ; | |
293 | ||
294 | assign three_left_out = (wgrey_next_plus1 == wclk_rgrey_minus2) ; | |
295 | ||
296 | ||
297 | /*------------------------------------------------------------------------------------------------------------------------------ | |
298 | Empty control: | |
299 | Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer. | |
300 | If they are equal, fifo is empty. | |
301 | ||
302 | Almost empty control: | |
303 | Synchronized write pointer is also compared to Gray coded next read address. If these two are | |
304 | equal, fifo is almost empty. | |
305 | --------------------------------------------------------------------------------------------------------------------------------*/ | |
306 | wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ; | |
307 | reg [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ; | |
308 | pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_addr | |
309 | ( | |
310 | .data_in (wgrey_addr), | |
311 | .clk_out (rclock_in), | |
312 | .sync_data_out (rclk_sync_wgrey_addr), | |
313 | .async_reset (clear) | |
314 | ) ; | |
315 | ||
316 | always@(posedge rclock_in or posedge clear) | |
317 | begin | |
318 | if (clear) | |
319 | rclk_wgrey_addr <= #`FF_DELAY 3 ; | |
320 | else | |
321 | rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ; | |
322 | end | |
323 | ||
324 | assign almost_empty_out = (rgrey_next == rclk_wgrey_addr) ; | |
325 | assign empty_out = (rgrey_addr == rclk_wgrey_addr) ; | |
326 | endmodule |