]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
CHG: moved a xor function into util.c
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
c3c241f3 13#include "usb_cdc.h"
14#include "cmd.h"
15
16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
9ab7a6c7 21#include <stdarg.h>
15c4dc5a 22#include "legicrf.h"
c3c241f3 23#include <hitag2.h>
31abe49f 24#include "lfsampling.h"
3000dc4e 25#include "BigBuf.h"
aa60d156 26
15c4dc5a 27#ifdef WITH_LCD
902cb3c0 28 #include "LCD.h"
15c4dc5a 29#endif
30
15c4dc5a 31#define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33//=============================================================================
34// A buffer where we can queue things up to be sent through the FPGA, for
35// any purpose (fake tag, as reader, whatever). We go MSB first, since that
36// is the order in which they go out on the wire.
37//=============================================================================
38
6a1f2d82 39#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 40uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 41int ToSendMax;
42static int ToSendBit;
43struct common_area common_area __attribute__((section(".commonarea")));
44
15c4dc5a 45void ToSendReset(void)
46{
47 ToSendMax = -1;
48 ToSendBit = 8;
49}
50
51void ToSendStuffBit(int b)
52{
53 if(ToSendBit >= 8) {
54 ToSendMax++;
55 ToSend[ToSendMax] = 0;
56 ToSendBit = 0;
57 }
58
59 if(b) {
60 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
61 }
62
63 ToSendBit++;
64
6a1f2d82 65 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 66 ToSendBit = 0;
67 DbpString("ToSendStuffBit overflowed!");
68 }
69}
70
71//=============================================================================
72// Debug print functions, to go out over USB, to the usual PC-side client.
73//=============================================================================
74
75void DbpString(char *str)
76{
9440213d 77 byte_t len = strlen(str);
78 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 79}
80
81#if 0
82void DbpIntegers(int x1, int x2, int x3)
83{
902cb3c0 84 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 85}
86#endif
87
88void Dbprintf(const char *fmt, ...) {
89// should probably limit size here; oh well, let's just use a big buffer
90 char output_string[128];
91 va_list ap;
92
93 va_start(ap, fmt);
94 kvsprintf(fmt, output_string, 10, ap);
95 va_end(ap);
e30c654b 96
15c4dc5a 97 DbpString(output_string);
98}
99
9455b51c 100// prints HEX & ASCII
d19929cb 101void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 102 int l=0,i;
103 char ascii[9];
d19929cb 104
9455b51c 105 while (len>0) {
106 if (len>8) l=8;
107 else l=len;
108
109 memcpy(ascii,d,l);
d19929cb 110 ascii[l]=0;
9455b51c 111
112 // filter safe ascii
d19929cb 113 for (i=0;i<l;i++)
9455b51c 114 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 115
116 if (bAsci) {
117 Dbprintf("%-8s %*D",ascii,l,d," ");
118 } else {
119 Dbprintf("%*D",l,d," ");
120 }
121
9455b51c 122 len-=8;
123 d+=8;
124 }
125}
126
15c4dc5a 127//-----------------------------------------------------------------------------
128// Read an ADC channel and block till it completes, then return the result
129// in ADC units (0 to 1023). Also a routine to average 32 samples and
130// return that.
131//-----------------------------------------------------------------------------
132static int ReadAdc(int ch)
133{
f7e3ed82 134 uint32_t d;
15c4dc5a 135
136 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
137 AT91C_BASE_ADC->ADC_MR =
3b692427 138 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
139 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
140 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
141
142 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
143 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
144 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
145 //
146 // The maths are:
147 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
148 //
149 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
150 //
151 // Note: with the "historic" values in the comments above, the error was 34% !!!
152
15c4dc5a 153 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
154
155 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 156
15c4dc5a 157 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
158 ;
159 d = AT91C_BASE_ADC->ADC_CDR[ch];
160
161 return d;
162}
163
9ca155ba 164int AvgAdc(int ch) // was static - merlok
15c4dc5a 165{
166 int i;
167 int a = 0;
168
169 for(i = 0; i < 32; i++) {
170 a += ReadAdc(ch);
171 }
172
173 return (a + 15) >> 5;
174}
175
176void MeasureAntennaTuning(void)
177{
d3499d36 178 uint8_t LF_Results[256];
9f693930 179 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 180 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
181
d19929cb 182 LED_B_ON();
15c4dc5a 183
184/*
185 * Sweeps the useful LF range of the proxmark from
186 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
187 * read the voltage in the antenna, the result left
188 * in the buffer is a graph which should clearly show
189 * the resonating frequency of your LF antenna
190 * ( hopefully around 95 if it is tuned to 125kHz!)
