]> git.zerfleddert.de Git - ms2-kexec/blob - kexec.c
update kexec to 2.6.39 version, still doesn't work...
[ms2-kexec] / kexec.c
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 * This Edition is maintained by Matthew Veety (aliasxerog) <mveety@gmail.com>
5 *
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsrelease.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/system.h>
40 #include <asm/sections.h>
41 #include <asm/unistd.h>
42
43 MODULE_LICENSE("GPL");
44
45 /* Syscall table */
46 void **sys_call_table;
47
48 /* original and new reboot syscall */
49 asmlinkage long (*original_reboot)(int magic1, int magic2, unsigned int cmd, void __user *arg);
50 extern asmlinkage long reboot(int magic1, int magic2, unsigned int cmd, void __user *arg);
51
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t* crash_notes;
54
55 /* vmcoreinfo stuff */
56 unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
57 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
58 size_t vmcoreinfo_size;
59 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
60
61 /* Location of the reserved area for the crash kernel */
62 struct resource crashk_res = {
63 .name = "Crash kernel",
64 .start = 0,
65 .end = 0,
66 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
67 };
68
69 int kexec_should_crash(struct task_struct *p)
70 {
71 if (in_interrupt() || !p->pid || is_global_init(p))
72 return 1;
73 return 0;
74 }
75
76 /*
77 * When kexec transitions to the new kernel there is a one-to-one
78 * mapping between physical and virtual addresses. On processors
79 * where you can disable the MMU this is trivial, and easy. For
80 * others it is still a simple predictable page table to setup.
81 *
82 * In that environment kexec copies the new kernel to its final
83 * resting place. This means I can only support memory whose
84 * physical address can fit in an unsigned long. In particular
85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
86 * If the assembly stub has more restrictive requirements
87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
88 * defined more restrictively in <asm/kexec.h>.
89 *
90 * The code for the transition from the current kernel to the
91 * the new kernel is placed in the control_code_buffer, whose size
92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
93 * page of memory is necessary, but some architectures require more.
94 * Because this memory must be identity mapped in the transition from
95 * virtual to physical addresses it must live in the range
96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
97 * modifiable.
98 *
99 * The assembly stub in the control code buffer is passed a linked list
100 * of descriptor pages detailing the source pages of the new kernel,
101 * and the destination addresses of those source pages. As this data
102 * structure is not used in the context of the current OS, it must
103 * be self-contained.
104 *
105 * The code has been made to work with highmem pages and will use a
106 * destination page in its final resting place (if it happens
107 * to allocate it). The end product of this is that most of the
108 * physical address space, and most of RAM can be used.
109 *
110 * Future directions include:
111 * - allocating a page table with the control code buffer identity
112 * mapped, to simplify machine_kexec and make kexec_on_panic more
113 * reliable.
114 */
115
116 /*
117 * KIMAGE_NO_DEST is an impossible destination address..., for
118 * allocating pages whose destination address we do not care about.
119 */
120 #define KIMAGE_NO_DEST (-1UL)
121
122 static int kimage_is_destination_range(struct kimage *image,
123 unsigned long start, unsigned long end);
124 static struct page *kimage_alloc_page(struct kimage *image,
125 gfp_t gfp_mask,
126 unsigned long dest);
127
128 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
129 unsigned long nr_segments,
130 struct kexec_segment __user *segments)
131 {
132 size_t segment_bytes;
133 struct kimage *image;
134 unsigned long i;
135 int result;
136
137 /* Allocate a controlling structure */
138 result = -ENOMEM;
139 image = kzalloc(sizeof(*image), GFP_KERNEL);
140 if (!image)
141 goto out;
142
143 image->head = 0;
144 image->entry = &image->head;
145 image->last_entry = &image->head;
146 image->control_page = ~0; /* By default this does not apply */
147 image->start = entry;
148 image->type = KEXEC_TYPE_DEFAULT;
149
150 /* Initialize the list of control pages */
151 INIT_LIST_HEAD(&image->control_pages);
152
153 /* Initialize the list of destination pages */
154 INIT_LIST_HEAD(&image->dest_pages);
155
156 /* Initialize the list of unuseable pages */
157 INIT_LIST_HEAD(&image->unuseable_pages);
158
159 /* Read in the segments */
160 image->nr_segments = nr_segments;
161 segment_bytes = nr_segments * sizeof(*segments);
162 result = copy_from_user(image->segment, segments, segment_bytes);
163 if (result)
164 goto out;
165
166 /*
167 * Verify we have good destination addresses. The caller is
168 * responsible for making certain we don't attempt to load
169 * the new image into invalid or reserved areas of RAM. This
170 * just verifies it is an address we can use.
171 *
172 * Since the kernel does everything in page size chunks ensure
173 * the destination addreses are page aligned. Too many
174 * special cases crop of when we don't do this. The most
175 * insidious is getting overlapping destination addresses
176 * simply because addresses are changed to page size
177 * granularity.
178 */
179 result = -EADDRNOTAVAIL;
180 for (i = 0; i < nr_segments; i++) {
181 unsigned long mstart, mend;
182
183 mstart = image->segment[i].mem;
184 mend = mstart + image->segment[i].memsz;
185 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
186 goto out;
187 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
188 goto out;
189 }
190
191 /* Verify our destination addresses do not overlap.
192 * If we alloed overlapping destination addresses
193 * through very weird things can happen with no
194 * easy explanation as one segment stops on another.
