]> git.zerfleddert.de Git - raggedstone/blob - ethernet/source/pci/pci_wbr_fifo_control.v
+= use xilinx block ram for ethernet
[raggedstone] / ethernet / source / pci / pci_wbr_fifo_control.v
1 //////////////////////////////////////////////////////////////////////
2 //// ////
3 //// File name "wbr_fifo_control.v" ////
4 //// ////
5 //// This file is part of the "PCI bridge" project ////
6 //// http://www.opencores.org/cores/pci/ ////
7 //// ////
8 //// Author(s): ////
9 //// - Miha Dolenc (mihad@opencores.org) ////
10 //// ////
11 //// All additional information is avaliable in the README ////
12 //// file. ////
13 //// ////
14 //// ////
15 //////////////////////////////////////////////////////////////////////
16 //// ////
17 //// Copyright (C) 2001 Miha Dolenc, mihad@opencores.org ////
18 //// ////
19 //// This source file may be used and distributed without ////
20 //// restriction provided that this copyright statement is not ////
21 //// removed from the file and that any derivative work contains ////
22 //// the original copyright notice and the associated disclaimer. ////
23 //// ////
24 //// This source file is free software; you can redistribute it ////
25 //// and/or modify it under the terms of the GNU Lesser General ////
26 //// Public License as published by the Free Software Foundation; ////
27 //// either version 2.1 of the License, or (at your option) any ////
28 //// later version. ////
29 //// ////
30 //// This source is distributed in the hope that it will be ////
31 //// useful, but WITHOUT ANY WARRANTY; without even the implied ////
32 //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
33 //// PURPOSE. See the GNU Lesser General Public License for more ////
34 //// details. ////
35 //// ////
36 //// You should have received a copy of the GNU Lesser General ////
37 //// Public License along with this source; if not, download it ////
38 //// from http://www.opencores.org/lgpl.shtml ////
39 //// ////
40 //////////////////////////////////////////////////////////////////////
41 //
42 // CVS Revision History
43 //
44 // $Log: pci_wbr_fifo_control.v,v $
45 // Revision 1.1 2007-03-20 17:50:56 sithglan
46 // add shit
47 //
48 // Revision 1.4 2003/08/14 13:06:03 simons
49 // synchronizer_flop replaced with pci_synchronizer_flop, artisan ram instance updated.
50 //
51 // Revision 1.3 2003/07/29 08:20:11 mihad
52 // Found and simulated the problem in the synchronization logic.
53 // Repaired the synchronization logic in the FIFOs.
54 //
55 // Revision 1.2 2003/03/26 13:16:18 mihad
56 // Added the reset value parameter to the synchronizer flop module.
57 // Added resets to all synchronizer flop instances.
58 // Repaired initial sync value in fifos.
59 //
60 // Revision 1.1 2003/01/27 16:49:31 mihad
61 // Changed module and file names. Updated scripts accordingly. FIFO synchronizations changed.
62 //
63 // Revision 1.6 2002/11/27 20:36:12 mihad
64 // Changed the code a bit to make it more readable.
65 // Functionality not changed in any way.
66 // More robust synchronization in fifos is still pending.
67 //
68 // Revision 1.5 2002/09/30 16:03:04 mihad
69 // Added meta flop module for easier meta stable FF identification during synthesis
70 //
71 // Revision 1.4 2002/09/25 15:53:52 mihad
72 // Removed all logic from asynchronous reset network
73 //
74 // Revision 1.3 2002/02/01 15:25:13 mihad
75 // Repaired a few bugs, updated specification, added test bench files and design document
76 //
77 // Revision 1.2 2001/10/05 08:14:30 mihad
78 // Updated all files with inclusion of timescale file for simulation purposes.
79 //
80 // Revision 1.1.1.1 2001/10/02 15:33:47 mihad
81 // New project directory structure
82 //
83 //
84
85 /* FIFO_CONTROL module provides read/write address and status generation for
86 FIFOs implemented with standard dual port SRAM cells in ASIC or FPGA designs */
87 `include "pci_constants.v"
88 // synopsys translate_off
89 `include "timescale.v"
90 // synopsys translate_on
91
92 module pci_wbr_fifo_control
93 (
94 rclock_in,
95 wclock_in,
96 renable_in,
97 wenable_in,
98 reset_in,
99 flush_in,
100 empty_out,
101 waddr_out,
102 raddr_out,
103 rallow_out,
104 wallow_out
105 ) ;
106
107 parameter ADDR_LENGTH = 7 ;
108
109 // independent clock inputs - rclock_in = read clock, wclock_in = write clock
110 input rclock_in, wclock_in;
111
112 // enable inputs - read address changes on rising edge of rclock_in when reads are allowed
113 // write address changes on rising edge of wclock_in when writes are allowed
114 input renable_in, wenable_in;
115
116 // reset input
117 input reset_in;
118
119 // flush input
120 input flush_in ;
121
122 // empty status output
123 output empty_out;
124
125 // read and write addresses outputs
126 output [(ADDR_LENGTH - 1):0] waddr_out, raddr_out;
127
128 // read and write allow outputs
129 output rallow_out, wallow_out ;
130
