15c4dc5a |
1 | //----------------------------------------------------------------------------- |
15c4dc5a |
2 | // Gerhard de Koning Gans - May 2008 |
bd20f8f4 |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
15c4dc5a |
7 | //----------------------------------------------------------------------------- |
bd20f8f4 |
8 | // Routines to support ISO 14443 type A. |
9 | //----------------------------------------------------------------------------- |
10 | |
e30c654b |
11 | #include "proxmark3.h" |
15c4dc5a |
12 | #include "apps.h" |
f7e3ed82 |
13 | #include "util.h" |
9ab7a6c7 |
14 | #include "string.h" |
15 | |
15c4dc5a |
16 | #include "iso14443crc.h" |
17 | |
f7e3ed82 |
18 | static uint8_t *trace = (uint8_t *) BigBuf; |
15c4dc5a |
19 | static int traceLen = 0; |
20 | static int rsamples = 0; |
f7e3ed82 |
21 | static int tracing = TRUE; |
15c4dc5a |
22 | |
72934aa3 |
23 | // CARD TO READER |
24 | // Sequence D: 11110000 modulation with subcarrier during first half |
25 | // Sequence E: 00001111 modulation with subcarrier during second half |
26 | // Sequence F: 00000000 no modulation with subcarrier |
27 | // READER TO CARD |
28 | // Sequence X: 00001100 drop after half a period |
29 | // Sequence Y: 00000000 no drop |
30 | // Sequence Z: 11000000 drop at start |
31 | #define SEC_D 0xf0 |
32 | #define SEC_E 0x0f |
33 | #define SEC_F 0x00 |
34 | #define SEC_X 0x0c |
35 | #define SEC_Y 0x00 |
36 | #define SEC_Z 0xc0 |
15c4dc5a |
37 | |
f7e3ed82 |
38 | static const uint8_t OddByteParity[256] = { |
15c4dc5a |
39 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
40 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
41 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
42 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
43 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
44 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
45 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
47 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
48 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
49 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
50 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
51 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
52 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
53 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, |
54 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 |
55 | }; |
56 | |
57 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT |
58 | #define RECV_CMD_OFFSET 3032 |
59 | #define RECV_RES_OFFSET 3096 |
60 | #define DMA_BUFFER_OFFSET 3160 |
61 | #define DMA_BUFFER_SIZE 4096 |
62 | #define TRACE_LENGTH 3000 |
63 | |
64 | //----------------------------------------------------------------------------- |
65 | // Generate the parity value for a byte sequence |
e30c654b |
66 | // |
15c4dc5a |
67 | //----------------------------------------------------------------------------- |
f7e3ed82 |
68 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) |
15c4dc5a |
69 | { |
70 | int i; |
f7e3ed82 |
71 | uint32_t dwPar = 0; |
72934aa3 |
72 | |
15c4dc5a |
73 | // Generate the encrypted data |
74 | for (i = 0; i < iLen; i++) { |
75 | // Save the encrypted parity bit |
76 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); |
77 | } |
78 | return dwPar; |
79 | } |
80 | |
f7e3ed82 |
81 | static void AppendCrc14443a(uint8_t* data, int len) |
15c4dc5a |
82 | { |
83 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
84 | } |
85 | |
ed82636b |
86 | int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) |
15c4dc5a |
87 | { |
88 | // Return when trace is full |
89 | if (traceLen >= TRACE_LENGTH) return FALSE; |
e30c654b |
90 | |
15c4dc5a |
91 | // Trace the random, i'm curious |
92 | rsamples += iSamples; |
93 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
94 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
95 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
96 | trace[traceLen++] = ((rsamples >> 24) & 0xff); |
97 | if (!bReader) { |
98 | trace[traceLen - 1] |= 0x80; |
99 | } |
100 | trace[traceLen++] = ((dwParity >> 0) & 0xff); |
101 | trace[traceLen++] = ((dwParity >> 8) & 0xff); |
102 | trace[traceLen++] = ((dwParity >> 16) & 0xff); |
103 | trace[traceLen++] = ((dwParity >> 24) & 0xff); |
104 | trace[traceLen++] = iLen; |
105 | memcpy(trace + traceLen, btBytes, iLen); |
106 | traceLen += iLen; |
107 | return TRUE; |
108 | } |
109 | |
15c4dc5a |
110 | //----------------------------------------------------------------------------- |
111 | // The software UART that receives commands from the reader, and its state |
112 | // variables. |
113 | //----------------------------------------------------------------------------- |
114 | static struct { |
115 | enum { |
116 | STATE_UNSYNCD, |
117 | STATE_START_OF_COMMUNICATION, |
118 | STATE_MILLER_X, |
119 | STATE_MILLER_Y, |
120 | STATE_MILLER_Z, |
121 | STATE_ERROR_WAIT |
122 | } state; |
f7e3ed82 |
123 | uint16_t shiftReg; |
15c4dc5a |
124 | int bitCnt; |
125 | int byteCnt; |
126 | int byteCntMax; |
127 | int posCnt; |
128 | int syncBit; |
129 | int parityBits; |
130 | int samples; |
131 | int highCnt; |
132 | int bitBuffer; |
133 | enum { |
134 | DROP_NONE, |
135 | DROP_FIRST_HALF, |
136 | DROP_SECOND_HALF |
137 | } drop; |
f7e3ed82 |
138 | uint8_t *output; |
15c4dc5a |
139 | } Uart; |
140 | |
f7e3ed82 |
141 | static int MillerDecoding(int bit) |
15c4dc5a |
142 | { |
143 | int error = 0; |
144 | int bitright; |
145 | |
146 | if(!Uart.bitBuffer) { |
147 | Uart.bitBuffer = bit ^ 0xFF0; |
148 | return FALSE; |
149 | } |
150 | else { |
151 | Uart.bitBuffer <<= 4; |
152 | Uart.bitBuffer ^= bit; |
153 | } |
154 | |
f7e3ed82 |
155 | int EOC = FALSE; |
15c4dc5a |
156 | |
157 | if(Uart.state != STATE_UNSYNCD) { |
158 | Uart.posCnt++; |
159 | |
160 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { |
161 | bit = 0x00; |
162 | } |
163 | else { |
164 | bit = 0x01; |
165 | } |
166 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { |
167 | bitright = 0x00; |
168 | } |
169 | else { |
170 | bitright = 0x01; |
171 | } |
172 | if(bit != bitright) { bit = bitright; } |
173 | |
174 | if(Uart.posCnt == 1) { |
175 | // measurement first half bitperiod |
176 | if(!bit) { |
177 | Uart.drop = DROP_FIRST_HALF; |
178 | } |
179 | } |
180 | else { |
181 | // measurement second half bitperiod |
182 | if(!bit & (Uart.drop == DROP_NONE)) { |
183 | Uart.drop = DROP_SECOND_HALF; |
184 | } |
185 | else if(!bit) { |
186 | // measured a drop in first and second half |
187 | // which should not be possible |
188 | Uart.state = STATE_ERROR_WAIT; |
189 | error = 0x01; |
190 | } |
191 | |
192 | Uart.posCnt = 0; |
193 | |
194 | switch(Uart.state) { |
195 | case STATE_START_OF_COMMUNICATION: |
196 | Uart.shiftReg = 0; |
197 | if(Uart.drop == DROP_SECOND_HALF) { |
198 | // error, should not happen in SOC |
199 | Uart.state = STATE_ERROR_WAIT; |
200 | error = 0x02; |
201 | } |
202 | else { |
203 | // correct SOC |
204 | Uart.state = STATE_MILLER_Z; |
205 | } |
206 | break; |
207 | |
208 | case STATE_MILLER_Z: |
209 | Uart.bitCnt++; |
210 | Uart.shiftReg >>= 1; |
211 | if(Uart.drop == DROP_NONE) { |
212 | // logic '0' followed by sequence Y |
213 | // end of communication |
214 | Uart.state = STATE_UNSYNCD; |
