]> git.zerfleddert.de Git - raggedstone/blame_incremental - ethernet/source/pci/pci_pciw_fifo_control.v
update to EDK 9.1i
[raggedstone] / ethernet / source / pci / pci_pciw_fifo_control.v
... / ...
CommitLineData
1//////////////////////////////////////////////////////////////////////
2//// ////
3//// File name "pciw_fifo_control.v" ////
4//// ////
5//// This file is part of the "PCI bridge" project ////
6//// http://www.opencores.org/cores/pci/ ////
7//// ////
8//// Author(s): ////
9//// - Miha Dolenc (mihad@opencores.org) ////
10//// ////
11//// All additional information is avaliable in the README ////
12//// file. ////
13//// ////
14//// ////
15//////////////////////////////////////////////////////////////////////
16//// ////
17//// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
18//// ////
19//// This source file may be used and distributed without ////
20//// restriction provided that this copyright statement is not ////
21//// removed from the file and that any derivative work contains ////
22//// the original copyright notice and the associated disclaimer. ////
23//// ////
24//// This source file is free software; you can redistribute it ////
25//// and/or modify it under the terms of the GNU Lesser General ////
26//// Public License as published by the Free Software Foundation; ////
27//// either version 2.1 of the License, or (at your option) any ////
28//// later version. ////
29//// ////
30//// This source is distributed in the hope that it will be ////
31//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
32//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
33//// PURPOSE. See the GNU Lesser General Public License for more ////
34//// details. ////
35//// ////
36//// You should have received a copy of the GNU Lesser General ////
37//// Public License along with this source; if not, download it ////
38//// from http://www.opencores.org/lgpl.shtml ////
39//// ////
40//////////////////////////////////////////////////////////////////////
41//
42// CVS Revision History
43//
44// $Log: pci_pciw_fifo_control.v,v $
45// Revision 1.1 2007-03-20 17:50:56 sithglan
46// add shit
47//
48// Revision 1.5 2003/08/14 13:06:03 simons
49// synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
50//
51// Revision 1.4 2003/08/08 16:36:33 tadejm
52// Added 'three_left_out' to pci_pciw_fifo signaling three locations before full. Added comparison between current registered cbe and next unregistered cbe to signal wb_master whether it is allowed to performe burst or not. Due to this, I needed 'three_left_out' so that writing to pci_pciw_fifo can be registered, otherwise timing problems would occure.
53//
54// Revision 1.3 2003/07/29 08:20:11 mihad
55// Found and simulated the problem in the synchronization logic.
56// Repaired the synchronization logic in the FIFOs.
57//
58//
59
60/* FIFO_CONTROL module provides read/write address and status generation for
61 FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
62`include "pci_constants.v"
63// synopsys translate_off
64`include "timescale.v"
65// synopsys translate_on
66
67module pci_pciw_fifo_control
68(
69 rclock_in,
70 wclock_in,
71 renable_in,
72 wenable_in,
73 reset_in,
74 almost_full_out,
75 full_out,
76 almost_empty_out,
77 empty_out,
78 waddr_out,
79 raddr_out,
80 rallow_out,
81 wallow_out,
82 three_left_out,
83 two_left_out
84);
85
86parameter ADDR_LENGTH = 7 ;
87
88// independent clock inputs - rclock_in = read clock, wclock_in = write clock
89input rclock_in, wclock_in;
90
91// enable inputs - read address changes on rising edge of rclock_in when reads are allowed
92// write address changes on rising edge of wclock_in when writes are allowed
93input renable_in, wenable_in;
94
95// reset input
96input reset_in;
97
98// almost full and empy status outputs
99output almost_full_out, almost_empty_out;
100
101// full and empty status outputs
102output full_out, empty_out;
103
104// read and write addresses outputs
105output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
106
107// read and write allow outputs
