]>
Commit | Line | Data |
---|---|---|
1 | ////////////////////////////////////////////////////////////////////// | |
2 | //// //// | |
3 | //// File name "wbw_fifo_control.v" //// | |
4 | //// //// | |
5 | //// This file is part of the "PCI bridge" project //// | |
6 | //// http://www.opencores.org/cores/pci/ //// | |
7 | //// //// | |
8 | //// Author(s): //// | |
9 | //// - Miha Dolenc (mihad@opencores.org) //// | |
10 | //// //// | |
11 | //// All additional information is avaliable in the README //// | |
12 | //// file. //// | |
13 | //// //// | |
14 | //// //// | |
15 | ////////////////////////////////////////////////////////////////////// | |
16 | //// //// | |
17 | //// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org //// | |
18 | //// //// | |
19 | //// This source file may be used and distributed without //// | |
20 | //// restriction provided that this copyright statement is not //// | |
21 | //// removed from the file and that any derivative work contains //// | |
22 | //// the original copyright notice and the associated disclaimer. //// | |
23 | //// //// | |
24 | //// This source file is free software; you can redistribute it //// | |
25 | //// and/or modify it under the terms of the GNU Lesser General //// | |
26 | //// Public License as published by the Free Software Foundation; //// | |
27 | //// either version 2.1 of the License, or (at your option) any //// | |
28 | //// later version. //// | |
29 | //// //// | |
30 | //// This source is distributed in the hope that it will be //// | |
31 | //// useful, but WITHOUT ANY WARRANTY; without even the implied //// | |
32 | //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// | |
33 | //// PURPOSE. See the GNU Lesser General Public License for more //// | |
34 | //// details. //// | |
35 | //// //// | |
36 | //// You should have received a copy of the GNU Lesser General //// | |
37 | //// Public License along with this source; if not, download it //// | |
38 | //// from http://www.opencores.org/lgpl.shtml //// | |
39 | //// //// | |
40 | ////////////////////////////////////////////////////////////////////// | |
41 | // | |
42 | // CVS Revision History | |
43 | // | |
44 | // $Log: pci_wbw_fifo_control.v,v $ | |
45 | // Revision 1.1 2007-03-20 17:50:56 sithglan | |
46 | // add shit | |
47 | // | |
48 | // Revision 1.5 2006/07/04 13:16:19 mihad | |
49 | // Write burst performance patch applied. | |
50 | // Not tested. Everything should be backwards | |
51 | // compatible, since functional code is ifdefed. | |
52 | // | |
53 | // Revision 1.4 2003/08/14 13:06:03 simons | |
54 | // synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated. | |
55 | // | |
56 | // Revision 1.3 2003/07/29 08:20:11 mihad | |
57 | // Found and simulated the problem in the synchronization logic. | |
58 | // Repaired the synchronization logic in the FIFOs. | |
59 | // | |
60 | // Revision 1.2 2003/03/26 13:16:18 mihad | |
61 | // Added the reset value parameter to the synchronizer flop module. | |
62 | // Added resets to all synchronizer flop instances. | |
63 | // Repaired initial sync value in fifos. | |
64 | // | |
65 | // Revision 1.1 2003/01/27 16:49:31 mihad | |
66 | // Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed. | |
67 | // | |
68 | // Revision 1.6 2002/11/27 20:36:13 mihad | |
69 | // Changed the code a bit to make it more readable. | |
70 | // Functionality not changed in any way. | |
71 | // More robust synchronization in fifos is still pending. | |
72 | // | |
73 | // Revision 1.5 2002/09/30 16:03:04 mihad | |
74 | // Added meta flop module for easier meta stable FF identification during synthesis | |
75 | // | |
76 | // Revision 1.4 2002/09/25 15:53:52 mihad | |
77 | // Removed all logic from asynchronous reset network | |
78 | // | |
79 | // Revision 1.3 2002/02/01 15:25:14 mihad | |
80 | // Repaired a few bugs, updated specification, added test bench files and design document | |
81 | // | |
82 | // Revision 1.2 2001/10/05 08:14:30 mihad | |
83 | // Updated all files with inclusion of timescale file for simulation purposes. | |
84 | // | |
85 | // Revision 1.1.1.1 2001/10/02 15:33:47 mihad | |
86 | // New project directory structure | |
87 | // | |
88 | // | |
89 | ||
90 | /* FIFO_CONTROL module provides read/write address and status generation for | |
91 | FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */ | |
92 | `include "pci_constants.v" | |
93 | // synopsys translate_off | |