215 | EOC = TRUE; |
216 | } |
217 | // if(Uart.drop == DROP_FIRST_HALF) { |
218 | // Uart.state = STATE_MILLER_Z; stay the same |
219 | // we see a logic '0' } |
220 | if(Uart.drop == DROP_SECOND_HALF) { |
221 | // we see a logic '1' |
222 | Uart.shiftReg |= 0x100; |
223 | Uart.state = STATE_MILLER_X; |
224 | } |
225 | break; |
226 | |
227 | case STATE_MILLER_X: |
228 | Uart.shiftReg >>= 1; |
229 | if(Uart.drop == DROP_NONE) { |
230 | // sequence Y, we see a '0' |
231 | Uart.state = STATE_MILLER_Y; |
232 | Uart.bitCnt++; |
233 | } |
234 | if(Uart.drop == DROP_FIRST_HALF) { |
235 | // Would be STATE_MILLER_Z |
236 | // but Z does not follow X, so error |
237 | Uart.state = STATE_ERROR_WAIT; |
238 | error = 0x03; |
239 | } |
240 | if(Uart.drop == DROP_SECOND_HALF) { |
241 | // We see a '1' and stay in state X |
242 | Uart.shiftReg |= 0x100; |
243 | Uart.bitCnt++; |
244 | } |
245 | break; |
246 | |
247 | case STATE_MILLER_Y: |
248 | Uart.bitCnt++; |
249 | Uart.shiftReg >>= 1; |
250 | if(Uart.drop == DROP_NONE) { |
251 | // logic '0' followed by sequence Y |
252 | // end of communication |
253 | Uart.state = STATE_UNSYNCD; |
254 | EOC = TRUE; |
255 | } |
256 | if(Uart.drop == DROP_FIRST_HALF) { |
257 | // we see a '0' |
258 | Uart.state = STATE_MILLER_Z; |
259 | } |
260 | if(Uart.drop == DROP_SECOND_HALF) { |
261 | // We see a '1' and go to state X |
262 | Uart.shiftReg |= 0x100; |
263 | Uart.state = STATE_MILLER_X; |
264 | } |
265 | break; |
266 | |
267 | case STATE_ERROR_WAIT: |
268 | // That went wrong. Now wait for at least two bit periods |
269 | // and try to sync again |
270 | if(Uart.drop == DROP_NONE) { |
271 | Uart.highCnt = 6; |
272 | Uart.state = STATE_UNSYNCD; |
273 | } |
274 | break; |
275 | |
276 | default: |
277 | Uart.state = STATE_UNSYNCD; |
278 | Uart.highCnt = 0; |
279 | break; |
280 | } |
281 | |
282 | Uart.drop = DROP_NONE; |
283 | |
284 | // should have received at least one whole byte... |
285 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { |
286 | return TRUE; |
287 | } |
288 | |
289 | if(Uart.bitCnt == 9) { |
290 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); |
291 | Uart.byteCnt++; |
292 | |
293 | Uart.parityBits <<= 1; |
294 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); |
295 | |
296 | if(EOC) { |
297 | // when End of Communication received and |
298 | // all data bits processed.. |
299 | return TRUE; |
300 | } |
301 | Uart.bitCnt = 0; |
302 | } |
303 | |
304 | /*if(error) { |
305 | Uart.output[Uart.byteCnt] = 0xAA; |
306 | Uart.byteCnt++; |
307 | Uart.output[Uart.byteCnt] = error & 0xFF; |
308 | Uart.byteCnt++; |
309 | Uart.output[Uart.byteCnt] = 0xAA; |
310 | Uart.byteCnt++; |
311 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; |
312 | Uart.byteCnt++; |
313 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; |
314 | Uart.byteCnt++; |
315 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; |
316 | Uart.byteCnt++; |
317 | Uart.output[Uart.byteCnt] = 0xAA; |
318 | Uart.byteCnt++; |
319 | return TRUE; |
320 | }*/ |
321 | } |
322 | |
323 | } |
324 | else { |
325 | bit = Uart.bitBuffer & 0xf0; |
326 | bit >>= 4; |
327 | bit ^= 0x0F; |
328 | if(bit) { |
329 | // should have been high or at least (4 * 128) / fc |
330 | // according to ISO this should be at least (9 * 128 + 20) / fc |
331 | if(Uart.highCnt == 8) { |
332 | // we went low, so this could be start of communication |
333 | // it turns out to be safer to choose a less significant |
334 | // syncbit... so we check whether the neighbour also represents the drop |
335 | Uart.posCnt = 1; // apparently we are busy with our first half bit period |
336 | Uart.syncBit = bit & 8; |
337 | Uart.samples = 3; |
338 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } |
339 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } |
340 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } |
341 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } |
342 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; |
343 | if(Uart.syncBit & (Uart.bitBuffer & 8)) { |
344 | Uart.syncBit = 8; |
345 | |
346 | // the first half bit period is expected in next sample |
347 | Uart.posCnt = 0; |
348 | Uart.samples = 3; |
349 | } |
350 | } |
351 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } |
352 | |
353 | Uart.syncBit <<= 4; |
354 | Uart.state = STATE_START_OF_COMMUNICATION; |
355 | Uart.drop = DROP_FIRST_HALF; |
356 | Uart.bitCnt = 0; |
357 | Uart.byteCnt = 0; |
358 | Uart.parityBits = 0; |
359 | error = 0; |
360 | } |
361 | else { |
362 | Uart.highCnt = 0; |
363 | } |
364 | } |
365 | else { |
366 | if(Uart.highCnt < 8) { |
367 | Uart.highCnt++; |
368 | } |
369 | } |
370 | } |
371 | |
372 | return FALSE; |
373 | } |
374 | |
375 | //============================================================================= |
376 | // ISO 14443 Type A - Manchester |
377 | //============================================================================= |
378 | |
379 | static struct { |
380 | enum { |
381 | DEMOD_UNSYNCD, |
382 | DEMOD_START_OF_COMMUNICATION, |
383 | DEMOD_MANCHESTER_D, |
384 | DEMOD_MANCHESTER_E, |
385 | DEMOD_MANCHESTER_F, |
386 | DEMOD_ERROR_WAIT |
387 | } state; |
388 | int bitCount; |
389 | int posCount; |
390 | int syncBit; |
391 | int parityBits; |
f7e3ed82 |
392 | uint16_t shiftReg; |
15c4dc5a |
393 | int buffer; |
394 | int buff; |
395 | int samples; |
396 | int len; |
397 | enum { |
398 | SUB_NONE, |
399 | SUB_FIRST_HALF, |
400 | SUB_SECOND_HALF |
401 | } sub; |
f7e3ed82 |
402 | uint8_t *output; |
15c4dc5a |
403 | } Demod; |
404 | |
f7e3ed82 |
405 | static int ManchesterDecoding(int v) |
15c4dc5a |
406 | { |
407 | int bit; |
408 | int modulation; |
409 | int error = 0; |
410 | |
411 | if(!Demod.buff) { |
412 | Demod.buff = 1; |
413 | Demod.buffer = v; |
414 | return FALSE; |
415 | } |
416 | else { |
417 | bit = Demod.buffer; |
418 | Demod.buffer = v; |
419 | } |
420 | |
421 | if(Demod.state==DEMOD_UNSYNCD) { |
422 | Demod.output[Demod.len] = 0xfa; |
423 | Demod.syncBit = 0; |
424 | //Demod.samples = 0; |
425 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part |
426 | if(bit & 0x08) { Demod.syncBit = 0x08; } |
427 | if(!Demod.syncBit) { |
428 | if(bit & 0x04) { Demod.syncBit = 0x04; } |
429 | } |
430 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } |
431 | if(!Demod.syncBit) { |
432 | if(bit & 0x02) { Demod.syncBit = 0x02; } |
433 | } |
434 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } |
435 | if(!Demod.syncBit) { |
436 | if(bit & 0x01) { Demod.syncBit = 0x01; } |
437 | |
438 | if(Demod.syncBit & (Demod.buffer & 0x08)) { |
439 | Demod.syncBit = 0x08; |
440 | |
441 | // The first half bitperiod is expected in next sample |
442 | Demod.posCount = 0; |
443 | Demod.output[Demod.len] = 0xfb; |
444 | } |
445 | } |
446 | else if(bit & 0x01) { Demod.syncBit = 0x01; } |
447 | |
448 | if(Demod.syncBit) { |
449 | Demod.len = 0; |
450 | Demod.state = DEMOD_START_OF_COMMUNICATION; |
451 | Demod.sub = SUB_FIRST_HALF; |
452 | Demod.bitCount = 0; |
453 | Demod.shiftReg = 0; |
454 | Demod.parityBits = 0; |
455 | Demod.samples = 0; |
456 | if(Demod.posCount) { |
457 | switch(Demod.syncBit) { |
458 | case 0x08: Demod.samples = 3; break; |
459 | case 0x04: Demod.samples = 2; break; |
