]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
Introducing a stand-alone mode for working with NFC (ISO14443a) tag UIDs.
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
902cb3c0 13#include "usb_cdc.h"
14#include "cmd.h"
15
e30c654b 16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
31d1caa5 21
9ab7a6c7 22#include <stdarg.h>
f7e3ed82 23
15c4dc5a 24#include "legicrf.h"
d19929cb 25#include <hitag2.h>
31abe49f 26#include "lfsampling.h"
3000dc4e 27#include "BigBuf.h"
15c4dc5a 28#ifdef WITH_LCD
902cb3c0 29 #include "LCD.h"
15c4dc5a 30#endif
31
e46fe044
CY
32// Craig Young - 14a stand-alone code
33#ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
35#endif
36
15c4dc5a 37#define abs(x) ( ((x)<0) ? -(x) : (x) )
38
39//=============================================================================
40// A buffer where we can queue things up to be sent through the FPGA, for
41// any purpose (fake tag, as reader, whatever). We go MSB first, since that
42// is the order in which they go out on the wire.
43//=============================================================================
44
6a1f2d82 45#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
46uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 47int ToSendMax;
48static int ToSendBit;
49struct common_area common_area __attribute__((section(".commonarea")));
50
15c4dc5a 51void ToSendReset(void)
52{
53 ToSendMax = -1;
54 ToSendBit = 8;
55}
56
57void ToSendStuffBit(int b)
58{
59 if(ToSendBit >= 8) {
60 ToSendMax++;
61 ToSend[ToSendMax] = 0;
62 ToSendBit = 0;
63 }
64
65 if(b) {
66 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
67 }
68
69 ToSendBit++;
70
6a1f2d82 71 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 72 ToSendBit = 0;
73 DbpString("ToSendStuffBit overflowed!");
74 }
75}
76
77//=============================================================================
78// Debug print functions, to go out over USB, to the usual PC-side client.
79//=============================================================================
80
81void DbpString(char *str)
82{
9440213d 83 byte_t len = strlen(str);
84 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 85}
86
87#if 0
88void DbpIntegers(int x1, int x2, int x3)
89{
902cb3c0 90 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 91}
92#endif
93
94void Dbprintf(const char *fmt, ...) {
95// should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
e30c654b 102
15c4dc5a 103 DbpString(output_string);
104}
105
9455b51c 106// prints HEX & ASCII
d19929cb 107void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 108 int l=0,i;
109 char ascii[9];
d19929cb 110
9455b51c 111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
d19929cb 116 ascii[l]=0;
9455b51c 117
118 // filter safe ascii
d19929cb 119 for (i=0;i<l;i++)
9455b51c 120 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii,l,d," ");
124 } else {
125 Dbprintf("%*D",l,d," ");
126 }
127
9455b51c 128 len-=8;
129 d+=8;
130 }
131}
132
15c4dc5a 133//-----------------------------------------------------------------------------
134// Read an ADC channel and block till it completes, then return the result
135// in ADC units (0 to 1023). Also a routine to average 32 samples and
136// return that.
137//-----------------------------------------------------------------------------
138static int ReadAdc(int ch)
139{
f7e3ed82 140 uint32_t d;
15c4dc5a 141
142 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
143 AT91C_BASE_ADC->ADC_MR =
3b692427 144 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
145 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
146 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
147
148 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
149 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
150 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
151 //
152 // The maths are:
153 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
154 //
155 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
156 //
157 // Note: with the "historic" values in the comments above, the error was 34% !!!
158
15c4dc5a 159 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
160
161 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 162
15c4dc5a 163 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
164 ;
165 d = AT91C_BASE_ADC->ADC_CDR[ch];
166
167 return d;
168}
169
9ca155ba 170int AvgAdc(int ch) // was static - merlok
15c4dc5a 171{
172 int i;
173 int a = 0;
174
175 for(i = 0; i < 32; i++) {
176 a += ReadAdc(ch);
177 }
178
179 return (a + 15) >> 5;
180}
181
182void MeasureAntennaTuning(void)
183{
2bdd68c3 184 uint8_t LF_Results[256];
9f693930 185 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 186 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
187
2bdd68c3 188 LED_B_ON();
15c4dc5a 189
190/*
191 * Sweeps the useful LF range of the proxmark from
192 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
193 * read the voltage in the antenna, the result left
194 * in the buffer is a graph which should clearly show
195 * the resonating frequency of your LF antenna
196 * ( hopefully around 95 if it is tuned to 125kHz!)