195 */
196 result = -EINVAL;
197 for (i = 0; i < nr_segments; i++) {
198 unsigned long mstart, mend;
199 unsigned long j;
200
201 mstart = image->segment[i].mem;
202 mend = mstart + image->segment[i].memsz;
203 for (j = 0; j < i; j++) {
204 unsigned long pstart, pend;
205 pstart = image->segment[j].mem;
206 pend = pstart + image->segment[j].memsz;
207 /* Do the segments overlap ? */
208 if ((mend > pstart) && (mstart < pend))
209 goto out;
210 }
211 }
212
213 /* Ensure our buffer sizes are strictly less than
214 * our memory sizes. This should always be the case,
215 * and it is easier to check up front than to be surprised
216 * later on.
217 */
218 result = -EINVAL;
219 for (i = 0; i < nr_segments; i++) {
220 if (image->segment[i].bufsz > image->segment[i].memsz)
221 goto out;
222 }
223
224 result = 0;
225 out:
226 if (result == 0)
227 *rimage = image;
228 else
229 kfree(image);
230
231 return result;
232
233 }
234
235 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
236 unsigned long nr_segments,
237 struct kexec_segment __user *segments)
238 {
239 int result;
240 struct kimage *image;
241
242 /* Allocate and initialize a controlling structure */
243 image = NULL;
244 result = do_kimage_alloc(&image, entry, nr_segments, segments);
245 if (result)
246 goto out;
247
248 *rimage = image;
249
250 /*
251 * Find a location for the control code buffer, and add it
252 * the vector of segments so that it's pages will also be
253 * counted as destination pages.
254 */
255 result = -ENOMEM;
256 image->control_code_page = kimage_alloc_control_pages(image,
257 get_order(KEXEC_CONTROL_PAGE_SIZE));
258 if (!image->control_code_page) {
259 printk(KERN_ERR "Could not allocate control_code_buffer\n");
260 goto out;
261 }
262
263 image->swap_page = kimage_alloc_control_pages(image, 0);
264 if (!image->swap_page) {
265 printk(KERN_ERR "Could not allocate swap buffer\n");
266 goto out;
267 }
268
269 result = 0;
270 out:
271 if (result == 0)
272 *rimage = image;
273 else
274 kfree(image);
275
276 return result;
277 }
278
279 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
280 unsigned long nr_segments,
281 struct kexec_segment __user *segments)
282 {
283 int result;
284 struct kimage *image;
285 unsigned long i;
286
287 image = NULL;
288 /* Verify we have a valid entry point */
289 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
290 result = -EADDRNOTAVAIL;
291 goto out;
292 }
293
294 /* Allocate and initialize a controlling structure */
295 result = do_kimage_alloc(&image, entry, nr_segments, segments);
296 if (result)
297 goto out;
298
299 /* Enable the special crash kernel control page
300 * allocation policy.
301 */
302 image->control_page = crashk_res.start;
303 image->type = KEXEC_TYPE_CRASH;
304
305 /*
306 * Verify we have good destination addresses. Normally
307 * the caller is responsible for making certain we don't
308 * attempt to load the new image into invalid or reserved
309 * areas of RAM. But crash kernels are preloaded into a
310 * reserved area of ram. We must ensure the addresses
311 * are in the reserved area otherwise preloading the
312 * kernel could corrupt things.
313 */
314 result = -EADDRNOTAVAIL;
315 for (i = 0; i < nr_segments; i++) {
316 unsigned long mstart, mend;
317
318 mstart = image->segment[i].mem;
319 mend = mstart + image->segment[i].memsz - 1;
320 /* Ensure we are within the crash kernel limits */
321 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
322 goto out;
323 }
324
325 /*
326 * Find a location for the control code buffer, and add
327 * the vector of segments so that it's pages will also be
328 * counted as destination pages.
329 */
330 result = -ENOMEM;
331 image->control_code_page = kimage_alloc_control_pages(image,
332 get_order(KEXEC_CONTROL_PAGE_SIZE));
333 if (!image->control_code_page) {
334 printk(KERN_ERR "Could not allocate control_code_buffer\n");
335 goto out;
336 }
337
338 result = 0;
339 out:
340 if (result == 0)
341 *rimage = image;
342 else
343 kfree(image);
344
345 return result;
346 }
347
348 static int kimage_is_destination_range(struct kimage *image,
349 unsigned long start,
350 unsigned long end)
351 {
352 unsigned long i;
353
354 for (i = 0; i < image->nr_segments; i++) {
355 unsigned long mstart, mend;
356
357 mstart = image->segment[i].mem;
358 mend = mstart + image->segment[i].memsz;
359 if ((end > mstart) && (start < mend))
360 return 1;
361 }
362
363 return 0;
364 }
365
366 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
367 {
368 struct page *pages;
369
370 pages = alloc_pages(gfp_mask, order);
371 if (pages) {
372 unsigned int count, i;
373 pages->mapping = NULL;
374 set_page_private(pages, order);
375 count = 1 << order;
376 for (i = 0; i < count; i++)
377 SetPageReserved(pages + i);
378 }
379
380 return pages;
381 }
382
383 static void kimage_free_pages(struct page *page)
384 {
385 unsigned int order, count, i;
386
387 order = page_private(page);
388 count = 1 << order;
389 for (i = 0; i < count; i++)
390 ClearPageReserved(page + i);
391 __free_pages(page, order);
392 }
393
394 static void kimage_free_page_list(struct list_head *list)
395 {
396 struct list_head *pos, *next;
397
398 list_for_each_safe(pos, next, list) {
399 struct page *page;
400
401 page = list_entry(pos, struct page, lru);
402 list_del(&page->lru);
403 kimage_free_pages(page);
404 }
405 }
406
407 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
408 unsigned int order)
409 {
410 /* Control pages are special, they are the intermediaries
411 * that are needed while we copy the rest of the pages
412 * to their final resting place. As such they must
413 * not conflict with either the destination addresses
414 * or memory the kernel is already using.
415 *
416 * The only case where we really need more than one of
417 * these are for architectures where we cannot disable
418 * the MMU and must instead generate an identity mapped
419 * page table for all of the memory.