460 | case 0x02: Demod.samples = 1; break; |
461 | case 0x01: Demod.samples = 0; break; |
462 | } |
463 | } |
464 | error = 0; |
465 | } |
466 | } |
467 | else { |
468 | //modulation = bit & Demod.syncBit; |
469 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; |
470 | |
471 | Demod.samples += 4; |
472 | |
473 | if(Demod.posCount==0) { |
474 | Demod.posCount = 1; |
475 | if(modulation) { |
476 | Demod.sub = SUB_FIRST_HALF; |
477 | } |
478 | else { |
479 | Demod.sub = SUB_NONE; |
480 | } |
481 | } |
482 | else { |
483 | Demod.posCount = 0; |
484 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { |
485 | if(Demod.state!=DEMOD_ERROR_WAIT) { |
486 | Demod.state = DEMOD_ERROR_WAIT; |
487 | Demod.output[Demod.len] = 0xaa; |
488 | error = 0x01; |
489 | } |
490 | } |
491 | else if(modulation) { |
492 | Demod.sub = SUB_SECOND_HALF; |
493 | } |
494 | |
495 | switch(Demod.state) { |
496 | case DEMOD_START_OF_COMMUNICATION: |
497 | if(Demod.sub == SUB_FIRST_HALF) { |
498 | Demod.state = DEMOD_MANCHESTER_D; |
499 | } |
500 | else { |
501 | Demod.output[Demod.len] = 0xab; |
502 | Demod.state = DEMOD_ERROR_WAIT; |
503 | error = 0x02; |
504 | } |
505 | break; |
506 | |
507 | case DEMOD_MANCHESTER_D: |
508 | case DEMOD_MANCHESTER_E: |
509 | if(Demod.sub == SUB_FIRST_HALF) { |
510 | Demod.bitCount++; |
511 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; |
512 | Demod.state = DEMOD_MANCHESTER_D; |
513 | } |
514 | else if(Demod.sub == SUB_SECOND_HALF) { |
515 | Demod.bitCount++; |
516 | Demod.shiftReg >>= 1; |
517 | Demod.state = DEMOD_MANCHESTER_E; |
518 | } |
519 | else { |
520 | Demod.state = DEMOD_MANCHESTER_F; |
521 | } |
522 | break; |
523 | |
524 | case DEMOD_MANCHESTER_F: |
525 | // Tag response does not need to be a complete byte! |
526 | if(Demod.len > 0 || Demod.bitCount > 0) { |
527 | if(Demod.bitCount > 0) { |
528 | Demod.shiftReg >>= (9 - Demod.bitCount); |
529 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
530 | Demod.len++; |
531 | // No parity bit, so just shift a 0 |
532 | Demod.parityBits <<= 1; |
533 | } |
534 | |
535 | Demod.state = DEMOD_UNSYNCD; |
536 | return TRUE; |
537 | } |
538 | else { |
539 | Demod.output[Demod.len] = 0xad; |
540 | Demod.state = DEMOD_ERROR_WAIT; |
541 | error = 0x03; |
542 | } |
543 | break; |
544 | |
545 | case DEMOD_ERROR_WAIT: |
546 | Demod.state = DEMOD_UNSYNCD; |
547 | break; |
548 | |
549 | default: |
550 | Demod.output[Demod.len] = 0xdd; |
551 | Demod.state = DEMOD_UNSYNCD; |
552 | break; |
553 | } |
554 | |
555 | if(Demod.bitCount>=9) { |
556 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; |
557 | Demod.len++; |
558 | |
559 | Demod.parityBits <<= 1; |
560 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); |
561 | |
562 | Demod.bitCount = 0; |
563 | Demod.shiftReg = 0; |
564 | } |
565 | |
566 | /*if(error) { |
567 | Demod.output[Demod.len] = 0xBB; |
568 | Demod.len++; |
569 | Demod.output[Demod.len] = error & 0xFF; |
570 | Demod.len++; |
571 | Demod.output[Demod.len] = 0xBB; |
572 | Demod.len++; |
573 | Demod.output[Demod.len] = bit & 0xFF; |
574 | Demod.len++; |
575 | Demod.output[Demod.len] = Demod.buffer & 0xFF; |
576 | Demod.len++; |
577 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; |
578 | Demod.len++; |
579 | Demod.output[Demod.len] = 0xBB; |
580 | Demod.len++; |
581 | return TRUE; |
582 | }*/ |
583 | |
584 | } |
585 | |
586 | } // end (state != UNSYNCED) |
587 | |
588 | return FALSE; |
589 | } |
590 | |
591 | //============================================================================= |
592 | // Finally, a `sniffer' for ISO 14443 Type A |
593 | // Both sides of communication! |
594 | //============================================================================= |
595 | |
596 | //----------------------------------------------------------------------------- |
597 | // Record the sequence of commands sent by the reader to the tag, with |
598 | // triggering so that we start recording at the point that the tag is moved |
599 | // near the reader. |
600 | //----------------------------------------------------------------------------- |
601 | void SnoopIso14443a(void) |
602 | { |
603 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values |
604 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values |
605 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values |
606 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values |
607 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values |
608 | |
609 | // We won't start recording the frames that we acquire until we trigger; |
610 | // a good trigger condition to get started is probably when we see a |
611 | // response from the tag. |
7e758047 |
612 | int triggered = FALSE; // FALSE to wait first for card |
15c4dc5a |
613 | |
614 | // The command (reader -> tag) that we're receiving. |
615 | // The length of a received command will in most cases be no more than 18 bytes. |
616 | // So 32 should be enough! |
f7e3ed82 |
617 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); |
15c4dc5a |
618 | // The response (tag -> reader) that we're receiving. |
f7e3ed82 |
619 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); |
15c4dc5a |
620 | |
621 | // As we receive stuff, we copy it from receivedCmd or receivedResponse |
622 | // into trace, along with its length and other annotations. |
f7e3ed82 |
623 | //uint8_t *trace = (uint8_t *)BigBuf; |
15c4dc5a |
624 | //int traceLen = 0; |
625 | |
626 | // The DMA buffer, used to stream samples from the FPGA |
f7e3ed82 |
627 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; |
15c4dc5a |
628 | int lastRxCounter; |
f7e3ed82 |
629 | int8_t *upTo; |
15c4dc5a |
630 | int smpl; |
631 | int maxBehindBy = 0; |
632 | |
633 | // Count of samples received so far, so that we can include timing |
634 | // information in the trace buffer. |
635 | int samples = 0; |
636 | int rsamples = 0; |
637 | |
638 | memset(trace, 0x44, RECV_CMD_OFFSET); |
639 | |
640 | // Set up the demodulator for tag -> reader responses. |
641 | Demod.output = receivedResponse; |
642 | Demod.len = 0; |
643 | Demod.state = DEMOD_UNSYNCD; |
644 | |
7e758047 |
645 | // Setup for the DMA. |
646 | FpgaSetupSsc(); |
647 | upTo = dmaBuf; |
648 | lastRxCounter = DMA_BUFFER_SIZE; |
649 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
650 | |
15c4dc5a |
651 | // And the reader -> tag commands |
652 | memset(&Uart, 0, sizeof(Uart)); |
653 | Uart.output = receivedCmd; |
654 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// |
655 | Uart.state = STATE_UNSYNCD; |
656 | |
657 | // And put the FPGA in the appropriate mode |
658 | // Signal field is off with the appropriate LED |
659 | LED_D_OFF(); |
660 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); |
661 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
662 | |
15c4dc5a |
663 | |
664 | // And now we loop, receiving samples. |
665 | for(;;) { |
7e758047 |
666 | LED_A_ON(); |
667 | WDT_HIT(); |
15c4dc5a |
668 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & |
669 | (DMA_BUFFER_SIZE-1); |
670 | if(behindBy > maxBehindBy) { |
671 | maxBehindBy = behindBy; |
672 | if(behindBy > 400) { |
7e758047 |
673 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); |
15c4dc5a |
674 | goto done; |
675 | } |
676 | } |