191 */
d19929cb 192
7cc204bf 193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 194 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
d3499d36 195 for (i=255; i>=19; i--) {
d19929cb 196 WDT_HIT();
15c4dc5a 197 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
198 SpinDelay(20);
3b692427 199 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 200 if (i==95) vLf125 = adcval; // voltage at 125Khz
201 if (i==89) vLf134 = adcval; // voltage at 134Khz
202
d3499d36 203 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
204 if(LF_Results[i] > peak) {
15c4dc5a 205 peakv = adcval;
d3499d36 206 peak = LF_Results[i];
15c4dc5a 207 peakf = i;
9f693930 208 //ptr = i;
15c4dc5a 209 }
210 }
211
d3499d36 212 for (i=18; i >= 0; i--) LF_Results[i] = 0;
213
d19929cb 214 LED_A_ON();
15c4dc5a 215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 216 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 217 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
218 SpinDelay(20);
3b692427 219 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 220
3b692427 221 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 222 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
223 LED_A_OFF();
224 LED_B_OFF();
225 return;
15c4dc5a 226}
227
228void MeasureAntennaTuningHf(void)
229{
230 int vHf = 0; // in mV
231
232 DbpString("Measuring HF antenna, press button to exit");
233
3b692427 234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
237
15c4dc5a 238 for (;;) {
15c4dc5a 239 SpinDelay(20);
3b692427 240 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 241
15c4dc5a 242 Dbprintf("%d mV",vHf);
243 if (BUTTON_PRESS()) break;
244 }
245 DbpString("cancelled");
3b692427 246
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
248
15c4dc5a 249}
250
251
252void SimulateTagHfListen(void)
253{
f71f4deb 254 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
255 // There might be a better size to be defined:
256 #define HF_14B_SNOOP_BUFFER_SIZE 2744
257 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
f7e3ed82 258 uint8_t v = 0;
15c4dc5a 259 int i;
260 int p = 0;
261
262 // We're using this mode just so that I can test it out; the simulated
263 // tag mode would work just as well and be simpler.
7cc204bf 264 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 265 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
266
267 // We need to listen to the high-frequency, peak-detected path.
268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
269
270 FpgaSetupSsc();
271
272 i = 0;
273 for(;;) {
274 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
275 AT91C_BASE_SSC->SSC_THR = 0xff;
276 }
277 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
f7e3ed82 278 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 279
280 v <<= 1;
281 if(r & 1) {
282 v |= 1;
283 }
284 p++;
285
286 if(p >= 8) {
287 dest[i] = v;
288 v = 0;
289 p = 0;
290 i++;
291
f71f4deb 292 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
15c4dc5a 293 break;
294 }
295 }
296 }
297 }
298 DbpString("simulate tag (now type bitsamples)");
299}
300
301void ReadMem(int addr)
302{
f7e3ed82 303 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 304
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
307}
308
309/* osimage version information is linked in */
310extern struct version_information version_information;
311/* bootrom version information is pointed to from _bootphase1_version_pointer */
312extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
313void SendVersion(void)
314{
95e63594 315 char temp[512]; /* Limited data payload in USB packets */
15c4dc5a 316 DbpString("Prox/RFID mark3 RFID instrument");
e30c654b 317
318 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 319 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
320 * pointer, then use it.