420 *
421 * At worst this runs in O(N) of the image size.
422 */
423 struct list_head extra_pages;
424 struct page *pages;
425 unsigned int count;
426
427 count = 1 << order;
428 INIT_LIST_HEAD(&extra_pages);
429
430 /* Loop while I can allocate a page and the page allocated
431 * is a destination page.
432 */
433 do {
434 unsigned long pfn, epfn, addr, eaddr;
435
436 pages = kimage_alloc_pages(GFP_KERNEL, order);
437 if (!pages)
438 break;
439 pfn = page_to_pfn(pages);
440 epfn = pfn + count;
441 addr = pfn << PAGE_SHIFT;
442 eaddr = epfn << PAGE_SHIFT;
443 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
444 kimage_is_destination_range(image, addr, eaddr)) {
445 list_add(&pages->lru, &extra_pages);
446 pages = NULL;
447 }
448 } while (!pages);
449
450 if (pages) {
451 /* Remember the allocated page... */
452 list_add(&pages->lru, &image->control_pages);
453
454 /* Because the page is already in it's destination
455 * location we will never allocate another page at
456 * that address. Therefore kimage_alloc_pages
457 * will not return it (again) and we don't need
458 * to give it an entry in image->segment[].
459 */
460 }
461 /* Deal with the destination pages I have inadvertently allocated.
462 *
463 * Ideally I would convert multi-page allocations into single
464 * page allocations, and add everyting to image->dest_pages.
465 *
466 * For now it is simpler to just free the pages.
467 */
468 kimage_free_page_list(&extra_pages);
469
470 return pages;
471 }
472
473 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
474 unsigned int order)
475 {
476 /* Control pages are special, they are the intermediaries
477 * that are needed while we copy the rest of the pages
478 * to their final resting place. As such they must
479 * not conflict with either the destination addresses
480 * or memory the kernel is already using.
481 *
482 * Control pages are also the only pags we must allocate
483 * when loading a crash kernel. All of the other pages
484 * are specified by the segments and we just memcpy
485 * into them directly.
486 *
487 * The only case where we really need more than one of
488 * these are for architectures where we cannot disable
489 * the MMU and must instead generate an identity mapped
490 * page table for all of the memory.
491 *
492 * Given the low demand this implements a very simple
493 * allocator that finds the first hole of the appropriate
494 * size in the reserved memory region, and allocates all
495 * of the memory up to and including the hole.
496 */
497 unsigned long hole_start, hole_end, size;
498 struct page *pages;
499
500 pages = NULL;
501 size = (1 << order) << PAGE_SHIFT;
502 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
503 hole_end = hole_start + size - 1;
504 while (hole_end <= crashk_res.end) {
505 unsigned long i;
506
507 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
508 break;
509 if (hole_end > crashk_res.end)
510 break;
511 /* See if I overlap any of the segments */
512 for (i = 0; i < image->nr_segments; i++) {
513 unsigned long mstart, mend;
514
515 mstart = image->segment[i].mem;
516 mend = mstart + image->segment[i].memsz - 1;
517 if ((hole_end >= mstart) && (hole_start <= mend)) {
518 /* Advance the hole to the end of the segment */
519 hole_start = (mend + (size - 1)) & ~(size - 1);
520 hole_end = hole_start + size - 1;
521 break;
522 }
523 }
524 /* If I don't overlap any segments I have found my hole! */
525 if (i == image->nr_segments) {
526 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
527 break;
528 }
529 }
530 if (pages)
531 image->control_page = hole_end;
532
533 return pages;
534 }
535
536
537 struct page *kimage_alloc_control_pages(struct kimage *image,
538 unsigned int order)
539 {
540 struct page *pages = NULL;
541
542 switch (image->type) {
543 case KEXEC_TYPE_DEFAULT:
544 pages = kimage_alloc_normal_control_pages(image, order);
545 break;
546 case KEXEC_TYPE_CRASH:
547 pages = kimage_alloc_crash_control_pages(image, order);
548 break;
549 }
550
551 return pages;
552 }
553
554 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
555 {
556 if (*image->entry != 0)
557 image->entry++;
558
559 if (image->entry == image->last_entry) {
560 kimage_entry_t *ind_page;
561 struct page *page;
562
563 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
564 if (!page)
565 return -ENOMEM;
566
567 ind_page = page_address(page);
568 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
569 image->entry = ind_page;
570 image->last_entry = ind_page +
571 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
572 }
573 *image->entry = entry;
574 image->entry++;
575 *image->entry = 0;
576
577 return 0;
578 }
579
580 static int kimage_set_destination(struct kimage *image,
581 unsigned long destination)
582 {
583 int result;
584
585 destination &= PAGE_MASK;
586 result = kimage_add_entry(image, destination | IND_DESTINATION);
587 if (result == 0)
588 image->destination = destination;
589
590 return result;
591 }
592
593
594 static int kimage_add_page(struct kimage *image, unsigned long page)
595 {
596 int result;
597
598 page &= PAGE_MASK;
599 result = kimage_add_entry(image, page | IND_SOURCE);
600 if (result == 0)
601 image->destination += PAGE_SIZE;
602
603 return result;
604 }
605
606
607 static void kimage_free_extra_pages(struct kimage *image)
608 {
609 /* Walk through and free any extra destination pages I may have */
610 kimage_free_page_list(&image->dest_pages);
611
612 /* Walk through and free any unuseable pages I have cached */
613 kimage_free_page_list(&image->unuseable_pages);
614
615 }
616 static void kimage_terminate(struct kimage *image)
617 {
618 if (*image->entry != 0)
619 image->entry++;
620
621 *image->entry = IND_DONE;
622 }
623
624 #define for_each_kimage_entry(image, ptr, entry) \
625 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
626 ptr = (entry & IND_INDIRECTION)? \
627 phys_to_virt((entry & PAGE_MASK)): ptr +1)
628
629 static void kimage_free_entry(kimage_entry_t entry)
630 {
631 struct page *page;
632
633 page = pfn_to_page(entry >> PAGE_SHIFT);
634 kimage_free_pages(page);
635 }
636
637 static void kimage_free(struct kimage *image)
638 {
639 kimage_entry_t *ptr, entry;
640 kimage_entry_t ind = 0;
641
642 if (!image)
643 return;
644
645 kimage_free_extra_pages(image);
646 for_each_kimage_entry(image, ptr, entry) {
647 if (entry & IND_INDIRECTION) {
648 /* Free the previous indirection page */
649 if (ind & IND_INDIRECTION)
650 kimage_free_entry(ind);
651 /* Save this indirection page until we are
652 * done with it.