677 | if(behindBy < 1) continue; |
678 | |
7e758047 |
679 | LED_A_OFF(); |
15c4dc5a |
680 | smpl = upTo[0]; |
681 | upTo++; |
682 | lastRxCounter -= 1; |
683 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { |
684 | upTo -= DMA_BUFFER_SIZE; |
685 | lastRxCounter += DMA_BUFFER_SIZE; |
f7e3ed82 |
686 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; |
15c4dc5a |
687 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
688 | } |
689 | |
690 | samples += 4; |
7e758047 |
691 | if(MillerDecoding((smpl & 0xF0) >> 4)) { |
15c4dc5a |
692 | rsamples = samples - Uart.samples; |
72934aa3 |
693 | LED_C_ON(); |
7e758047 |
694 | if(triggered) { |
695 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
72934aa3 |
696 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
697 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
698 | trace[traceLen++] = ((rsamples >> 24) & 0xff); |
7e758047 |
699 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); |
700 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); |
701 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); |
702 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); |
72934aa3 |
703 | trace[traceLen++] = Uart.byteCnt; |
704 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); |
705 | traceLen += Uart.byteCnt; |
706 | if(traceLen > TRACE_LENGTH) break; |
707 | } |
708 | /* And ready to receive another command. */ |
709 | Uart.state = STATE_UNSYNCD; |
710 | /* And also reset the demod code, which might have been */ |
711 | /* false-triggered by the commands from the reader. */ |
712 | Demod.state = DEMOD_UNSYNCD; |
7e758047 |
713 | LED_B_OFF(); |
15c4dc5a |
714 | } |
7e758047 |
715 | |
716 | if(ManchesterDecoding(smpl & 0x0F)) { |
717 | rsamples = samples - Demod.samples; |
718 | LED_B_ON(); |
719 | |
720 | // timestamp, as a count of samples |
721 | trace[traceLen++] = ((rsamples >> 0) & 0xff); |
722 | trace[traceLen++] = ((rsamples >> 8) & 0xff); |
723 | trace[traceLen++] = ((rsamples >> 16) & 0xff); |
724 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); |
725 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); |
726 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); |
727 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); |
728 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); |
729 | // length |
730 | trace[traceLen++] = Demod.len; |
731 | memcpy(trace+traceLen, receivedResponse, Demod.len); |
732 | traceLen += Demod.len; |
733 | if(traceLen > TRACE_LENGTH) break; |
734 | |
735 | triggered = TRUE; |
15c4dc5a |
736 | |
737 | // And ready to receive another response. |
738 | memset(&Demod, 0, sizeof(Demod)); |
739 | Demod.output = receivedResponse; |
740 | Demod.state = DEMOD_UNSYNCD; |
7e758047 |
741 | LED_C_OFF(); |
742 | } |
15c4dc5a |
743 | |
744 | if(BUTTON_PRESS()) { |
745 | DbpString("cancelled_a"); |
746 | goto done; |
747 | } |
748 | } |
749 | |
750 | DbpString("COMMAND FINISHED"); |
751 | |
752 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
753 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
754 | |
755 | done: |
756 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; |
757 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); |
758 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); |
759 | LED_A_OFF(); |
760 | LED_B_OFF(); |
761 | LED_C_OFF(); |
762 | LED_D_OFF(); |
763 | } |
764 | |
15c4dc5a |
765 | //----------------------------------------------------------------------------- |
766 | // Prepare tag messages |
767 | //----------------------------------------------------------------------------- |
f7e3ed82 |
768 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len) |
15c4dc5a |
769 | { |
770 | int i; |
771 | int oddparity; |
772 | |
773 | ToSendReset(); |
774 | |
775 | // Correction bit, might be removed when not needed |
776 | ToSendStuffBit(0); |
777 | ToSendStuffBit(0); |
778 | ToSendStuffBit(0); |
779 | ToSendStuffBit(0); |
780 | ToSendStuffBit(1); // 1 |
781 | ToSendStuffBit(0); |
782 | ToSendStuffBit(0); |
783 | ToSendStuffBit(0); |
784 | |
785 | // Send startbit |
72934aa3 |
786 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a |
787 | |
788 | for(i = 0; i < len; i++) { |
789 | int j; |
f7e3ed82 |
790 | uint8_t b = cmd[i]; |
15c4dc5a |
791 | |
792 | // Data bits |
793 | oddparity = 0x01; |
794 | for(j = 0; j < 8; j++) { |
795 | oddparity ^= (b & 1); |
796 | if(b & 1) { |
72934aa3 |
797 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a |
798 | } else { |
72934aa3 |
799 | ToSend[++ToSendMax] = SEC_E; |
15c4dc5a |
800 | } |
801 | b >>= 1; |
802 | } |
803 | |
804 | // Parity bit |
805 | if(oddparity) { |
72934aa3 |
806 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a |
807 | } else { |
72934aa3 |
808 | ToSend[++ToSendMax] = SEC_E; |
15c4dc5a |
809 | } |
810 | } |
811 | |
812 | // Send stopbit |
72934aa3 |
813 | ToSend[++ToSendMax] = SEC_F; |
15c4dc5a |
814 | |
815 | // Flush the buffer in FPGA!! |
816 | for(i = 0; i < 5; i++) { |
72934aa3 |
817 | ToSend[++ToSendMax] = SEC_F; |
15c4dc5a |
818 | } |
819 | |
820 | // Convert from last byte pos to length |
821 | ToSendMax++; |
822 | |
823 | // Add a few more for slop |
824 | ToSend[ToSendMax++] = 0x00; |
825 | ToSend[ToSendMax++] = 0x00; |
826 | //ToSendMax += 2; |
827 | } |
828 | |
829 | //----------------------------------------------------------------------------- |
830 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 |
831 | //----------------------------------------------------------------------------- |
832 | static void CodeStrangeAnswer() |
833 | { |
834 | int i; |
835 | |
836 | ToSendReset(); |
837 | |
838 | // Correction bit, might be removed when not needed |
839 | ToSendStuffBit(0); |
840 | ToSendStuffBit(0); |
841 | ToSendStuffBit(0); |
842 | ToSendStuffBit(0); |
843 | ToSendStuffBit(1); // 1 |
844 | ToSendStuffBit(0); |
845 | ToSendStuffBit(0); |
846 | ToSendStuffBit(0); |
847 | |
848 | // Send startbit |
72934aa3 |
849 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a |
850 | |
851 | // 0 |
72934aa3 |
852 | ToSend[++ToSendMax] = SEC_E; |
15c4dc5a |
853 | |
854 | // 0 |
72934aa3 |
855 | ToSend[++ToSendMax] = SEC_E; |
15c4dc5a |
856 | |
857 | // 1 |
72934aa3 |
858 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a |
859 | |
860 | // Send stopbit |
72934aa3 |
861 | ToSend[++ToSendMax] = SEC_F; |
15c4dc5a |
862 | |
863 | // Flush the buffer in FPGA!! |
864 | for(i = 0; i < 5; i++) { |
72934aa3 |
865 | ToSend[++ToSendMax] = SEC_F; |
15c4dc5a |
866 | } |
867 | |
868 | // Convert from last byte pos to length |
869 | ToSendMax++; |
870 | |
871 | // Add a few more for slop |
872 | ToSend[ToSendMax++] = 0x00; |
873 | ToSend[ToSendMax++] = 0x00; |
874 | //ToSendMax += 2; |
875 | } |
876 | |
877 | //----------------------------------------------------------------------------- |
878 | // Wait for commands from reader |
879 | // Stop when button is pressed |
880 | // Or return TRUE when command is captured |
881 | //----------------------------------------------------------------------------- |
f7e3ed82 |
882 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) |
15c4dc5a |
883 | { |
884 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen |
885 | // only, since we are receiving, not transmitting). |