321 */
322 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
323 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
324 DbpString("bootrom version information appears invalid");
325 } else {
326 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
327 DbpString(temp);
328 }
e30c654b 329
15c4dc5a 330 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
331 DbpString(temp);
e30c654b 332
15c4dc5a 333 FpgaGatherVersion(temp, sizeof(temp));
334 DbpString(temp);
4f269f63 335 // Send Chip ID
336 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
15c4dc5a 337}
338
339#ifdef WITH_LF
340// samy's sniff and repeat routine
341void SamyRun()
342{
343 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 345
346 // 3 possible options? no just 2 for now
347#define OPTS 2
348
349 int high[OPTS], low[OPTS];
350
351 // Oooh pretty -- notify user we're in elite samy mode now
352 LED(LED_RED, 200);
353 LED(LED_ORANGE, 200);
354 LED(LED_GREEN, 200);
355 LED(LED_ORANGE, 200);
356 LED(LED_RED, 200);
357 LED(LED_ORANGE, 200);
358 LED(LED_GREEN, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_RED, 200);
361
362 int selected = 0;
363 int playing = 0;
72e930ef 364 int cardRead = 0;
15c4dc5a 365
366 // Turn on selected LED
367 LED(selected + 1, 0);
368
369 for (;;)
370 {
6e82300d 371 usb_poll();
95e63594 372 WDT_HIT();
15c4dc5a 373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
72e930ef 379 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
72e930ef 405
406 cardRead = 1;
407
408 }
409
410 else if (button_pressed > 0 && cardRead == 1)
411 {
412 LEDsoff();
413 LED(selected + 1, 0);
414 LED(LED_ORANGE, 0);
415
416 // record
417 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
418
419 // wait for button to be released
420 while(BUTTON_PRESS())
421 WDT_HIT();
422
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425
426 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
428
429 LEDsoff();
430 LED(selected + 1, 0);
431 // Finished recording
432
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
435 playing = 0;
436
437 cardRead = 0;
438
15c4dc5a 439 }
440
441 // Change where to record (or begin playing)
442 else if (button_pressed)
443 {
444 // Next option if we were previously playing
445 if (playing)
446 selected = (selected + 1) % OPTS;
447 playing = !playing;
448
449 LEDsoff();
450 LED(selected + 1, 0);
451
452 // Begin transmitting
453 if (playing)
454 {
455 LED(LED_GREEN, 0);
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
459 WDT_HIT();
460 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
461 CmdHIDsimTAG(high[selected], low[selected], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
464 {
465 DbpString("Exiting");
466 LEDsoff();
467 return;
468 }
469
470 /* We pressed a button so ignore it here with a delay */
471 SpinDelay(300);
472
473 // when done, we're done playing, move to next option
474 selected = (selected + 1) % OPTS;
475 playing = !playing;
476 LEDsoff();
477 LED(selected + 1, 0);
478 }
479 else
480 while(BUTTON_PRESS())
481 WDT_HIT();
482 }
483 }
484}
485#endif
486
487/*
488OBJECTIVE
489Listen and detect an external reader. Determine the best location
490for the antenna.
491
492INSTRUCTIONS:
493Inside the ListenReaderField() function, there is two mode.
494By default, when you call the function, you will enter mode 1.
495If you press the PM3 button one time, you will enter mode 2.
496If you press the PM3 button a second time, you will exit the function.
497
498DESCRIPTION OF MODE 1:
499This mode just listens for an external reader field and lights up green
500for HF and/or red for LF. This is the original mode of the detectreader
501function.