94 | `include "timescale.v" | |
95 | // synopsys translate_on | |
96 | ||
97 | module pci_wbw_fifo_control | |
98 | ( | |
99 | rclock_in, | |
100 | wclock_in, | |
101 | renable_in, | |
102 | wenable_in, | |
103 | reset_in, | |
104 | almost_full_out, | |
105 | full_out, | |
106 | empty_out, | |
107 | waddr_out, | |
108 | raddr_out, | |
109 | rallow_out, | |
110 | wallow_out, | |
111 | half_full_out ////Robert, burst issue | |
112 | ); | |
113 | ||
114 | parameter ADDR_LENGTH = 7; | |
115 | ||
116 | // independent clock inputs - rclock_in = read clock, wclock_in = write clock | |
117 | input rclock_in, wclock_in; | |
118 | ||
119 | // enable inputs - read address changes on rising edge of rclock_in when reads are allowed | |
120 | // write address changes on rising edge of wclock_in when writes are allowed | |
121 | input renable_in, wenable_in ; | |
122 | ||
123 | // reset input | |
124 | input reset_in; | |
125 | ||
126 | // flush input | |
127 | // input flush_in ; // not used | |
128 | ||
129 | // almost full and empy status outputs | |
130 | output almost_full_out ; | |
131 | ||
132 | // full and empty status outputs | |
133 | output full_out, empty_out; | |
134 | ||
135 | // read and write addresses outputs | |
136 | output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out; | |
137 | ||
138 | // read and write allow outputs | |
139 | output rallow_out, wallow_out ; | |
140 | ||
141 | output half_full_out; | |
142 | ||
143 | // read address register | |
144 | reg [(ADDR_LENGTH - 1):0] raddr ; | |
145 | ||
146 | // write address register | |
147 | reg [(ADDR_LENGTH - 1):0] waddr; | |
148 | assign waddr_out = waddr ; | |
149 | ||
150 | // grey code registers | |
151 | reg [(ADDR_LENGTH - 1):0] wgrey_addr ; // current | |
152 | // grey code register for next write address | |
153 | reg [(ADDR_LENGTH - 1):0] wgrey_next ; // next | |
154 | ||
155 | // next write gray address calculation - bitwise xor between address and shifted address | |
156 | wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ; | |
157 | ||
158 | // grey code pipeline for read address | |
159 | reg [(ADDR_LENGTH - 1):0] rgrey_minus1 ; // one before current | |
160 | reg [(ADDR_LENGTH - 1):0] rgrey_addr ; // current | |
161 | reg [(ADDR_LENGTH - 1):0] rgrey_next ; // next | |
162 | ||
163 | // next read gray address calculation - bitwise xor between address and shifted address | |
164 | wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ; | |
165 | ||
166 | // write allow wire - writes are allowed when fifo is not full | |
167 | assign wallow_out = wenable_in & ~full_out ; | |
168 | ||
169 | // clear generation for FFs and registers | |
170 | wire clear = reset_in ; | |
171 | ||
172 | //rallow generation | |
173 | assign rallow_out = renable_in & ~empty_out ; // reads allowed if read enable is high and FIFO is not empty | |
174 | ||
175 | // at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary | |
176 | // when FIFO is empty, this register provides actual read address, so first location can be read | |
177 | reg [(ADDR_LENGTH - 1):0] raddr_plus_one ; | |
178 | ||
179 | ||
180 | wire [ADDR_LENGTH :0] fifo_fullness; //Robert, burst issue | |
181 | ||
182 | //Robert, burst issue | |
183 | assign fifo_fullness = (waddr > raddr) ? ({1'b0, waddr} - {1'b0, raddr}) : ({1'b1, waddr} - {1'b0, raddr}); | |
184 | assign half_full_out = fifo_fullness[(ADDR_LENGTH - 1)] ; | |
185 | //Robert, burst issue | |
186 | ||
187 | ||
188 | // address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out | |
189 | // done for zero wait state burst | |
190 | assign raddr_out = rallow_out ? raddr_plus_one : raddr ; | |
191 | ||
192 | always@(posedge rclock_in or posedge clear) | |
193 | begin | |
194 | if (clear) | |
195 | begin | |
196 | raddr_plus_one <= #`FF_DELAY 4 ; | |
197 | raddr <= #`FF_DELAY 3 ; | |
198 | end | |
199 | else if (rallow_out) | |
200 | begin | |
201 | raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ; | |
202 | raddr <= #`FF_DELAY raddr_plus_one ; | |
203 | end | |
204 | end | |
205 | ||
206 | /*----------------------------------------------------------------------------------------------- | |
207 | Read address control consists of Read address counter and Grey Address pipeline | |
208 | There are 3 Grey addresses: | |
209 | - rgrey_minus1 is Grey Code of address one before current address | |
210 | - rgrey_addr is Grey Code of current read address | |
211 | - rgrey_next is Grey Code of next read address | |