653 */
654 ind = entry;
655 }
656 else if (entry & IND_SOURCE)
657 kimage_free_entry(entry);
658 }
659 /* Free the final indirection page */
660 if (ind & IND_INDIRECTION)
661 kimage_free_entry(ind);
662
663 /* Handle any machine specific cleanup */
664 machine_kexec_cleanup(image);
665
666 /* Free the kexec control pages... */
667 kimage_free_page_list(&image->control_pages);
668 kfree(image);
669 }
670
671 static kimage_entry_t *kimage_dst_used(struct kimage *image,
672 unsigned long page)
673 {
674 kimage_entry_t *ptr, entry;
675 unsigned long destination = 0;
676
677 for_each_kimage_entry(image, ptr, entry) {
678 if (entry & IND_DESTINATION)
679 destination = entry & PAGE_MASK;
680 else if (entry & IND_SOURCE) {
681 if (page == destination)
682 return ptr;
683 destination += PAGE_SIZE;
684 }
685 }
686
687 return NULL;
688 }
689
690 static struct page *kimage_alloc_page(struct kimage *image,
691 gfp_t gfp_mask,
692 unsigned long destination)
693 {
694 /*
695 * Here we implement safeguards to ensure that a source page
696 * is not copied to its destination page before the data on
697 * the destination page is no longer useful.
698 *
699 * To do this we maintain the invariant that a source page is
700 * either its own destination page, or it is not a
701 * destination page at all.
702 *
703 * That is slightly stronger than required, but the proof
704 * that no problems will not occur is trivial, and the
705 * implementation is simply to verify.
706 *
707 * When allocating all pages normally this algorithm will run
708 * in O(N) time, but in the worst case it will run in O(N^2)
709 * time. If the runtime is a problem the data structures can
710 * be fixed.
711 */
712 struct page *page;
713 unsigned long addr;
714
715 /*
716 * Walk through the list of destination pages, and see if I
717 * have a match.
718 */
719 list_for_each_entry(page, &image->dest_pages, lru) {
720 addr = page_to_pfn(page) << PAGE_SHIFT;
721 if (addr == destination) {
722 list_del(&page->lru);
723 return page;
724 }
725 }
726 page = NULL;
727 while (1) {
728 kimage_entry_t *old;
729
730 /* Allocate a page, if we run out of memory give up */
731 page = kimage_alloc_pages(gfp_mask, 0);
732 if (!page)
733 return NULL;
734 /* If the page cannot be used file it away */
735 if (page_to_pfn(page) >
736 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
737 list_add(&page->lru, &image->unuseable_pages);
738 continue;
739 }
740 addr = page_to_pfn(page) << PAGE_SHIFT;
741
742 /* If it is the destination page we want use it */
743 if (addr == destination)
744 break;
745
746 /* If the page is not a destination page use it */
747 if (!kimage_is_destination_range(image, addr,
748 addr + PAGE_SIZE))
749 break;
750
751 /*
752 * I know that the page is someones destination page.
753 * See if there is already a source page for this
754 * destination page. And if so swap the source pages.
755 */
756 old = kimage_dst_used(image, addr);
757 if (old) {
758 /* If so move it */
759 unsigned long old_addr;
760 struct page *old_page;
761
762 old_addr = *old & PAGE_MASK;
763 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
764 copy_highpage(page, old_page);
765 *old = addr | (*old & ~PAGE_MASK);
766
767 /* The old page I have found cannot be a
768 * destination page, so return it if it's
769 * gfp_flags honor the ones passed in.
770 */
771 if (!(gfp_mask & __GFP_HIGHMEM) &&
772 PageHighMem(old_page)) {
773 kimage_free_pages(old_page);
774 continue;
775 }
776 addr = old_addr;
777 page = old_page;
778 break;
779 }
780 else {
781 /* Place the page on the destination list I
782 * will use it later.
783 */
784 list_add(&page->lru, &image->dest_pages);
785 }
786 }
787
788 return page;
789 }
790
791 static int kimage_load_normal_segment(struct kimage *image,
792 struct kexec_segment *segment)
793 {
794 unsigned long maddr;
795 unsigned long ubytes, mbytes;
796 int result;
797 unsigned char __user *buf;
798
799 result = 0;
800 buf = segment->buf;
801 ubytes = segment->bufsz;
802 mbytes = segment->memsz;
803 maddr = segment->mem;
804
805 result = kimage_set_destination(image, maddr);
806 if (result < 0)
807 goto out;
808
809 while (mbytes) {
810 struct page *page;
811 char *ptr;
812 size_t uchunk, mchunk;
813
814 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
815 if (!page) {
816 result = -ENOMEM;
817 goto out;
818 }
819 result = kimage_add_page(image, page_to_pfn(page)
820 << PAGE_SHIFT);
821 if (result < 0)
822 goto out;
823
824 ptr = kmap(page);
825 /* Start with a clear page */
826 memset(ptr, 0, PAGE_SIZE);
827 ptr += maddr & ~PAGE_MASK;
828 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
829 if (mchunk > mbytes)
830 mchunk = mbytes;
831
832 uchunk = mchunk;
833 if (uchunk > ubytes)
834 uchunk = ubytes;
835
836 result = copy_from_user(ptr, buf, uchunk);
837 kunmap(page);
838 if (result) {
839 result = (result < 0) ? result : -EIO;
840 goto out;
841 }
842 ubytes -= uchunk;
843 maddr += mchunk;
844 buf += mchunk;
845 mbytes -= mchunk;
846 }
847 out:
848 return result;
849 }
850
851 static int kimage_load_crash_segment(struct kimage *image,
852 struct kexec_segment *segment)
853 {
854 /* For crash dumps kernels we simply copy the data from
855 * user space to it's destination.