197 */
d19929cb 198
7cc204bf 199 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 200 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2bdd68c3 201 for (i=255; i>=19; i--) {
d19929cb 202 WDT_HIT();
15c4dc5a 203 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
204 SpinDelay(20);
3b692427 205 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 206 if (i==95) vLf125 = adcval; // voltage at 125Khz
207 if (i==89) vLf134 = adcval; // voltage at 134Khz
208
2bdd68c3 209 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
210 if(LF_Results[i] > peak) {
15c4dc5a 211 peakv = adcval;
2bdd68c3 212 peak = LF_Results[i];
15c4dc5a 213 peakf = i;
9f693930 214 //ptr = i;
15c4dc5a 215 }
216 }
217
2bdd68c3 218 for (i=18; i >= 0; i--) LF_Results[i] = 0;
219
220 LED_A_ON();
15c4dc5a 221 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 222 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 223 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
224 SpinDelay(20);
3b692427 225 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 226
3b692427 227 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 228 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2bdd68c3 229 LED_A_OFF();
230 LED_B_OFF();
231 return;
15c4dc5a 232}
233
234void MeasureAntennaTuningHf(void)
235{
236 int vHf = 0; // in mV
237
238 DbpString("Measuring HF antenna, press button to exit");
239
3b692427 240 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
241 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
242 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
243
15c4dc5a 244 for (;;) {
15c4dc5a 245 SpinDelay(20);
3b692427 246 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 247
15c4dc5a 248 Dbprintf("%d mV",vHf);
249 if (BUTTON_PRESS()) break;
250 }
251 DbpString("cancelled");
3b692427 252
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
254
15c4dc5a 255}
256
257
15c4dc5a 258void ReadMem(int addr)
259{
f7e3ed82 260 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 261
262 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
263 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
264}
265
266/* osimage version information is linked in */
267extern struct version_information version_information;
268/* bootrom version information is pointed to from _bootphase1_version_pointer */
0fa01ec7 269extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 270void SendVersion(void)
271{
8e074056 272 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
273 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 274
275 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 276 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
277 * pointer, then use it.
278 */
279 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
280 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
8e074056 281 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 282 } else {
283 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
8e074056 284 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 285 }
e30c654b 286
15c4dc5a 287 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
8e074056 288 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 289
e6153040 290 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
8e074056 291 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e6153040 292 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
8e074056 293 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
0fa01ec7 294
e6153040 295 // Send Chip ID and used flash memory
0fa01ec7 296 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
297 uint32_t compressed_data_section_size = common_area.arg1;
8e074056 298 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 299}
300
301#ifdef WITH_LF
e46fe044 302#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 303// samy's sniff and repeat routine
304void SamyRun()
305{
306 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 307 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 308
309 // 3 possible options? no just 2 for now
310#define OPTS 2
311
312 int high[OPTS], low[OPTS];
313
314 // Oooh pretty -- notify user we're in elite samy mode now
315 LED(LED_RED, 200);
316 LED(LED_ORANGE, 200);
317 LED(LED_GREEN, 200);
318 LED(LED_ORANGE, 200);
319 LED(LED_RED, 200);
320 LED(LED_ORANGE, 200);
321 LED(LED_GREEN, 200);
322 LED(LED_ORANGE, 200);
323 LED(LED_RED, 200);
324
325 int selected = 0;
326 int playing = 0;
3fe4ff4f 327 int cardRead = 0;
15c4dc5a 328
329 // Turn on selected LED
330 LED(selected + 1, 0);
331
332 for (;;)
333 {
6e82300d 334 usb_poll();
335 WDT_HIT();
15c4dc5a 336
337 // Was our button held down or pressed?