886 | // Signal field is off with the appropriate LED |
887 | LED_D_OFF(); |
888 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
889 | |
890 | // Now run a `software UART' on the stream of incoming samples. |
891 | Uart.output = received; |
892 | Uart.byteCntMax = maxLen; |
893 | Uart.state = STATE_UNSYNCD; |
894 | |
895 | for(;;) { |
896 | WDT_HIT(); |
897 | |
898 | if(BUTTON_PRESS()) return FALSE; |
899 | |
900 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
901 | AT91C_BASE_SSC->SSC_THR = 0x00; |
902 | } |
903 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
904 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
905 | if(MillerDecoding((b & 0xf0) >> 4)) { |
906 | *len = Uart.byteCnt; |
907 | return TRUE; |
908 | } |
909 | if(MillerDecoding(b & 0x0f)) { |
910 | *len = Uart.byteCnt; |
911 | return TRUE; |
912 | } |
913 | } |
914 | } |
915 | } |
916 | |
917 | //----------------------------------------------------------------------------- |
918 | // Main loop of simulated tag: receive commands from reader, decide what |
919 | // response to send, and send it. |
920 | //----------------------------------------------------------------------------- |
921 | void SimulateIso14443aTag(int tagType, int TagUid) |
922 | { |
923 | // This function contains the tag emulation |
924 | |
925 | // Prepare protocol messages |
f7e3ed82 |
926 | // static const uint8_t cmd1[] = { 0x26 }; |
927 | // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg |
15c4dc5a |
928 | // |
f7e3ed82 |
929 | static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me |
930 | // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me |
15c4dc5a |
931 | |
932 | // UID response |
f7e3ed82 |
933 | // static const uint8_t cmd2[] = { 0x93, 0x20 }; |
934 | //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg |
15c4dc5a |
935 | |
15c4dc5a |
936 | // my desfire |
f7e3ed82 |
937 | static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips |
15c4dc5a |
938 | |
939 | |
940 | // When reader selects us during cascade1 it will send cmd3 |
f7e3ed82 |
941 | //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) |
942 | uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) |
15c4dc5a |
943 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); |
944 | |
945 | // send cascade2 2nd half of UID |
f7e3ed82 |
946 | static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck |
15c4dc5a |
947 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID |
948 | |
15c4dc5a |
949 | // When reader selects us during cascade2 it will send cmd3a |
f7e3ed82 |
950 | //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) |
951 | uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) |
15c4dc5a |
952 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); |
953 | |
f7e3ed82 |
954 | static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
15c4dc5a |
955 | |
f7e3ed82 |
956 | uint8_t *resp; |
15c4dc5a |
957 | int respLen; |
958 | |
959 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes |
960 | // This will need |
961 | // 144 data bits (18 * 8) |
962 | // 18 parity bits |
963 | // 2 Start and stop |
964 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) |
965 | // 1 just for the case |
966 | // ----------- + |
967 | // 166 |
968 | // |
969 | // 166 bytes, since every bit that needs to be send costs us a byte |
970 | // |
971 | |
15c4dc5a |
972 | // Respond with card type |
f7e3ed82 |
973 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); |
15c4dc5a |
974 | int resp1Len; |
975 | |
976 | // Anticollision cascade1 - respond with uid |
f7e3ed82 |
977 | uint8_t *resp2 = (((uint8_t *)BigBuf) + 970); |
15c4dc5a |
978 | int resp2Len; |
979 | |
980 | // Anticollision cascade2 - respond with 2nd half of uid if asked |
981 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 |
f7e3ed82 |
982 | uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); |
15c4dc5a |
983 | int resp2aLen; |
984 | |
985 | // Acknowledge select - cascade 1 |
f7e3ed82 |
986 | uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310); |
15c4dc5a |
987 | int resp3Len; |
988 | |
989 | // Acknowledge select - cascade 2 |
f7e3ed82 |
990 | uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480); |
15c4dc5a |
991 | int resp3aLen; |
992 | |
993 | // Response to a read request - not implemented atm |
f7e3ed82 |
994 | uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550); |
15c4dc5a |
995 | int resp4Len; |
996 | |
997 | // Authenticate response - nonce |
f7e3ed82 |
998 | uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720); |
15c4dc5a |
999 | int resp5Len; |
1000 | |
f7e3ed82 |
1001 | uint8_t *receivedCmd = (uint8_t *)BigBuf; |
15c4dc5a |
1002 | int len; |
1003 | |
1004 | int i; |
1005 | int u; |
f7e3ed82 |
1006 | uint8_t b; |
15c4dc5a |
1007 | |
1008 | // To control where we are in the protocol |
1009 | int order = 0; |
1010 | int lastorder; |
1011 | |
1012 | // Just to allow some checks |
1013 | int happened = 0; |
1014 | int happened2 = 0; |
1015 | |
1016 | int cmdsRecvd = 0; |
1017 | |
f7e3ed82 |
1018 | int fdt_indicator; |
15c4dc5a |
1019 | |
1020 | memset(receivedCmd, 0x44, 400); |
1021 | |
1022 | // Prepare the responses of the anticollision phase |
1023 | // there will be not enough time to do this at the moment the reader sends it REQA |
1024 | |
1025 | // Answer to request |
1026 | CodeIso14443aAsTag(response1, sizeof(response1)); |
1027 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; |
1028 | |
1029 | // Send our UID (cascade 1) |
1030 | CodeIso14443aAsTag(response2, sizeof(response2)); |
1031 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; |
1032 | |
1033 | // Answer to select (cascade1) |
1034 | CodeIso14443aAsTag(response3, sizeof(response3)); |
1035 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; |
1036 | |
1037 | // Send the cascade 2 2nd part of the uid |
1038 | CodeIso14443aAsTag(response2a, sizeof(response2a)); |
1039 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; |
1040 | |
1041 | // Answer to select (cascade 2) |
1042 | CodeIso14443aAsTag(response3a, sizeof(response3a)); |
1043 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; |
1044 | |
1045 | // Strange answer is an example of rare message size (3 bits) |
1046 | CodeStrangeAnswer(); |
1047 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; |
1048 | |
1049 | // Authentication answer (random nonce) |
1050 | CodeIso14443aAsTag(response5, sizeof(response5)); |
1051 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; |
1052 | |
1053 | // We need to listen to the high-frequency, peak-detected path. |
1054 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
1055 | FpgaSetupSsc(); |
1056 | |
1057 | cmdsRecvd = 0; |
1058 | |
1059 | LED_A_ON(); |
1060 | for(;;) { |
1061 | |
1062 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { |
1063 | DbpString("button press"); |
1064 | break; |
1065 | } |
1066 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated |
1067 | // Okay, look at the command now. |
1068 | lastorder = order; |
1069 | i = 1; // first byte transmitted |
1070 | if(receivedCmd[0] == 0x26) { |
1071 | // Received a REQUEST |
1072 | resp = resp1; respLen = resp1Len; order = 1; |
1073 | //DbpString("Hello request from reader:"); |