856 * We do things a page at a time for the sake of kmap.
857 */
858 unsigned long maddr;
859 unsigned long ubytes, mbytes;
860 int result;
861 unsigned char __user *buf;
862
863 result = 0;
864 buf = segment->buf;
865 ubytes = segment->bufsz;
866 mbytes = segment->memsz;
867 maddr = segment->mem;
868 while (mbytes) {
869 struct page *page;
870 char *ptr;
871 size_t uchunk, mchunk;
872
873 page = pfn_to_page(maddr >> PAGE_SHIFT);
874 if (!page) {
875 result = -ENOMEM;
876 goto out;
877 }
878 ptr = kmap(page);
879 ptr += maddr & ~PAGE_MASK;
880 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
881 if (mchunk > mbytes)
882 mchunk = mbytes;
883
884 uchunk = mchunk;
885 if (uchunk > ubytes) {
886 uchunk = ubytes;
887 /* Zero the trailing part of the page */
888 memset(ptr + uchunk, 0, mchunk - uchunk);
889 }
890 result = copy_from_user(ptr, buf, uchunk);
891 kexec_flush_icache_page(page);
892 kunmap(page);
893 if (result) {
894 result = (result < 0) ? result : -EIO;
895 goto out;
896 }
897 ubytes -= uchunk;
898 maddr += mchunk;
899 buf += mchunk;
900 mbytes -= mchunk;
901 }
902 out:
903 return result;
904 }
905
906 static int kimage_load_segment(struct kimage *image,
907 struct kexec_segment *segment)
908 {
909 int result = -ENOMEM;
910
911 switch (image->type) {
912 case KEXEC_TYPE_DEFAULT:
913 result = kimage_load_normal_segment(image, segment);
914 break;
915 case KEXEC_TYPE_CRASH:
916 result = kimage_load_crash_segment(image, segment);
917 break;
918 }
919
920 return result;
921 }
922
923 /*
924 * Exec Kernel system call: for obvious reasons only root may call it.
925 *
926 * This call breaks up into three pieces.
927 * - A generic part which loads the new kernel from the current
928 * address space, and very carefully places the data in the
929 * allocated pages.
930 *
931 * - A generic part that interacts with the kernel and tells all of
932 * the devices to shut down. Preventing on-going dmas, and placing
933 * the devices in a consistent state so a later kernel can
934 * reinitialize them.
935 *
936 * - A machine specific part that includes the syscall number
937 * and the copies the image to it's final destination. And
938 * jumps into the image at entry.
939 *
940 * kexec does not sync, or unmount filesystems so if you need
941 * that to happen you need to do that yourself.
942 */
943 struct kimage *kexec_image;
944 struct kimage *kexec_crash_image;
945
946 static DEFINE_MUTEX(kexec_mutex);
947
948 asmlinkage long kexec_load(unsigned long entry, unsigned long nr_segments, struct kexec_segment __user *segments, unsigned long flags)
949 {
950 struct kimage **dest_image, *image;
951 int result;
952
953 /* We only trust the superuser with rebooting the system. */
954 if (!capable(CAP_SYS_BOOT))
955 return -EPERM;
956
957 /*
958 * Verify we have a legal set of flags
959 * This leaves us room for future extensions.
960 */
961 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
962 return -EINVAL;
963
964 /* Verify we are on the appropriate architecture */
965 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
966 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
967 return -EINVAL;
968
969 /* Put an artificial cap on the number
970 * of segments passed to kexec_load.
971 */
972 if (nr_segments > KEXEC_SEGMENT_MAX)
973 return -EINVAL;
974
975 image = NULL;
976 result = 0;
977
978 /* Because we write directly to the reserved memory
979 * region when loading crash kernels we need a mutex here to
980 * prevent multiple crash kernels from attempting to load
981 * simultaneously, and to prevent a crash kernel from loading
982 * over the top of a in use crash kernel.
983 *
984 * KISS: always take the mutex.
985 */
986 if (!mutex_trylock(&kexec_mutex))
987 return -EBUSY;
988
989 dest_image = &kexec_image;
990 if (flags & KEXEC_ON_CRASH)
991 dest_image = &kexec_crash_image;
992 if (nr_segments > 0) {
993 unsigned long i;
994
995 /* Loading another kernel to reboot into */
996 if ((flags & KEXEC_ON_CRASH) == 0)
997 result = kimage_normal_alloc(&image, entry,
998 nr_segments, segments);
999 /* Loading another kernel to switch to if this one crashes */
1000 else if (flags & KEXEC_ON_CRASH) {
1001 /* Free any current crash dump kernel before
1002 * we corrupt it.