338 int button_pressed = BUTTON_HELD(1000);
339 SpinDelay(300);
340
341 // Button was held for a second, begin recording
3fe4ff4f 342 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 343 {
344 LEDsoff();
345 LED(selected + 1, 0);
346 LED(LED_RED2, 0);
347
348 // record
349 DbpString("Starting recording");
350
351 // wait for button to be released
352 while(BUTTON_PRESS())
353 WDT_HIT();
354
355 /* need this delay to prevent catching some weird data */
356 SpinDelay(500);
357
358 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
359 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
360
361 LEDsoff();
362 LED(selected + 1, 0);
363 // Finished recording
364
365 // If we were previously playing, set playing off
366 // so next button push begins playing what we recorded
367 playing = 0;
3fe4ff4f 368
369 cardRead = 1;
370
371 }
372
373 else if (button_pressed > 0 && cardRead == 1)
374 {
375 LEDsoff();
376 LED(selected + 1, 0);
377 LED(LED_ORANGE, 0);
378
379 // record
380 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
381
382 // wait for button to be released
383 while(BUTTON_PRESS())
384 WDT_HIT();
385
386 /* need this delay to prevent catching some weird data */
387 SpinDelay(500);
388
389 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
390 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
391
392 LEDsoff();
393 LED(selected + 1, 0);
394 // Finished recording
395
396 // If we were previously playing, set playing off
397 // so next button push begins playing what we recorded
398 playing = 0;
399
400 cardRead = 0;
401
15c4dc5a 402 }
403
404 // Change where to record (or begin playing)
405 else if (button_pressed)
406 {
407 // Next option if we were previously playing
408 if (playing)
409 selected = (selected + 1) % OPTS;
410 playing = !playing;
411
412 LEDsoff();
413 LED(selected + 1, 0);
414
415 // Begin transmitting
416 if (playing)
417 {
418 LED(LED_GREEN, 0);
419 DbpString("Playing");
420 // wait for button to be released
421 while(BUTTON_PRESS())
422 WDT_HIT();
423 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
424 CmdHIDsimTAG(high[selected], low[selected], 0);
425 DbpString("Done playing");
426 if (BUTTON_HELD(1000) > 0)
427 {
428 DbpString("Exiting");
429 LEDsoff();
430 return;
431 }
432
433 /* We pressed a button so ignore it here with a delay */
434 SpinDelay(300);
435
436 // when done, we're done playing, move to next option
437 selected = (selected + 1) % OPTS;
438 playing = !playing;
439 LEDsoff();
440 LED(selected + 1, 0);
441 }
442 else
443 while(BUTTON_PRESS())
444 WDT_HIT();
445 }
446 }
447}
448#endif
e46fe044
CY
449#endif
450#ifdef WITH_ISO14443a
451#ifdef WITH_ISO14443a_StandAlone
452void StandAloneMode14a()
453{
454 DbpString("Stand-alone mode! No PC necessary.");
455 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
456
457 // 3 possible options? no just 1 for now
458#undef OPTS
459#define OPTS 2
460 // Oooh pretty -- notify user we're in elite samy mode now
461 LED(LED_RED, 200);
462 LED(LED_ORANGE, 200);
463 LED(LED_GREEN, 200);
464 LED(LED_ORANGE, 200);
465 LED(LED_RED, 200);
466 LED(LED_ORANGE, 200);
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469 LED(LED_RED, 200);
470
471 int selected = 0;
472 int playing = 0;
473 int cardRead[OPTS] = {0};
474 uint8_t readUID[10] = {0};
475 int uid_1st[OPTS]={0};
476 int uid_2nd[OPTS]={0};
477
478 LED(selected + 1, 0);
479
480 for (;;)
481 {
482 usb_poll();
483 WDT_HIT();
484
485 // Was our button held down or pressed?