1074 | } else if(receivedCmd[0] == 0x52) { |
1075 | // Received a WAKEUP |
1076 | resp = resp1; respLen = resp1Len; order = 6; |
1077 | // //DbpString("Wakeup request from reader:"); |
1078 | |
1079 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision |
1080 | // Received request for UID (cascade 1) |
1081 | resp = resp2; respLen = resp2Len; order = 2; |
1082 | // DbpString("UID (cascade 1) request from reader:"); |
1083 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1084 | |
1085 | |
1086 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision |
1087 | // Received request for UID (cascade 2) |
1088 | resp = resp2a; respLen = resp2aLen; order = 20; |
1089 | // DbpString("UID (cascade 2) request from reader:"); |
1090 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1091 | |
1092 | |
1093 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select |
1094 | // Received a SELECT |
1095 | resp = resp3; respLen = resp3Len; order = 3; |
1096 | // DbpString("Select (cascade 1) request from reader:"); |
1097 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1098 | |
1099 | |
1100 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select |
1101 | // Received a SELECT |
1102 | resp = resp3a; respLen = resp3aLen; order = 30; |
1103 | // DbpString("Select (cascade 2) request from reader:"); |
1104 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1105 | |
1106 | |
1107 | } else if(receivedCmd[0] == 0x30) { |
1108 | // Received a READ |
1109 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing |
1110 | Dbprintf("Read request from reader: %x %x %x", |
1111 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1112 | |
1113 | |
1114 | } else if(receivedCmd[0] == 0x50) { |
1115 | // Received a HALT |
1116 | resp = resp1; respLen = 0; order = 5; // Do nothing |
1117 | DbpString("Reader requested we HALT!:"); |
1118 | |
1119 | } else if(receivedCmd[0] == 0x60) { |
1120 | // Received an authentication request |
1121 | resp = resp5; respLen = resp5Len; order = 7; |
1122 | Dbprintf("Authenticate request from reader: %x %x %x", |
1123 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1124 | |
1125 | } else if(receivedCmd[0] == 0xE0) { |
1126 | // Received a RATS request |
1127 | resp = resp1; respLen = 0;order = 70; |
1128 | Dbprintf("RATS request from reader: %x %x %x", |
1129 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); |
1130 | } else { |
1131 | // Never seen this command before |
1132 | Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x", |
1133 | receivedCmd[0], receivedCmd[1], receivedCmd[2], |
1134 | receivedCmd[3], receivedCmd[3], receivedCmd[4], |
1135 | receivedCmd[5], receivedCmd[6], receivedCmd[7]); |
1136 | // Do not respond |
1137 | resp = resp1; respLen = 0; order = 0; |
1138 | } |
1139 | |
1140 | // Count number of wakeups received after a halt |
1141 | if(order == 6 && lastorder == 5) { happened++; } |
1142 | |
1143 | // Count number of other messages after a halt |
1144 | if(order != 6 && lastorder == 5) { happened2++; } |
1145 | |
1146 | // Look at last parity bit to determine timing of answer |
1147 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { |
1148 | // 1236, so correction bit needed |
1149 | i = 0; |
1150 | } |
1151 | |
1152 | memset(receivedCmd, 0x44, 32); |
1153 | |
1154 | if(cmdsRecvd > 999) { |
1155 | DbpString("1000 commands later..."); |
1156 | break; |
1157 | } |
1158 | else { |
1159 | cmdsRecvd++; |
1160 | } |
1161 | |
1162 | if(respLen <= 0) continue; |
1163 | |
1164 | // Modulate Manchester |
1165 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); |
1166 | AT91C_BASE_SSC->SSC_THR = 0x00; |
1167 | FpgaSetupSsc(); |
1168 | |
1169 | // ### Transmit the response ### |
1170 | u = 0; |
1171 | b = 0x00; |
1172 | fdt_indicator = FALSE; |
1173 | for(;;) { |
1174 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
1175 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1176 | (void)b; |
1177 | } |
1178 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1179 | if(i > respLen) { |
1180 | b = 0x00; |
1181 | u++; |
1182 | } else { |
1183 | b = resp[i]; |
1184 | i++; |
1185 | } |
1186 | AT91C_BASE_SSC->SSC_THR = b; |
1187 | |
1188 | if(u > 4) { |
1189 | break; |
1190 | } |
1191 | } |
1192 | if(BUTTON_PRESS()) { |
1193 | break; |
1194 | } |
1195 | } |
1196 | |
1197 | } |
1198 | |
1199 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); |
1200 | LED_A_OFF(); |
1201 | } |
1202 | |
1203 | //----------------------------------------------------------------------------- |
1204 | // Transmit the command (to the tag) that was placed in ToSend[]. |
1205 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1206 | static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) |
15c4dc5a |
1207 | { |
1208 | int c; |
e30c654b |
1209 | |
15c4dc5a |
1210 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b |
1211 | |
15c4dc5a |
1212 | if (wait) |
1213 | if(*wait < 10) |
1214 | *wait = 10; |
e30c654b |
1215 | |
15c4dc5a |
1216 | for(c = 0; c < *wait;) { |
1217 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1218 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! |
1219 | c++; |
1220 | } |
1221 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
1222 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1223 | (void)r; |
1224 | } |
1225 | WDT_HIT(); |
1226 | } |
e30c654b |
1227 | |
15c4dc5a |
1228 | c = 0; |
1229 | for(;;) { |
1230 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1231 | AT91C_BASE_SSC->SSC_THR = cmd[c]; |
1232 | c++; |
1233 | if(c >= len) { |
1234 | break; |
1235 | } |
1236 | } |
1237 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
f7e3ed82 |
1238 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a |
1239 | (void)r; |
1240 | } |
1241 | WDT_HIT(); |
1242 | } |
1243 | if (samples) *samples = (c + *wait) << 3; |
1244 | } |
1245 | |
15c4dc5a |
1246 | //----------------------------------------------------------------------------- |
1247 | // Code a 7-bit command without parity bit |
1248 | // This is especially for 0x26 and 0x52 (REQA and WUPA) |
1249 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1250 | void ShortFrameFromReader(const uint8_t bt) |
15c4dc5a |
1251 | { |
1252 | int j; |
1253 | int last; |
f7e3ed82 |
1254 | uint8_t b; |
15c4dc5a |
1255 | |
1256 | ToSendReset(); |
1257 | |
1258 | // Start of Communication (Seq. Z) |
72934aa3 |
1259 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1260 | last = 0; |
1261 | |
1262 | b = bt; |
1263 | for(j = 0; j < 7; j++) { |
1264 | if(b & 1) { |
1265 | // Sequence X |
72934aa3 |
1266 | ToSend[++ToSendMax] = SEC_X; |
15c4dc5a |
1267 | last = 1; |
1268 | } else { |
1269 | if(last == 0) { |
1270 | // Sequence Z |
72934aa3 |
1271 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1272 | } |
1273 | else { |
1274 | // Sequence Y |
72934aa3 |
1275 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1276 | last = 0; |
1277 | } |
1278 | } |
1279 | b >>= 1; |
1280 | } |
1281 | |
1282 | // End of Communication |
1283 | if(last == 0) { |
1284 | // Sequence Z |
72934aa3 |
1285 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1286 | } |
1287 | else { |
1288 | // Sequence Y |
72934aa3 |
1289 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1290 | last = 0; |
1291 | } |