1003 */
1004 kimage_free(xchg(&kexec_crash_image, NULL));
1005 result = kimage_crash_alloc(&image, entry,
1006 nr_segments, segments);
1007 }
1008 if (result)
1009 goto out;
1010
1011 if (flags & KEXEC_PRESERVE_CONTEXT)
1012 image->preserve_context = 1;
1013 result = machine_kexec_prepare(image);
1014 if (result)
1015 goto out;
1016
1017 for (i = 0; i < nr_segments; i++) {
1018 result = kimage_load_segment(image, &image->segment[i]);
1019 if (result)
1020 goto out;
1021 }
1022 kimage_terminate(image);
1023 }
1024 /* Install the new kernel, and Uninstall the old */
1025 image = xchg(dest_image, image);
1026
1027 out:
1028 mutex_unlock(&kexec_mutex);
1029 kimage_free(image);
1030
1031 return result;
1032 }
1033
1034 #ifdef CONFIG_COMPAT
1035 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1036 unsigned long nr_segments,
1037 struct compat_kexec_segment __user *segments,
1038 unsigned long flags)
1039 {
1040 struct compat_kexec_segment in;
1041 struct kexec_segment out, __user *ksegments;
1042 unsigned long i, result;
1043
1044 /* Don't allow clients that don't understand the native
1045 * architecture to do anything.
1046 */
1047 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1048 return -EINVAL;
1049
1050 if (nr_segments > KEXEC_SEGMENT_MAX)
1051 return -EINVAL;
1052
1053 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1054 for (i=0; i < nr_segments; i++) {
1055 result = copy_from_user(&in, &segments[i], sizeof(in));
1056 if (result)
1057 return -EFAULT;
1058
1059 out.buf = compat_ptr(in.buf);
1060 out.bufsz = in.bufsz;
1061 out.mem = in.mem;
1062 out.memsz = in.memsz;
1063
1064 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1065 if (result)
1066 return -EFAULT;
1067 }
1068
1069 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1070 }
1071 #endif
1072
1073 void crash_kexec(struct pt_regs *regs)
1074 {
1075 /* Take the kexec_mutex here to prevent sys_kexec_load
1076 * running on one cpu from replacing the crash kernel
1077 * we are using after a panic on a different cpu.
1078 *
1079 * If the crash kernel was not located in a fixed area
1080 * of memory the xchg(&kexec_crash_image) would be
1081 * sufficient. But since I reuse the memory...
1082 */
1083 if (mutex_trylock(&kexec_mutex)) {
1084 if (kexec_crash_image) {
1085 struct pt_regs fixed_regs;
1086 crash_setup_regs(&fixed_regs, regs);
1087 crash_save_vmcoreinfo();
1088 machine_crash_shutdown(&fixed_regs);
1089 machine_kexec(kexec_crash_image);
1090 }
1091 mutex_unlock(&kexec_mutex);
1092 }
1093 }
1094
1095 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1096 size_t data_len)
1097 {
1098 struct elf_note note;
1099
1100 note.n_namesz = strlen(name) + 1;
1101 note.n_descsz = data_len;
1102 note.n_type = type;
1103 memcpy(buf, &note, sizeof(note));
1104 buf += (sizeof(note) + 3)/4;
1105 memcpy(buf, name, note.n_namesz);
1106 buf += (note.n_namesz + 3)/4;
1107 memcpy(buf, data, note.n_descsz);
1108 buf += (note.n_descsz + 3)/4;
1109
1110 return buf;
1111 }
1112
1113 static void final_note(u32 *buf)
1114 {
1115 struct elf_note note;
1116
1117 note.n_namesz = 0;
1118 note.n_descsz = 0;
1119 note.n_type = 0;
1120 memcpy(buf, &note, sizeof(note));
1121 }
1122
1123 void crash_save_cpu(struct pt_regs *regs, int cpu)
1124 {
1125 struct elf_prstatus prstatus;
1126 u32 *buf;
1127
1128 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1129 return;
1130
1131 /* Using ELF notes here is opportunistic.
1132 * I need a well defined structure format
1133 * for the data I pass, and I need tags
1134 * on the data to indicate what information I have
1135 * squirrelled away. ELF notes happen to provide
1136 * all of that, so there is no need to invent something new.
1137 */
1138 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1139 if (!buf)
1140 return;
1141 memset(&prstatus, 0, sizeof(prstatus));
1142 prstatus.pr_pid = current->pid;
1143 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1144 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1145 &prstatus, sizeof(prstatus));
1146 final_note(buf);
1147 }
1148
1149 /*
1150 * parsing the "crashkernel" commandline
1151 *
1152 * this code is intended to be called from architecture specific code
1153 */
1154
1155
1156 /*
1157 * This function parses command lines in the format
1158 *
1159 * crashkernel=ramsize-range:size[,...][@offset]
1160 *
1161 * The function returns 0 on success and -EINVAL on failure.