212 | --------------------------------------------------------------------------------------------------*/ | |
213 | // grey coded address pipeline for status generation in read clock domain | |
214 | always@(posedge rclock_in or posedge clear) | |
215 | begin | |
216 | if (clear) | |
217 | begin | |
218 | // initial value is 0 | |
219 | rgrey_minus1 <= #1 0 ; | |
220 | rgrey_addr <= #1 1 ; | |
221 | rgrey_next <= #`FF_DELAY 3 ; | |
222 | end | |
223 | else | |
224 | if (rallow_out) | |
225 | begin | |
226 | rgrey_minus1 <= #1 rgrey_addr ; | |
227 | rgrey_addr <= #1 rgrey_next ; | |
228 | rgrey_next <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ; | |
229 | end | |
230 | end | |
231 | ||
232 | /*-------------------------------------------------------------------------------------------- | |
233 | Write address control consists of write address counter and Grey Code Register | |
234 | ----------------------------------------------------------------------------------------------*/ | |
235 | // grey coded address pipeline for status generation in write clock domain | |
236 | always@(posedge wclock_in or posedge clear) | |
237 | begin | |
238 | if (clear) | |
239 | begin | |
240 | wgrey_addr <= #`FF_DELAY 1 ; | |
241 | wgrey_next <= #1 3 ; | |
242 | end | |
243 | else | |
244 | if (wallow_out) | |
245 | begin | |
246 | wgrey_addr <= #`FF_DELAY wgrey_next ; | |
247 | wgrey_next <= #1 {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ; | |
248 | end | |
249 | end | |
250 | ||
251 | // write address counter - nothing special - initial value is important though | |
252 | always@(posedge wclock_in or posedge clear) | |
253 | begin | |
254 | if (clear) | |
255 | // initial value 4 | |
256 | waddr <= #`FF_DELAY 3 ; | |
257 | else | |
258 | if (wallow_out) | |
259 | waddr <= #`FF_DELAY waddr + 1'b1 ; | |
260 | end | |
261 | ||
262 | /*------------------------------------------------------------------------------------------------------------------------------ | |
263 | Gray coded address of read address decremented by 1 is synchronized to write clock domain and compared to: | |
264 | ||
265 | - Gray coded write address. If they are equal, fifo is full. | |
266 | ||
267 | - Gray coded next write address. If they are equal, fifo is almost full. | |
268 | --------------------------------------------------------------------------------------------------------------------------------*/ | |
269 | wire [(ADDR_LENGTH - 1):0] wclk_sync_rgrey_minus1 ; | |
270 | reg [(ADDR_LENGTH - 1):0] wclk_rgrey_minus1 ; | |
271 | ||
272 | pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_rgrey_minus1 | |
273 | ( | |
274 | .data_in (rgrey_minus1), | |
275 | .clk_out (wclock_in), | |
276 | .sync_data_out (wclk_sync_rgrey_minus1), | |
277 | .async_reset (clear) | |
278 | ) ; | |
279 | ||
280 | always@(posedge wclock_in or posedge clear) | |
281 | begin | |
282 | if (clear) | |
283 | begin | |
284 | wclk_rgrey_minus1 <= #`FF_DELAY 0 ; | |
285 | end | |
286 | else | |
287 | begin | |
288 | wclk_rgrey_minus1 <= #`FF_DELAY wclk_sync_rgrey_minus1 ; | |
289 | end | |
290 | end | |
291 | ||
292 | assign full_out = (wgrey_addr == wclk_rgrey_minus1) ; | |
293 | assign almost_full_out = (wgrey_next == wclk_rgrey_minus1) ; | |
294 | ||
295 | /*------------------------------------------------------------------------------------------------------------------------------ | |
296 | Empty control: | |
297 | Gray coded address of next write address is synchronized to read clock domain and compared to Gray coded next read address. | |
298 | If they are equal, fifo is empty. | |
299 | --------------------------------------------------------------------------------------------------------------------------------*/ | |
300 | wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_next ; | |
301 | reg [(ADDR_LENGTH - 1):0] rclk_wgrey_next ; | |
302 | pci_synchronizer_flop #(ADDR_LENGTH, 3) i_synchronizer_reg_wgrey_next | |
303 | ( | |
304 | .data_in (wgrey_next), | |
305 | .clk_out (rclock_in), | |
306 | .sync_data_out (rclk_sync_wgrey_next), | |
307 | .async_reset (clear) | |
308 | ) ; | |
309 | ||
310 | always@(posedge rclock_in or posedge clear) | |
311 | begin | |
312 | if (clear) | |
313 | rclk_wgrey_next <= #`FF_DELAY 3 ; | |
314 | else | |
315 | rclk_wgrey_next <= #`FF_DELAY rclk_sync_wgrey_next ; | |
316 | end | |
317 | ||
318 | assign empty_out = (rgrey_next == rclk_wgrey_next) ; | |
319 | ||
320 | endmodule |