1292 | // Sequence Y |
72934aa3 |
1293 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1294 | |
1295 | // Just to be sure! |
72934aa3 |
1296 | ToSend[++ToSendMax] = SEC_Y; |
1297 | ToSend[++ToSendMax] = SEC_Y; |
1298 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1299 | |
1300 | // Convert from last character reference to length |
1301 | ToSendMax++; |
1302 | } |
1303 | |
1304 | //----------------------------------------------------------------------------- |
1305 | // Prepare reader command to send to FPGA |
e30c654b |
1306 | // |
15c4dc5a |
1307 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1308 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) |
15c4dc5a |
1309 | { |
1310 | int i, j; |
1311 | int last; |
f7e3ed82 |
1312 | uint8_t b; |
e30c654b |
1313 | |
15c4dc5a |
1314 | ToSendReset(); |
e30c654b |
1315 | |
15c4dc5a |
1316 | // Start of Communication (Seq. Z) |
72934aa3 |
1317 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1318 | last = 0; |
e30c654b |
1319 | |
15c4dc5a |
1320 | // Generate send structure for the data bits |
1321 | for (i = 0; i < len; i++) { |
1322 | // Get the current byte to send |
1323 | b = cmd[i]; |
e30c654b |
1324 | |
15c4dc5a |
1325 | for (j = 0; j < 8; j++) { |
1326 | if (b & 1) { |
1327 | // Sequence X |
72934aa3 |
1328 | ToSend[++ToSendMax] = SEC_X; |
15c4dc5a |
1329 | last = 1; |
1330 | } else { |
1331 | if (last == 0) { |
1332 | // Sequence Z |
72934aa3 |
1333 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1334 | } else { |
1335 | // Sequence Y |
72934aa3 |
1336 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1337 | last = 0; |
1338 | } |
1339 | } |
1340 | b >>= 1; |
1341 | } |
e30c654b |
1342 | |
15c4dc5a |
1343 | // Get the parity bit |
1344 | if ((dwParity >> i) & 0x01) { |
1345 | // Sequence X |
72934aa3 |
1346 | ToSend[++ToSendMax] = SEC_X; |
15c4dc5a |
1347 | last = 1; |
1348 | } else { |
1349 | if (last == 0) { |
1350 | // Sequence Z |
72934aa3 |
1351 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1352 | } else { |
1353 | // Sequence Y |
72934aa3 |
1354 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1355 | last = 0; |
1356 | } |
1357 | } |
1358 | } |
e30c654b |
1359 | |
15c4dc5a |
1360 | // End of Communication |
1361 | if (last == 0) { |
1362 | // Sequence Z |
72934aa3 |
1363 | ToSend[++ToSendMax] = SEC_Z; |
15c4dc5a |
1364 | } else { |
1365 | // Sequence Y |
72934aa3 |
1366 | ToSend[++ToSendMax] = SEC_Y; |
15c4dc5a |
1367 | last = 0; |
1368 | } |
1369 | // Sequence Y |
72934aa3 |
1370 | ToSend[++ToSendMax] = SEC_Y; |
e30c654b |
1371 | |
15c4dc5a |
1372 | // Just to be sure! |
72934aa3 |
1373 | ToSend[++ToSendMax] = SEC_Y; |
1374 | ToSend[++ToSendMax] = SEC_Y; |
1375 | ToSend[++ToSendMax] = SEC_Y; |
e30c654b |
1376 | |
15c4dc5a |
1377 | // Convert from last character reference to length |
1378 | ToSendMax++; |
1379 | } |
1380 | |
1381 | //----------------------------------------------------------------------------- |
1382 | // Wait a certain time for tag response |
1383 | // If a response is captured return TRUE |
1384 | // If it takes to long return FALSE |
1385 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1386 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer |
15c4dc5a |
1387 | { |
1388 | // buffer needs to be 512 bytes |
1389 | int c; |
1390 | |
1391 | // Set FPGA mode to "reader listen mode", no modulation (listen |
1392 | // only, since we are receiving, not transmitting). |
1393 | // Signal field is on with the appropriate LED |
1394 | LED_D_ON(); |
1395 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); |
1396 | |
1397 | // Now get the answer from the card |
1398 | Demod.output = receivedResponse; |
1399 | Demod.len = 0; |
1400 | Demod.state = DEMOD_UNSYNCD; |
1401 | |
f7e3ed82 |
1402 | uint8_t b; |
15c4dc5a |
1403 | if (elapsed) *elapsed = 0; |
1404 | |
1405 | c = 0; |
1406 | for(;;) { |
1407 | WDT_HIT(); |
1408 | |
1409 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
1410 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! |
1411 | if (elapsed) (*elapsed)++; |
1412 | } |
1413 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
7e758047 |
1414 | if(c < 2048) { c++; } else { return FALSE; } |
f7e3ed82 |
1415 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
72934aa3 |
1416 | if(ManchesterDecoding((b>>4) & 0xf)) { |
15c4dc5a |
1417 | *samples = ((c - 1) << 3) + 4; |
1418 | return TRUE; |
1419 | } |
1420 | if(ManchesterDecoding(b & 0x0f)) { |
1421 | *samples = c << 3; |
1422 | return TRUE; |
1423 | } |
1424 | } |
1425 | } |
1426 | } |
1427 | |
f7e3ed82 |
1428 | void ReaderTransmitShort(const uint8_t* bt) |
15c4dc5a |
1429 | { |
1430 | int wait = 0; |
1431 | int samples = 0; |
1432 | |
1433 | ShortFrameFromReader(*bt); |
e30c654b |
1434 | |
15c4dc5a |
1435 | // Select the card |
e30c654b |
1436 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); |
1437 | |
15c4dc5a |
1438 | // Store reader command in buffer |
1439 | if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); |
1440 | } |
1441 | |
f7e3ed82 |
1442 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) |
15c4dc5a |
1443 | { |
1444 | int wait = 0; |
1445 | int samples = 0; |
e30c654b |
1446 | |
15c4dc5a |
1447 | // This is tied to other size changes |
f7e3ed82 |
1448 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; |
15c4dc5a |
1449 | CodeIso14443aAsReaderPar(frame,len,par); |
e30c654b |
1450 | |
15c4dc5a |
1451 | // Select the card |
e30c654b |
1452 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); |
1453 | |
15c4dc5a |
1454 | // Store reader command in buffer |
1455 | if (tracing) LogTrace(frame,len,0,par,TRUE); |
1456 | } |
1457 | |
1458 | |
f7e3ed82 |
1459 | void ReaderTransmit(uint8_t* frame, int len) |
15c4dc5a |
1460 | { |
1461 | // Generate parity and redirect |
1462 | ReaderTransmitPar(frame,len,GetParity(frame,len)); |
1463 | } |
1464 | |
f7e3ed82 |
1465 | int ReaderReceive(uint8_t* receivedAnswer) |
15c4dc5a |
1466 | { |
1467 | int samples = 0; |
1468 | if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE; |
1469 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); |
7e758047 |
1470 | if(samples == 0) return FALSE; |
1471 | return Demod.len; |
15c4dc5a |
1472 | } |
1473 | |
7e758047 |
1474 | /* performs iso14443a anticolision procedure |
1475 | * fills the uid pointer */ |
1476 | int iso14443a_select_card(uint8_t * uid_ptr) { |
f7e3ed82 |
1477 | uint8_t wupa[] = { 0x52 }; |
1478 | uint8_t sel_all[] = { 0x93,0x20 }; |
1479 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
1480 | uint8_t sel_all_c2[] = { 0x95,0x20 }; |
1481 | uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
7e758047 |
1482 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 |
15c4dc5a |
1483 | |
7e758047 |
1484 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes |
1485 | uint8_t* uid = resp + 7; |
15c4dc5a |
1486 | |
7e758047 |
1487 | int len; |
15c4dc5a |
1488 | |
7e758047 |
1489 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field |
1490 | ReaderTransmitShort(wupa); |
1491 | // Receive the ATQA |
1492 | if(!ReaderReceive(resp)) return 0; |
1493 | // if(*(uint16_t *) resp == 0x4403) MIFARE_CLASSIC |
1494 | // if(*(uint16_t *) resp == 0x0400) MIFARE_DESFIRE |
15c4dc5a |
1495 | |
7e758047 |