1162 */
1163 static int __init parse_crashkernel_mem(char *cmdline,
1164 unsigned long long system_ram,
1165 unsigned long long *crash_size,
1166 unsigned long long *crash_base)
1167 {
1168 char *cur = cmdline, *tmp;
1169
1170 /* for each entry of the comma-separated list */
1171 do {
1172 unsigned long long start, end = ULLONG_MAX, size;
1173
1174 /* get the start of the range */
1175 start = memparse(cur, &tmp);
1176 if (cur == tmp) {
1177 pr_warning("crashkernel: Memory value expected\n");
1178 return -EINVAL;
1179 }
1180 cur = tmp;
1181 if (*cur != '-') {
1182 pr_warning("crashkernel: '-' expected\n");
1183 return -EINVAL;
1184 }
1185 cur++;
1186
1187 /* if no ':' is here, than we read the end */
1188 if (*cur != ':') {
1189 end = memparse(cur, &tmp);
1190 if (cur == tmp) {
1191 pr_warning("crashkernel: Memory "
1192 "value expected\n");
1193 return -EINVAL;
1194 }
1195 cur = tmp;
1196 if (end <= start) {
1197 pr_warning("crashkernel: end <= start\n");
1198 return -EINVAL;
1199 }
1200 }
1201
1202 if (*cur != ':') {
1203 pr_warning("crashkernel: ':' expected\n");
1204 return -EINVAL;
1205 }
1206 cur++;
1207
1208 size = memparse(cur, &tmp);
1209 if (cur == tmp) {
1210 pr_warning("Memory value expected\n");
1211 return -EINVAL;
1212 }
1213 cur = tmp;
1214 if (size >= system_ram) {
1215 pr_warning("crashkernel: invalid size\n");
1216 return -EINVAL;
1217 }
1218
1219 /* match ? */
1220 if (system_ram >= start && system_ram < end) {
1221 *crash_size = size;
1222 break;
1223 }
1224 } while (*cur++ == ',');
1225
1226 if (*crash_size > 0) {
1227 while (*cur && *cur != ' ' && *cur != '@')
1228 cur++;
1229 if (*cur == '@') {
1230 cur++;
1231 *crash_base = memparse(cur, &tmp);
1232 if (cur == tmp) {
1233 pr_warning("Memory value expected "
1234 "after '@'\n");
1235 return -EINVAL;
1236 }
1237 }
1238 }
1239
1240 return 0;
1241 }
1242
1243 /*
1244 * That function parses "simple" (old) crashkernel command lines like
1245 *
1246 * crashkernel=size[@offset]
1247 *
1248 * It returns 0 on success and -EINVAL on failure.
1249 */
1250 static int __init parse_crashkernel_simple(char *cmdline,
1251 unsigned long long *crash_size,
1252 unsigned long long *crash_base)
1253 {
1254 char *cur = cmdline;
1255
1256 *crash_size = memparse(cmdline, &cur);
1257 if (cmdline == cur) {
1258 pr_warning("crashkernel: memory value expected\n");
1259 return -EINVAL;
1260 }
1261
1262 if (*cur == '@')
1263 *crash_base = memparse(cur+1, &cur);
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * That function is the entry point for command line parsing and should be
1270 * called from the arch-specific code.
1271 */
1272 int __init parse_crashkernel(char *cmdline,
1273 unsigned long long system_ram,
1274 unsigned long long *crash_size,
1275 unsigned long long *crash_base)
1276 {
1277 char *p = cmdline, *ck_cmdline = NULL;
1278 char *first_colon, *first_space;
1279
1280 BUG_ON(!crash_size || !crash_base);
1281 *crash_size = 0;
1282 *crash_base = 0;
1283
1284 /* find crashkernel and use the last one if there are more */
1285 p = strstr(p, "crashkernel=");
1286 while (p) {
1287 ck_cmdline = p;
1288 p = strstr(p+1, "crashkernel=");
1289 }
1290
1291 if (!ck_cmdline)
1292 return -EINVAL;
1293
1294 ck_cmdline += 12; /* strlen("crashkernel=") */
1295
1296 /*
1297 * if the commandline contains a ':', then that's the extended
1298 * syntax -- if not, it must be the classic syntax
1299 */
1300 first_colon = strchr(ck_cmdline, ':');
1301 first_space = strchr(ck_cmdline, ' ');
1302 if (first_colon && (!first_space || first_colon < first_space))
1303 return parse_crashkernel_mem(ck_cmdline, system_ram,
1304 crash_size, crash_base);
1305 else
1306 return parse_crashkernel_simple(ck_cmdline, crash_size,
1307 crash_base);
1308
1309 return 0;
1310 }
1311
1312
1313
1314 void crash_save_vmcoreinfo(void)
1315 {
1316 u32 *buf;
1317
1318 if (!vmcoreinfo_size)
1319 return;
1320
1321 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1322
1323 buf = (u32 *)vmcoreinfo_note;
1324
1325 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1326 vmcoreinfo_size);
1327
1328 final_note(buf);
1329 }
1330
1331 void vmcoreinfo_append_str(const char *fmt, ...)
1332 {
1333 va_list args;
1334 char buf[0x50];
1335 int r;
1336
1337 va_start(args, fmt);
1338 r = vsnprintf(buf, sizeof(buf), fmt, args);
1339 va_end(args);
1340
1341 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1342 r = vmcoreinfo_max_size - vmcoreinfo_size;
1343
1344 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1345
1346 vmcoreinfo_size += r;
1347 }
1348
1349 /*
1350 * provide an empty default implementation here -- architecture
1351 * code may override this
1352 */
1353 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1354 {}
1355
1356 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1357 {
1358 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1359 }
1360
1361 /*
1362 * Move into place and start executing a preloaded standalone
1363 * executable. If nothing was preloaded return an error.
1364 */
1365 int kernel_kexec(void)
1366 {
1367 int error = 0;
1368
1369 if (!mutex_trylock(&kexec_mutex))
1370 return -EBUSY;
1371 if (!kexec_image) {
1372 error = -EINVAL;
1373 goto Unlock;
1374 }
1375
1376 #ifdef CONFIG_KEXEC_JUMP
1377 if (kexec_image->preserve_context) {
1378 mutex_lock(&pm_mutex);
1379 pm_prepare_console();
1380 error = freeze_processes();
1381 if (error) {
1382 error = -EBUSY;
1383 goto Restore_console;
1384 }
1385 suspend_console();
1386 error = dpm_suspend_start(PMSG_FREEZE);
1387 if (error)
1388 goto Resume_console;
1389 /* At this point, dpm_suspend_start() has been called,
1390 * but *not* dpm_suspend_noirq(). We *must* call
1391 * dpm_suspend_noirq() now. Otherwise, drivers for
1392 * some devices (e.g. interrupt controllers) become
1393 * desynchronized with the actual state of the
1394 * hardware at resume time, and evil weirdness ensues.