131 // read address register
132 reg [(ADDR_LENGTH - 1):0] raddr ;
133
134 // write address register
135 reg [(ADDR_LENGTH - 1):0] waddr;
136 assign waddr_out = waddr ;
137
138 // grey code register
139 reg [(ADDR_LENGTH - 1):0] wgrey_addr ;
140
141 // next write gray address calculation - bitwise xor between address and shifted address
142 wire [(ADDR_LENGTH - 2):0] calc_wgrey_next = waddr[(ADDR_LENGTH - 1):1] ^ waddr[(ADDR_LENGTH - 2):0] ;
143
144 // grey code register
145 reg [(ADDR_LENGTH - 1):0] rgrey_addr ;
146
147 // next read gray address calculation - bitwise xor between address and shifted address
148 wire [(ADDR_LENGTH - 2):0] calc_rgrey_next = raddr[(ADDR_LENGTH - 1):1] ^ raddr[(ADDR_LENGTH - 2):0] ;
149
150 // FF for registered empty flag
151 wire empty ;
152
153 // write allow wire
154 wire wallow = wenable_in ;
155
156 // write allow output assignment
157 assign wallow_out = wallow ;
158
159 // read allow wire
160 wire rallow ;
161
162 // clear generation for FFs and registers
163 wire clear = reset_in /*|| flush_in*/ ; // flush changed to synchronous operation
164
165 assign empty_out = empty ;
166
167 //rallow generation
168 assign rallow = renable_in && !empty ; // reads allowed if read enable is high and FIFO is not empty
169
170 // rallow output assignment
171 assign rallow_out = renable_in ;
172
173 // at any clock edge that rallow is high, this register provides next read address, so wait cycles are not necessary
174 // when FIFO is empty, this register provides actual read address, so first location can be read
175 reg [(ADDR_LENGTH - 1):0] raddr_plus_one ;
176
177 // address output mux - when FIFO is empty, current actual address is driven out, when it is non - empty next address is driven out
178 // done for zero wait state burst
179 assign raddr_out = rallow ? raddr_plus_one : raddr ;
180
181 always@(posedge rclock_in or posedge clear)
182 begin
183 if (clear)
184 begin
185 raddr_plus_one <= #`FF_DELAY 2 ;
186 raddr <= #`FF_DELAY 1 ;
187 end
188 else if (flush_in)
189 begin
190 raddr_plus_one <= #`FF_DELAY waddr + 1'b1 ;
191 raddr <= #`FF_DELAY waddr ;
192 end
193 else if (rallow)
194 begin
195 raddr_plus_one <= #`FF_DELAY raddr_plus_one + 1'b1 ;
196 raddr <= #`FF_DELAY raddr_plus_one ;
197 end
198 end
199
200 /*-----------------------------------------------------------------------------------------------
201 Read address control consists of Read address counter and Grey Address register
202 --------------------------------------------------------------------------------------------------*/
203 // grey coded address
204 always@(posedge rclock_in or posedge clear)
205 begin
206 if (clear)
207 begin
208 rgrey_addr <= #`FF_DELAY 0 ;
209 end
210 else if (flush_in)
211 begin
212 rgrey_addr <= #`FF_DELAY wgrey_addr ; // when flushed, copy value from write side
213 end
214 else if (rallow)
215 begin
216 rgrey_addr <= #`FF_DELAY {raddr[ADDR_LENGTH - 1], calc_rgrey_next} ;
217 end
218 end
219
220 /*--------------------------------------------------------------------------------------------
221 Write address control consists of write address counter and Grey Code Register
222 ----------------------------------------------------------------------------------------------*/
223 // grey coded address for status generation in write clock domain
224 always@(posedge wclock_in or posedge clear)
225 begin
226 if (clear)
227 begin
228 wgrey_addr <= #1 0 ;
229 end
230 else
231 if (wallow)
232 begin
233 wgrey_addr <= #1 {waddr[(ADDR_LENGTH - 1)], calc_wgrey_next} ;
234 end
235 end
236
237 // write address counter - nothing special except initial value
238 always@(posedge wclock_in or posedge clear)
239 begin
240 if (clear)
241 // initial value is 1
242 waddr <= #`FF_DELAY 1 ;
243 else
244 if (wallow)
245 waddr <= #`FF_DELAY waddr + 1'b1 ;
246 end
247
248
249 /*------------------------------------------------------------------------------------------------------------------------------
250 Empty control:
251 Gray coded write address pointer is synchronized to read clock domain and compared to Gray coded read address pointer.
252 If they are equal, fifo is empty.
253 --------------------------------------------------------------------------------------------------------------------------------*/
254 wire [(ADDR_LENGTH - 1):0] rclk_sync_wgrey_addr ;
255 reg [(ADDR_LENGTH - 1):0] rclk_wgrey_addr ;
256 pci_synchronizer_flop #(ADDR_LENGTH, 0) i_synchronizer_reg_wgrey_addr
257 (
258 .data_in (wgrey_addr),
259 .clk_out (rclock_in),
260 .sync_data_out (rclk_sync_wgrey_addr),
261 .async_reset (clear)
262 ) ;
263
264 always@(posedge rclock_in or posedge clear)
265 begin
266 if (clear)
267 rclk_wgrey_addr <= #`FF_DELAY 0 ;
268 else
269 rclk_wgrey_addr <= #`FF_DELAY rclk_sync_wgrey_addr ;
270 end
271
272 assign empty = (rgrey_addr == rclk_wgrey_addr) ;
273 endmodule
Impressum, Datenschutz