502
503DESCRIPTION OF MODE 2:
504This mode will visually represent, using the LEDs, the actual strength of the
505current compared to the maximum current detected. Basically, once you know
506what kind of external reader is present, it will help you spot the best location to place
507your antenna. You will probably not get some good results if there is a LF and a HF reader
508at the same place! :-)
509
510LIGHT SCHEME USED:
511*/
512static const char LIGHT_SCHEME[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
521};
522static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
523
524void ListenReaderField(int limit)
525{
3b692427 526 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
527 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 528 int mode=1, display_val, display_max, i;
529
3b692427 530#define LF_ONLY 1
531#define HF_ONLY 2
532#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
533
534
535 // switch off FPGA - we don't want to measure our own signal
536 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
537 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 538
539 LEDsoff();
540
3b692427 541 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 542
543 if(limit != HF_ONLY) {
3b692427 544 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 545 lf_baseline = lf_av;
546 }
547
3b692427 548 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 549
550 if (limit != LF_ONLY) {
3b692427 551 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 552 hf_baseline = hf_av;
553 }
554
555 for(;;) {
556 if (BUTTON_PRESS()) {
557 SpinDelay(500);
558 switch (mode) {
559 case 1:
560 mode=2;
561 DbpString("Signal Strength Mode");
562 break;
563 case 2:
564 default:
565 DbpString("Stopped");
566 LEDsoff();
567 return;
568 break;
569 }
570 }
571 WDT_HIT();
572
573 if (limit != HF_ONLY) {
3b692427 574 if(mode == 1) {
575 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
576 LED_D_ON();
577 else
578 LED_D_OFF();
15c4dc5a 579 }
e30c654b 580
3b692427 581 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 582 // see if there's a significant change
3b692427 583 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
584 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 585 lf_av = lf_av_new;
586 if (lf_av > lf_max)
587 lf_max = lf_av;
15c4dc5a 588 }
589 }
590
591 if (limit != LF_ONLY) {
592 if (mode == 1){
3b692427 593 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
594 LED_B_ON();
595 else
596 LED_B_OFF();
15c4dc5a 597 }
e30c654b 598
3b692427 599 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 600 // see if there's a significant change
3b692427 601 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
602 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 603 hf_av = hf_av_new;
604 if (hf_av > hf_max)
605 hf_max = hf_av;
15c4dc5a 606 }
607 }
e30c654b 608
15c4dc5a 609 if(mode == 2) {
610 if (limit == LF_ONLY) {
611 display_val = lf_av;
612 display_max = lf_max;
613 } else if (limit == HF_ONLY) {
614 display_val = hf_av;
615 display_max = hf_max;
616 } else { /* Pick one at random */
617 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
618 display_val = hf_av;
619 display_max = hf_max;
620 } else {
621 display_val = lf_av;
622 display_max = lf_max;
623 }
624 }
625 for (i=0; i<LIGHT_LEN; i++) {
626 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
627 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
628 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
629 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
630 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
631 break;
632 }
633 }
634 }
635 }
636}
637
f7e3ed82 638void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 639{
640 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 641
313ee67e 642 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 643
15c4dc5a 644 switch(c->cmd) {
645#ifdef WITH_LF
31abe49f
MHS
646 case CMD_SET_LF_SAMPLING_CONFIG:
647 setSamplingConfig((sample_config *) c->d.asBytes);
648 break;
15c4dc5a 649 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1fbf8956 650 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 651 break;
15c4dc5a 652 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
653 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
654 break;
b014c96d 655 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 656 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 657 break;
7e67e42f 658 case CMD_HID_DEMOD_FSK:
a501c82b 659 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 660 break;
661 case CMD_HID_SIM_TAG:
a501c82b 662 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 663 break;
abd6112f 664 case CMD_FSK_SIM_TAG:
665 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
666 break;
667 case CMD_ASK_SIM_TAG:
668 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
669 break;
872e3d4d 670 case CMD_PSK_SIM_TAG:
671 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
672 break;
a501c82b 673 case CMD_HID_CLONE_TAG:
1c611bbd 674 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 675 break;
a1f3bb12 676 case CMD_IO_DEMOD_FSK:
a501c82b 677 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 678 break;
a501c82b 679 case CMD_IO_CLONE_TAG:
a1f3bb12 680 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
681 break;
6ff6ade2 682 case CMD_EM410X_DEMOD:
683 CmdEM410xdemod(c->arg[0], 0, 0, 1);
684 break;
2d4eae76 685 case CMD_EM410X_WRITE_TAG:
686 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
687 break;
7e67e42f 688 case CMD_READ_TI_TYPE:
689 ReadTItag();
690 break;
691 case CMD_WRITE_TI_TYPE:
692 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
693 break;
694 case CMD_SIMULATE_TAG_125K:
74daee24 695 LED_A_ON();
696 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
697 LED_A_OFF();
7e67e42f 698 break;
699 case CMD_LF_SIMULATE_BIDIR:
700 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
701 break;
a501c82b 702 case CMD_INDALA_CLONE_TAG:
2414f978 703 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
704 break;
a501c82b 705 case CMD_INDALA_CLONE_TAG_L:
2414f978 706 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
707 break;
1c611bbd 708 case CMD_T55XX_READ_BLOCK:
709 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
710 break;
711 case CMD_T55XX_WRITE_BLOCK:
712 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
713 break;
a501c82b 714 case CMD_T55XX_READ_TRACE:
1c611bbd 715 T55xxReadTrace();
716 break;
a501c82b 717 case CMD_PCF7931_READ:
1c611bbd 718 ReadPCF7931();
719 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 720 break;
721 case CMD_EM4X_READ_WORD:
722 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
723 break;
724 case CMD_EM4X_WRITE_WORD:
725 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
726 break;
15c4dc5a 727#endif
728
d19929cb 729#ifdef WITH_HITAG
730 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
731 SnoopHitag(c->arg[0]);
732 break;
733 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
734 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
735 break;
736 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
737 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
738 break;
739#endif
f168b263 740
15c4dc5a 741#ifdef WITH_ISO15693
742 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
743 AcquireRawAdcSamplesIso15693();
744 break;
9455b51c 745 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
746 RecordRawAdcSamplesIso15693();
747 break;
748
749 case CMD_ISO_15693_COMMAND:
750 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
751 break;
752
753 case CMD_ISO_15693_FIND_AFI:
754 BruteforceIso15693Afi(c->arg[0]);
755 break;
756
757 case CMD_ISO_15693_DEBUG:
758 SetDebugIso15693(c->arg[0]);
759 break;
15c4dc5a 760
15c4dc5a 761 case CMD_READER_ISO_15693:
762 ReaderIso15693(c->arg[0]);
763 break;
7e67e42f 764 case CMD_SIMTAG_ISO_15693:
3649b640 765 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 766 break;
15c4dc5a 767#endif
768
7e67e42f 769#ifdef WITH_LEGICRF
770 case CMD_SIMULATE_TAG_LEGIC_RF:
771 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
772 break;
3612a8a8 773
7e67e42f 774 case CMD_WRITER_LEGIC_RF:
775 LegicRfWriter(c->arg[1], c->arg[0]);
776 break;
3612a8a8 777
15c4dc5a 778 case CMD_READER_LEGIC_RF:
779 LegicRfReader(c->arg[0], c->arg[1]);
780 break;
15c4dc5a 781#endif
782
783#ifdef WITH_ISO14443b
784 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
785 AcquireRawAdcSamplesIso14443(c->arg[0]);
786 break;
15c4dc5a 787 case CMD_READ_SRI512_TAG:
7cf3ef20 788 ReadSTMemoryIso14443(0x0F);
15c4dc5a 789 break;
7e67e42f 790 case CMD_READ_SRIX4K_TAG:
7cf3ef20 791 ReadSTMemoryIso14443(0x7F);
7e67e42f 792 break;
793 case CMD_SNOOP_ISO_14443:
794 SnoopIso14443();
795 break;
796 case CMD_SIMULATE_TAG_ISO_14443:
797 SimulateIso14443Tag();
798 break;
7cf3ef20 799 case CMD_ISO_14443B_COMMAND:
800 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
801 break;
15c4dc5a 802#endif
803
804#ifdef WITH_ISO14443a
7e67e42f 805 case CMD_SNOOP_ISO_14443a:
4d2e4eea 806 SniffIso14443a(c->arg[0]);
7e67e42f 807 break;
15c4dc5a 808 case CMD_READER_ISO_14443a:
902cb3c0 809 ReaderIso14443a(c);