1395 */
1396 error = dpm_suspend_noirq(PMSG_FREEZE);
1397 if (error)
1398 goto Resume_devices;
1399 error = disable_nonboot_cpus();
1400 if (error)
1401 goto Enable_cpus;
1402 local_irq_disable();
1403 /* Suspend system devices */
1404 error = sysdev_suspend(PMSG_FREEZE);
1405 if (error)
1406 goto Enable_irqs;
1407 } else
1408 #endif
1409 {
1410 kernel_restart_prepare(NULL);
1411 printk(KERN_EMERG "Starting new kernel\n");
1412 //machine_shutdown();
1413 }
1414
1415 machine_kexec(kexec_image);
1416
1417 #ifdef CONFIG_KEXEC_JUMP
1418 if (kexec_image->preserve_context) {
1419 sysdev_resume();
1420 Enable_irqs:
1421 local_irq_enable();
1422 Enable_cpus:
1423 enable_nonboot_cpus();
1424 dpm_resume_noirq(PMSG_RESTORE);
1425 Resume_devices:
1426 dpm_resume_end(PMSG_RESTORE);
1427 Resume_console:
1428 resume_console();
1429 thaw_processes();
1430 Restore_console:
1431 pm_restore_console();
1432 mutex_unlock(&pm_mutex);
1433 }
1434 #endif
1435
1436 Unlock:
1437 mutex_unlock(&kexec_mutex);
1438 return error;
1439 }
1440
1441 unsigned long **find_sys_call_table(void) {
1442 unsigned long **sctable;
1443 unsigned long ptr;
1444 extern int loops_per_jiffy;
1445 sctable = NULL;
1446 for (ptr = (unsigned long)&unlock_kernel; ptr < (unsigned long)&loops_per_jiffy; ptr += sizeof(void *)) {
1447 unsigned long *p;
1448 p = (unsigned long *)ptr;
1449 if (p[__NR_close] == (unsigned long) sys_close) {
1450 sctable = (unsigned long **)p;
1451 return &sctable[0];
1452 }
1453 }
1454 return NULL;
1455 }
1456
1457 static int __init kexec_module_init(void)
1458 {
1459 sys_call_table=(void **)find_sys_call_table();
1460 if(sys_call_table==NULL) {
1461 printk(KERN_ERR "Cannot find the system call address\n");
1462 return -1; // do not load
1463 }
1464
1465 printk(KERN_INFO "kexec: Found sys_call_table at: %p\n", sys_call_table);
1466
1467 //sys_call_table=(void **)0xc003d004;
1468 sys_call_table=(void **)0xc00350c4;
1469 printk(KERN_INFO "kexec: Force sys_call_table at: %p\n", sys_call_table);
1470
1471 /* Set kexec_load() syscall. */
1472 sys_call_table[__NR_kexec_load]=kexec_load;
1473
1474 /* Swap reboot() syscall and store original */
1475 original_reboot=sys_call_table[__NR_reboot];
1476 sys_call_table[__NR_reboot]=reboot;
1477
1478 /* crash_notes_memory_init */
1479 /* Allocate memory for saving cpu registers. */
1480 crash_notes = alloc_percpu(note_buf_t);
1481 if (!crash_notes) {
1482 printk("Kexec: Memory allocation for saving cpu register"
1483 " states failed\n");
1484 return -ENOMEM;
1485 }
1486
1487 /* crash_vmcoreinfo_init */
1488 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1489 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1490
1491 VMCOREINFO_SYMBOL(init_uts_ns);
1492 VMCOREINFO_SYMBOL(node_online_map);
1493
1494 #ifndef CONFIG_NEED_MULTIPLE_NODES
1495 VMCOREINFO_SYMBOL(mem_map);
1496 VMCOREINFO_SYMBOL(contig_page_data);
1497 #endif
1498 #ifdef CONFIG_SPARSEMEM
1499 VMCOREINFO_SYMBOL(mem_section);
1500 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1501 VMCOREINFO_STRUCT_SIZE(mem_section);
1502 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1503 #endif
1504 VMCOREINFO_STRUCT_SIZE(page);
1505 VMCOREINFO_STRUCT_SIZE(pglist_data);
1506 VMCOREINFO_STRUCT_SIZE(zone);
1507 VMCOREINFO_STRUCT_SIZE(free_area);
1508 VMCOREINFO_STRUCT_SIZE(list_head);
1509 VMCOREINFO_SIZE(nodemask_t);
1510 VMCOREINFO_OFFSET(page, flags);
1511 VMCOREINFO_OFFSET(page, _count);
1512 VMCOREINFO_OFFSET(page, mapping);
1513 VMCOREINFO_OFFSET(page, lru);
1514 VMCOREINFO_OFFSET(pglist_data, node_zones);
1515 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1516 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1517 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1518 #endif
1519 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1520 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1521 VMCOREINFO_OFFSET(pglist_data, node_id);
1522 VMCOREINFO_OFFSET(zone, free_area);
1523 VMCOREINFO_OFFSET(zone, vm_stat);
1524 VMCOREINFO_OFFSET(zone, spanned_pages);
1525 VMCOREINFO_OFFSET(free_area, free_list);
1526 VMCOREINFO_OFFSET(list_head, next);
1527 VMCOREINFO_OFFSET(list_head, prev);
1528 VMCOREINFO_OFFSET(vm_struct, addr);
1529 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1530 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1531 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1532 VMCOREINFO_NUMBER(PG_lru);
1533 VMCOREINFO_NUMBER(PG_private);
1534 VMCOREINFO_NUMBER(PG_swapcache);
1535
1536 arch_crash_save_vmcoreinfo();
1537
1538 return 0;
1539 }
1540
1541 module_init(kexec_module_init)
1542
Impressum, Datenschutz