108output rallow_out, wallow_out ;
109
110// three and two locations left output indicator
111output three_left_out ;
112output two_left_out ;
113
114// read address register
115reg [(ADDR_LENGTH - 1):0] raddr ;
116
117// write address register
118reg [(ADDR_LENGTH - 1):0] waddr;
119reg [(ADDR_LENGTH - 1):0] waddr_plus1;
120assign waddr_out = waddr ;
121
122// grey code registers
123// grey code pipeline for write address
124reg [(ADDR_LENGTH - 1):0] wgrey_minus1 ; // previous
125reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current
126reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next
127
128reg [(ADDR_LENGTH - 1):0] wgrey_next_plus1 ; // next plus 1
129
130
131// next write gray address calculation - bitwise xor between address and shifted address
132wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
133wire [(ADDR_LENGTH - 2):0] calc_wgrey_next_plus1 = waddr_plus1[(ADDR_LENGTH - 1):1] ^ waddr_plus1[(ADDR_LENGTH - 2):0] ;
134
135// grey code pipeline for read address
136reg [(ADDR_LENGTH - 1):0] rgrey_minus2 ; // two before current
137reg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before current
138reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current
139reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next
140
141// next read gray address calculation - bitwise xor between address and shifted address
142wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
143
144// write allow - writes are allowed when fifo is not full
145assign wallow_out = wenable_in & ~full_out ;
146
147// clear generation for FFs and registers
148wire clear = reset_in ;
149
150//rallow generation
151assign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty
152
153// at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
154// when FIFO is empty, this register provides actual read address, so first location can be read
155reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
156
157
158// read address mux - when read is performed, next address is driven, so next data is available immediately after read
159// this is convenient for zero wait stait bursts
160assign raddr_out = rallow_out ? raddr_plus_one : raddr ;
161
162always@(posedge rclock_in or posedge clear)
163begin
164 if (clear)
165 begin
166 // initial values seem a bit odd - they are this way to allow easier grey pipeline implementation and to allow min fifo size of 8
167 raddr_plus_one <= #`FF_DELAY 5 ;
168 raddr <= #`FF_DELAY 4 ;
169// raddr_plus_one <= #`FF_DELAY 6 ;
170// raddr <= #`FF_DELAY 5 ;
171 end
172 else if (rallow_out)
173 begin
174 raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
175 raddr <= #`FF_DELAY raddr_plus_one ;
176 end
177end
178
179/*-----------------------------------------------------------------------------------------------
180Read address control consists of Read address counter and Grey Address pipeline
181There are 4 Grey addresses:
182 - rgrey_minus2 is Grey Code of address two before current address
183 - rgrey_minus1 is Grey Code of address one before current address
184 - rgrey_addr is Grey Code of current read address
185 - rgrey_next is Grey Code of next read address
186--------------------------------------------------------------------------------------------------*/
187// grey coded address pipeline for status generation in read clock domain
188always@(posedge rclock_in or posedge clear)
189begin
190 if (clear)
191 begin
192 rgrey_minus2 <= #1 0 ;
193 rgrey_minus1 <= #`FF_DELAY 1 ;
194 rgrey_addr <= #1 3 ;
195 rgrey_next <= #`FF_DELAY 2 ;
196 end
197 else
198 if (rallow_out)
199 begin
200 rgrey_minus2 <= #1 rgrey_minus1 ;
201 rgrey_minus1 <= #`FF_DELAY rgrey_addr ;
202 rgrey_addr <= #1 rgrey_next ;
203 rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
204 end
205end
206
207/*--------------------------------------------------------------------------------------------
208Write address control consists of write address counter and 3 Grey Code Registers:
209 - wgrey_minus1 represents previous Grey coded write address