486 int button_pressed = BUTTON_HELD(1000);
487
488 SpinDelay(300);
489
490 // Button was held for a second, begin recording
491 if (button_pressed > 0 && cardRead[selected] == 0)
492 {
493 LEDsoff();
494 LED(selected + 1, 0);
495 LED(LED_RED2, 0);
496
497 // record
498 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
499
500 // wait for button to be released
501 while(BUTTON_PRESS())
502 WDT_HIT();
503 /* need this delay to prevent catching some weird data */
504 SpinDelay(500);
505 /* Code for reading from 14a tag */
506 uint8_t uid[10] ={0};
507 uint32_t cuid;
508 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
509
510 for ( ; ; )
511 {
512 if (!iso14443a_select_card(uid, NULL, &cuid))
513 continue;
514 else
515 {
516 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
517 memcpy(readUID,uid,10*sizeof(uint8_t));
518 uint8_t *dst = (uint8_t *)&uid_1st[selected];
519 // Set UID byte order
520 for (int i=0; i<4; i++)
521 dst[i] = uid[3-i];
522 dst = (uint8_t *)&uid_2nd[selected];
523 for (int i=0; i<4; i++)
524 dst[i] = uid[7-i];
525 break;
526 }
527 }
528 LEDsoff();
529 LED(LED_GREEN, 200);
530 LED(LED_ORANGE, 200);
531 LED(LED_GREEN, 200);
532 LED(LED_ORANGE, 200);
533
534 LEDsoff();
535 LED(selected + 1, 0);
536 // Finished recording
537
538 // If we were previously playing, set playing off
539 // so next button push begins playing what we recorded
540 playing = 0;
541
542 cardRead[selected] = 1;
543
544 }
545/* MF UID clone */
546 else if (button_pressed > 0 && cardRead[selected] == 1)
547 {
548 LEDsoff();
549 LED(selected + 1, 0);
550 LED(LED_ORANGE, 250);
551
15c4dc5a 552
e46fe044
CY
553 // record
554 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
555
556 // wait for button to be released
557 while(BUTTON_PRESS())
558 {
559 // Delay cloning until card is in place
560 WDT_HIT();
561 }
562 Dbprintf("Starting clone. [Bank: %u]", selected);
563 // need this delay to prevent catching some weird data
564 SpinDelay(500);
565 // Begin clone function here:
566 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
567 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
568 memcpy(c.d.asBytes, data, 16);
569 SendCommand(&c);
570
571 Block read is similar:
572 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
573 We need to imitate that call with blockNo 0 to set a uid.
574
575 The get and set commands are handled in this file:
576 // Work with "magic Chinese" card
577 case CMD_MIFARE_CSETBLOCK:
578 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
579 break;
580 case CMD_MIFARE_CGETBLOCK:
581 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
582 //
583 break;
584
585 mfCSetUID provides example logic for UID set workflow:
586 -Read block0 from card in field with MifareCGetBlock()
587 -Configure new values without replacing reserved bytes
588 memcpy(block0, uid, 4); // Copy UID bytes from byte array
589 // Mifare UID BCC
590 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
591 Bytes 5-7 are reserved SAK and ATQA for mifare classic
592 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
593 */
594 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
595 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
596 MifareCGetBlock(0x1F, 1, 0, oldBlock0);
597 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
598 memcpy(newBlock0,oldBlock0,16);
599 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
600 newBlock0[0] = uid_1st[selected]>>24;
601 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
602 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
603 newBlock0[3] = 0xFF & (uid_1st[selected]);
604 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
605 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
606 MifareCSetBlock(0, 0xFF,0, newBlock0);
607 MifareCGetBlock(0x1F, 1, 0, testBlock0);
608 if (memcmp(testBlock0,newBlock0,16)==0)
609 {
610 DbpString("Cloned successfull!");
611 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
612 }
613 LEDsoff();
614 LED(selected + 1, 0);
615 // Finished recording
616
617 // If we were previously playing, set playing off
618 // so next button push begins playing what we recorded
619 playing = 0;
620
621 }
622 // Change where to record (or begin playing)
623 else if (button_pressed && cardRead[selected])
624 {
625 // Next option if we were previously playing
626 if (playing)
627 selected = (selected + 1) % OPTS;
628 playing = !playing;
629
630 LEDsoff();
631 LED(selected + 1, 0);
632
633 // Begin transmitting
634 if (playing)
635 {
636 LED(LED_GREEN, 0);
637 DbpString("Playing");
638 while (!BUTTON_HELD(500)) { // Loop simulating tag until the button is held a half-sec
639 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
640 SimulateIso14443aTag(1,uid_1st[selected],uid_2nd[selected],NULL);
641 }
642 //cardRead[selected] = 1;
643 Dbprintf("Done playing [Bank: %u]",selected);
644
645 /* We pressed a button so ignore it here with a delay */
646 SpinDelay(300);
647
648 // when done, we're done playing, move to next option
649 selected = (selected + 1) % OPTS;
650 playing = !playing;
651 LEDsoff();
652 LED(selected + 1, 0);
653 }
654 else
655 while(BUTTON_PRESS())
656 WDT_HIT();
657 }
658 }
659}
660#endif
661#endif
15c4dc5a 662/*
663OBJECTIVE
664Listen and detect an external reader. Determine the best location
665for the antenna.
666
667INSTRUCTIONS:
668Inside the ListenReaderField() function, there is two mode.
669By default, when you call the function, you will enter mode 1.
670If you press the PM3 button one time, you will enter mode 2.