15c4dc5a 810 break;
7e67e42f 811 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 812 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 813 break;
95e63594 814
5acd09bd 815 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 816 EPA_PACE_Collect_Nonce(c);
5acd09bd 817 break;
7e67e42f 818
95e63594 819 // case CMD_EPA_:
820 // EpaFoo(c);
821 // break;
822
15c4dc5a 823 case CMD_READER_MIFARE:
1c611bbd 824 ReaderMifare(c->arg[0]);
15c4dc5a 825 break;
20f9a2a1
M
826 case CMD_MIFARE_READBL:
827 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
828 break;
981bd429 829 case CMD_MIFAREU_READBL:
aa60d156 830 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 831 break;
4d2e4eea 832 case CMD_MIFAREUC_AUTH:
833 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 834 break;
981bd429 835 case CMD_MIFAREU_READCARD:
74daee24 836 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 837 break;
aa60d156 838 case CMD_MIFAREUC_SETPWD:
839 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 840 break;
20f9a2a1
M
841 case CMD_MIFARE_READSC:
842 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
843 break;
844 case CMD_MIFARE_WRITEBL:
845 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
846 break;
981bd429 847 case CMD_MIFAREU_WRITEBL_COMPAT:
848 MifareUWriteBlock(c->arg[0], c->d.asBytes);
f168b263 849 break;
981bd429 850 case CMD_MIFAREU_WRITEBL:
fff69a1e 851 MifareUWriteBlock_Special(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 852 break;
20f9a2a1
M
853 case CMD_MIFARE_NESTED:
854 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
855 break;
856 case CMD_MIFARE_CHKKEYS:
857 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
858 break;
859 case CMD_SIMULATE_MIFARE_CARD:
860 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
861 break;
8556b852
M
862
863 // emulator
864 case CMD_MIFARE_SET_DBGMODE:
865 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
866 break;
867 case CMD_MIFARE_EML_MEMCLR:
868 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
869 break;
870 case CMD_MIFARE_EML_MEMSET:
871 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
872 break;
873 case CMD_MIFARE_EML_MEMGET:
874 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
875 break;
876 case CMD_MIFARE_EML_CARDLOAD:
877 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
878 break;
879
880 // Work with "magic Chinese" card
d52e4e88 881 case CMD_MIFARE_CSETBLOCK:
0675f200 882 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 883 break;
d52e4e88 884 case CMD_MIFARE_CGETBLOCK:
545a1f38 885 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 886 break;
d52e4e88 887 case CMD_MIFARE_CIDENT:
888 MifareCIdent();
889 break;
b62a5a84
M
890
891 // mifare sniffer
892 case CMD_MIFARE_SNIFFER:
5cd9ec01 893 SniffMifare(c->arg[0]);
b62a5a84 894 break;
313ee67e 895
aa60d156 896 //mifare desfire
897 case CMD_MIFARE_DESFIRE_READBL: break;
898 case CMD_MIFARE_DESFIRE_WRITEBL: break;
899 case CMD_MIFARE_DESFIRE_AUTH1:
900 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
901 break;
902 case CMD_MIFARE_DESFIRE_AUTH2:
903 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
904 break;
905 case CMD_MIFARE_DES_READER:
906 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
907 break;
908 case CMD_MIFARE_DESFIRE_INFO:
909 MifareDesfireGetInformation();
910 break;
911 case CMD_MIFARE_DESFIRE:
912 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
913 break;
914
add0504d 915 case CMD_MIFARE_COLLECT_NONCES:
76984409 916 MifareCollectNonces(c->arg[0], c->arg[1]);
add0504d 917 break;
20f9a2a1
M
918#endif
919
7e67e42f 920#ifdef WITH_ICLASS
cee5a30d 921 // Makes use of ISO14443a FPGA Firmware
922 case CMD_SNOOP_ICLASS:
923 SnoopIClass();
924 break;
1e262141 925 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 926 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 927 break;
928 case CMD_READER_ICLASS:
929 ReaderIClass(c->arg[0]);
930 break;
f38a1528 931 case CMD_READER_ICLASS_REPLAY:
932 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
933 break;
e80aeb96
MHS
934 case CMD_ICLASS_EML_MEMSET:
935 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
936 break;
cee5a30d 937#endif
938
15c4dc5a 939 case CMD_SIMULATE_TAG_HF_LISTEN:
940 SimulateTagHfListen();
941 break;
942
7e67e42f 943 case CMD_BUFF_CLEAR:
117d9ec2 944 BigBuf_Clear();
15c4dc5a 945 break;
15c4dc5a 946
947 case CMD_MEASURE_ANTENNA_TUNING:
948 MeasureAntennaTuning();
949 break;
950
951 case CMD_MEASURE_ANTENNA_TUNING_HF:
952 MeasureAntennaTuningHf();
953 break;
954
955 case CMD_LISTEN_READER_FIELD:
956 ListenReaderField(c->arg[0]);
957 break;
958
15c4dc5a 959 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
960 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
961 SpinDelay(200);
962 LED_D_OFF(); // LED D indicates field ON or OFF
963 break;
964
1c611bbd 965 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 966
1c611bbd 967 LED_B_ON();
117d9ec2 968 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 969 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
970 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 971 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 972 }
973 // Trigger a finish downloading signal with an ACK frame
3000dc4e 974 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 975 LED_B_OFF();
1c611bbd 976 break;
15c4dc5a 977
978 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 979 uint8_t *b = BigBuf_get_addr();
7c756d68 980 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 981 cmd_send(CMD_ACK,0,0,0,0,0);
982 break;
983 }
15c4dc5a 984 case CMD_READ_MEM:
985 ReadMem(c->arg[0]);
986 break;
987
988 case CMD_SET_LF_DIVISOR:
7cc204bf 989 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 990 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
991 break;
992
993 case CMD_SET_ADC_MUX:
994 switch(c->arg[0]) {
995 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
996 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
997 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
998 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
999 }
1000 break;
1001
1002 case CMD_VERSION:
1003 SendVersion();
1004 break;
1005
15c4dc5a 1006#ifdef WITH_LCD
1007 case CMD_LCD_RESET:
1008 LCDReset();
1009 break;
1010 case CMD_LCD:
1011 LCDSend(c->arg[0]);
1012 break;
1013#endif
1014 case CMD_SETUP_WRITE:
1015 case CMD_FINISH_WRITE:
1c611bbd 1016 case CMD_HARDWARE_RESET:
1017 usb_disable();
15c4dc5a 1018 SpinDelay(1000);
1019 SpinDelay(1000);
1020 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1021 for(;;) {
1022 // We're going to reset, and the bootrom will take control.
1023 }
1c611bbd 1024 break;
15c4dc5a 1025
1c611bbd 1026 case CMD_START_FLASH:
15c4dc5a 1027 if(common_area.flags.bootrom_present) {
1028 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1029 }
1c611bbd 1030 usb_disable();
15c4dc5a 1031 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1032 for(;;);
1c611bbd 1033 break;
e30c654b 1034
15c4dc5a 1035 case CMD_DEVICE_INFO: {
902cb3c0 1036 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1037 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1038 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1039 break;
1040 }
1041 default:
15c4dc5a 1042 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1043 break;
15c4dc5a 1044 }
1045}
1046
1047void __attribute__((noreturn)) AppMain(void)
1048{
1049 SpinDelay(100);
9e8255d4 1050 clear_trace();
15c4dc5a 1051 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1052 /* Initialize common area */
1053 memset(&common_area, 0, sizeof(common_area));
1054 common_area.magic = COMMON_AREA_MAGIC;
1055 common_area.version = 1;
1056 }
1057 common_area.flags.osimage_present = 1;
1058
1059 LED_D_OFF();
1060 LED_C_OFF();
1061 LED_B_OFF();
1062 LED_A_OFF();
1063
b44e5233 1064 // Init USB device
313ee67e 1065 usb_enable();
15c4dc5a 1066
1067 // The FPGA gets its clock from us from PCK0 output, so set that up.
1068 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1069 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1070 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1071 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1072 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1073 AT91C_PMC_PRES_CLK_4;
1074 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1075
1076 // Reset SPI
1077 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1078 // Reset SSC
1079 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1080
1081 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1082 // (the HF version by default)
1083 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1084
9ca155ba 1085 StartTickCount();
902cb3c0 1086
15c4dc5a 1087#ifdef WITH_LCD
15c4dc5a 1088 LCDInit();
15c4dc5a 1089#endif
1090
902cb3c0 1091 byte_t rx[sizeof(UsbCommand)];
1092 size_t rx_len;
1093
15c4dc5a 1094 for(;;) {
313ee67e 1095 if (usb_poll()) {
1096 rx_len = usb_read(rx,sizeof(UsbCommand));
1097 if (rx_len) {
1098 UsbPacketReceived(rx,rx_len);
1099 }
1100 }
15c4dc5a 1101 WDT_HIT();
1102
1103#ifdef WITH_LF
1104 if (BUTTON_HELD(1000) > 0)
1105 SamyRun();
1106#endif
1107 }
1108}
Impressum, Datenschutz