210 - wgrey_addr represents current Grey Coded write address
211 - wgrey_next represents next Grey Coded write address
212
213 - wgrey_next_plus1 represents second next Grey Coded write address
214
215----------------------------------------------------------------------------------------------*/
216// grey coded address pipeline for status generation in write clock domain
217always@(posedge wclock_in or posedge clear)
218begin
219 if (clear)
220 begin
221 wgrey_minus1 <= #`FF_DELAY 1 ;
222 wgrey_addr <= #`FF_DELAY 3 ;
223 wgrey_next <= #`FF_DELAY 2 ;
224
225 wgrey_next_plus1 <= #`FF_DELAY 6;
226
227 end
228 else
229 if (wallow_out)
230 begin
231 wgrey_minus1 <= #`FF_DELAY wgrey_addr ;
232 wgrey_addr <= #`FF_DELAY wgrey_next ;
233
234 wgrey_next <= #`FF_DELAY {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
235// wgrey_next <= #`FF_DELAY wgrey_next_plus1 ;
236 wgrey_next_plus1 <= #`FF_DELAY {waddr_plus1[(ADDR_LENGTH - 1)], calc_wgrey_next_plus1} ;
237
238 end
239end
240
241// write address counter - nothing special except initial value
242always@(posedge wclock_in or posedge clear)
243begin
244 if (clear)
245 begin
246 // initial value 5
247
248 waddr <= #`FF_DELAY 4 ;
249 waddr_plus1 <= #`FF_DELAY 5 ;
250 end
251 else
252 if (wallow_out)
253 begin
254 waddr <= #`FF_DELAY waddr + 1'b1 ;
255 waddr_plus1 <= #`FF_DELAY waddr_plus1 + 1'b1 ;
256 end
257end
258
259/*------------------------------------------------------------------------------------------------------------------------------
260Gray coded address of read address decremented by two is synchronized to write clock domain and compared to:
261- previous grey coded write address - if they are equal, the fifo is full
262
263- gray coded write address. If they are equal, fifo is almost full.
264
265- grey coded next write address. If they are equal, the fifo has two free locations left.
266--------------------------------------------------------------------------------------------------------------------------------*/
267wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus2 ;
268reg [(ADDR_LENGTH - 1):0] wclk_rgrey_minus2 ;
269
270pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus2
271(
272 .data_in (rgrey_minus2),
273 .clk_out (wclock_in),
274 .sync_data_out (wclk_sync_rgrey_minus2),
275 .async_reset (clear)
276) ;
277
278always@(posedge wclock_in or posedge clear)
279begin
280 if (clear)
281 begin
282 wclk_rgrey_minus2 <= #`FF_DELAY 0 ;
283 end
284 else
285 begin
286 wclk_rgrey_minus2 <= #`FF_DELAY wclk_sync_rgrey_minus2 ;
287 end
288end
289
290assign full_out = (wgrey_minus1 == wclk_rgrey_minus2) ;
291assign almost_full_out = (wgrey_addr == wclk_rgrey_minus2) ;
292assign two_left_out = (wgrey_next == wclk_rgrey_minus2) ;
293
294assign three_left_out = (wgrey_next_plus1 == wclk_rgrey_minus2) ;
295
296
297/*------------------------------------------------------------------------------------------------------------------------------
298Empty control:
299Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer.
300If they are equal, fifo is empty.
301
302Almost empty control:
303Synchronized write pointer is also compared to Gray coded next read address. If these two are
304equal, fifo is almost empty.
305--------------------------------------------------------------------------------------------------------------------------------*/
306wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ;
307reg [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ;
308pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_addr
309(
310 .data_in (wgrey_addr),
311 .clk_out (rclock_in),
312 .sync_data_out (rclk_sync_wgrey_addr),
313 .async_reset (clear)
314) ;
315
316always@(posedge rclock_in or posedge clear)
317begin
318 if (clear)
319 rclk_wgrey_addr <= #`FF_DELAY 3 ;
320 else
321 rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ;
322end
323
324assign almost_empty_out = (rgrey_next == rclk_wgrey_addr) ;
325assign empty_out = (rgrey_addr == rclk_wgrey_addr) ;
326endmodule
Impressum, Datenschutz