1496 | ReaderTransmit(sel_all,sizeof(sel_all)); // SELECT_ALL |
1497 | if(!ReaderReceive(uid)) return 0; |
15c4dc5a |
1498 | |
7e758047 |
1499 | // Construct SELECT UID command |
1500 | // First copy the 5 bytes (Mifare Classic) after the 93 70 |
1501 | memcpy(sel_uid+2,uid,5); |
1502 | // Secondly compute the two CRC bytes at the end |
1503 | AppendCrc14443a(sel_uid,7); |
15c4dc5a |
1504 | |
7e758047 |
1505 | ReaderTransmit(sel_uid,sizeof(sel_uid)); |
1506 | // Receive the SAK |
1507 | if (!ReaderReceive(resp)) return 0; |
e30c654b |
1508 | |
7e758047 |
1509 | // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in |
1510 | // which case we need to make a cascade 2 request and select - this is a long UID |
1511 | // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. |
1512 | if (resp[0] &= 0x04) |
1513 | { |
1514 | ReaderTransmit(sel_all_c2,sizeof(sel_all_c2)); |
1515 | if (!ReaderReceive(uid+5)) return 0; |
e30c654b |
1516 | |
7e758047 |
1517 | // Construct SELECT UID command |
1518 | memcpy(sel_uid_c2+2,uid+5,5); |
1519 | AppendCrc14443a(sel_uid_c2,7); |
1520 | ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2)); |
1521 | // Receive the SAK |
1522 | if (!ReaderReceive(resp)) return 0; |
1523 | } |
1524 | if(uid_ptr) memcpy(uid_ptr, uid, 10); |
1525 | if( (resp[0] & 0x20) == 0) |
1526 | return 2; // non iso14443a compliant tag |
1527 | // Request for answer to select |
1528 | AppendCrc14443a(rats, 2); |
1529 | ReaderTransmit(rats, sizeof(rats)); |
1530 | if (!(len = ReaderReceive(resp))) return 0; |
1531 | return 1; |
1532 | } |
15c4dc5a |
1533 | |
7e758047 |
1534 | void iso14443a_setup() { |
1535 | // Setup SSC |
1536 | FpgaSetupSsc(); |
1537 | // Start from off (no field generated) |
1538 | // Signal field is off with the appropriate LED |
1539 | LED_D_OFF(); |
1540 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1541 | SpinDelay(200); |
15c4dc5a |
1542 | |
7e758047 |
1543 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b |
1544 | |
7e758047 |
1545 | // Now give it time to spin up. |
1546 | // Signal field is on with the appropriate LED |
1547 | LED_D_ON(); |
1548 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
1549 | SpinDelay(200); |
1550 | } |
15c4dc5a |
1551 | |
7e758047 |
1552 | //----------------------------------------------------------------------------- |
1553 | // Read an ISO 14443a tag. Send out commands and store answers. |
1554 | // |
1555 | //----------------------------------------------------------------------------- |
1556 | void ReaderIso14443a(uint32_t parameter) |
1557 | { |
e30c654b |
1558 | |
7e758047 |
1559 | // Mifare AUTH |
1560 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; |
1561 | // uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 }; |
15c4dc5a |
1562 | |
7e758047 |
1563 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes |
1564 | traceLen = 0; |
e30c654b |
1565 | |
7e758047 |
1566 | iso14443a_setup(); |
e30c654b |
1567 | |
7e758047 |
1568 | LED_A_ON(); |
1569 | LED_B_OFF(); |
1570 | LED_C_OFF(); |
e30c654b |
1571 | |
7e758047 |
1572 | while(traceLen < TRACE_LENGTH) |
1573 | { |
1574 | // Test if the action was cancelled |
1575 | if(BUTTON_PRESS()) break; |
e30c654b |
1576 | |
7e758047 |
1577 | if(!iso14443a_select_card(NULL)) { |
1578 | DbpString("iso14443a setup failed"); |
1579 | break; |
15c4dc5a |
1580 | } |
1581 | |
7e758047 |
1582 | // Transmit MIFARE_CLASSIC_AUTH |
1583 | ReaderTransmit(mf_auth,sizeof(mf_auth)); |
15c4dc5a |
1584 | |
7e758047 |
1585 | // Receive the (16 bit) "random" nonce |
1586 | if (!ReaderReceive(receivedAnswer)) continue; |
15c4dc5a |
1587 | } |
1588 | |
7e758047 |
1589 | // Thats it... |
15c4dc5a |
1590 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1591 | LEDsoff(); |
1592 | Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC); |
1593 | DbpString("ready.."); |
1594 | } |
1595 | |
1596 | //----------------------------------------------------------------------------- |
1597 | // Read an ISO 14443a tag. Send out commands and store answers. |
1598 | // |
1599 | //----------------------------------------------------------------------------- |
f7e3ed82 |
1600 | void ReaderMifare(uint32_t parameter) |
15c4dc5a |
1601 | { |
15c4dc5a |
1602 | // Mifare AUTH |
f7e3ed82 |
1603 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; |
1604 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; |
e30c654b |
1605 | |
f7e3ed82 |
1606 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes |
15c4dc5a |
1607 | traceLen = 0; |
1608 | tracing = false; |
e30c654b |
1609 | |
7e758047 |
1610 | iso14443a_setup(); |
e30c654b |
1611 | |
15c4dc5a |
1612 | LED_A_ON(); |
1613 | LED_B_OFF(); |
1614 | LED_C_OFF(); |
e30c654b |
1615 | |
15c4dc5a |
1616 | byte_t nt_diff = 0; |
1617 | LED_A_OFF(); |
1618 | byte_t par = 0; |
1619 | byte_t par_mask = 0xff; |
1620 | byte_t par_low = 0; |
f7e3ed82 |
1621 | int led_on = TRUE; |
e30c654b |
1622 | |
15c4dc5a |
1623 | tracing = FALSE; |
1624 | byte_t nt[4]; |
1625 | byte_t nt_attacked[4]; |
1626 | byte_t par_list[8]; |
1627 | byte_t ks_list[8]; |
1628 | num_to_bytes(parameter,4,nt_attacked); |
1629 | |
1630 | while(TRUE) |
1631 | { |
1632 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1633 | SpinDelay(200); |
1634 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b |
1635 | |
15c4dc5a |
1636 | // Test if the action was cancelled |
1637 | if(BUTTON_PRESS()) { |
1638 | break; |
1639 | } |
e30c654b |
1640 | |
7e758047 |
1641 | if(!iso14443a_select_card(NULL)) continue; |
e30c654b |
1642 | |
15c4dc5a |
1643 | // Transmit MIFARE_CLASSIC_AUTH |
1644 | ReaderTransmit(mf_auth,sizeof(mf_auth)); |
e30c654b |
1645 | |
15c4dc5a |
1646 | // Receive the (16 bit) "random" nonce |
1647 | if (!ReaderReceive(receivedAnswer)) continue; |
1648 | memcpy(nt,receivedAnswer,4); |
1649 | |
1650 | // Transmit reader nonce and reader answer |
1651 | ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par); |
e30c654b |
1652 | |
15c4dc5a |
1653 | // Receive 4 bit answer |
1654 | if (ReaderReceive(receivedAnswer)) |
1655 | { |
e30c654b |
1656 | if (nt_diff == 0) |
15c4dc5a |
1657 | { |
1658 | LED_A_ON(); |
1659 | memcpy(nt_attacked,nt,4); |
1660 | par_mask = 0xf8; |
1661 | par_low = par & 0x07; |
1662 | } |
1663 | |
1664 | if (memcmp(nt,nt_attacked,4) != 0) continue; |
1665 | |
1666 | led_on = !led_on; |
1667 | if(led_on) LED_B_ON(); else LED_B_OFF(); |
1668 | par_list[nt_diff] = par; |
1669 | ks_list[nt_diff] = receivedAnswer[0]^0x05; |
e30c654b |
1670 | |
15c4dc5a |
1671 | // Test if the information is complete |
1672 | if (nt_diff == 0x07) break; |
e30c654b |
1673 | |
15c4dc5a |
1674 | nt_diff = (nt_diff+1) & 0x07; |
1675 | mf_nr_ar[3] = nt_diff << 5; |
1676 | par = par_low; |
1677 | } else { |
1678 | if (nt_diff == 0) |
1679 | { |
1680 | par++; |
1681 | } else { |
1682 | par = (((par>>3)+1) << 3) | par_low; |
1683 | } |
1684 | } |
1685 | } |
e30c654b |
1686 | |
72934aa3 |
1687 | LogTrace(nt,4,0,GetParity(nt,4),TRUE); |
1688 | LogTrace(par_list,8,0,GetParity(par_list,8),TRUE); |
1689 | LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE); |
e30c654b |
1690 | |
15c4dc5a |
1691 | // Thats it... |
1692 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1693 | LEDsoff(); |
1694 | tracing = TRUE; |
1695 | } |