671If you press the PM3 button a second time, you will exit the function.
672
673DESCRIPTION OF MODE 1:
674This mode just listens for an external reader field and lights up green
675for HF and/or red for LF. This is the original mode of the detectreader
676function.
677
678DESCRIPTION OF MODE 2:
679This mode will visually represent, using the LEDs, the actual strength of the
680current compared to the maximum current detected. Basically, once you know
681what kind of external reader is present, it will help you spot the best location to place
682your antenna. You will probably not get some good results if there is a LF and a HF reader
683at the same place! :-)
684
685LIGHT SCHEME USED:
686*/
687static const char LIGHT_SCHEME[] = {
688 0x0, /* ---- | No field detected */
689 0x1, /* X--- | 14% of maximum current detected */
690 0x2, /* -X-- | 29% of maximum current detected */
691 0x4, /* --X- | 43% of maximum current detected */
692 0x8, /* ---X | 57% of maximum current detected */
693 0xC, /* --XX | 71% of maximum current detected */
694 0xE, /* -XXX | 86% of maximum current detected */
695 0xF, /* XXXX | 100% of maximum current detected */
696};
697static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
698
699void ListenReaderField(int limit)
700{
3b692427 701 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
702 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 703 int mode=1, display_val, display_max, i;
704
3b692427 705#define LF_ONLY 1
706#define HF_ONLY 2
707#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
708
709
710 // switch off FPGA - we don't want to measure our own signal
711 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
712 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 713
714 LEDsoff();
715
3b692427 716 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 717
718 if(limit != HF_ONLY) {
3b692427 719 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 720 lf_baseline = lf_av;
721 }
722
3b692427 723 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 724
725 if (limit != LF_ONLY) {
3b692427 726 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 727 hf_baseline = hf_av;
728 }
729
730 for(;;) {
731 if (BUTTON_PRESS()) {
732 SpinDelay(500);
733 switch (mode) {
734 case 1:
735 mode=2;
736 DbpString("Signal Strength Mode");
737 break;
738 case 2:
739 default:
740 DbpString("Stopped");
741 LEDsoff();
742 return;
743 break;
744 }
745 }
746 WDT_HIT();
747
748 if (limit != HF_ONLY) {
3b692427 749 if(mode == 1) {
750 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
751 LED_D_ON();
752 else
753 LED_D_OFF();
15c4dc5a 754 }
e30c654b 755
3b692427 756 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 757 // see if there's a significant change
3b692427 758 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
759 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 760 lf_av = lf_av_new;
761 if (lf_av > lf_max)
762 lf_max = lf_av;
15c4dc5a 763 }
764 }
765
766 if (limit != LF_ONLY) {
767 if (mode == 1){
3b692427 768 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
769 LED_B_ON();
770 else
771 LED_B_OFF();
15c4dc5a 772 }
e30c654b 773
3b692427 774 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 775 // see if there's a significant change
3b692427 776 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
777 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 778 hf_av = hf_av_new;
779 if (hf_av > hf_max)
780 hf_max = hf_av;
15c4dc5a 781 }
782 }
e30c654b 783
15c4dc5a 784 if(mode == 2) {
785 if (limit == LF_ONLY) {
786 display_val = lf_av;
787 display_max = lf_max;
788 } else if (limit == HF_ONLY) {
789 display_val = hf_av;
790 display_max = hf_max;
791 } else { /* Pick one at random */
792 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
793 display_val = hf_av;
794 display_max = hf_max;
795 } else {
796 display_val = lf_av;
797 display_max = lf_max;
798 }
799 }
800 for (i=0; i<LIGHT_LEN; i++) {
801 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
802 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
803 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
804 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
805 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
806 break;
807 }
808 }
809 }
810 }
811}
812
f7e3ed82 813void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 814{
815 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 816
902cb3c0 817// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
818
15c4dc5a 819 switch(c->cmd) {
820#ifdef WITH_LF
31abe49f
MHS
821 case CMD_SET_LF_SAMPLING_CONFIG:
822 setSamplingConfig((sample_config *) c->d.asBytes);
823 break;
15c4dc5a 824 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1fbf8956 825 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 826 break;
15c4dc5a 827 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
828 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
829 break;
b014c96d 830 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 831 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 832 break;
7e67e42f 833 case CMD_HID_DEMOD_FSK:
3fe4ff4f 834 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 835 break;
836 case CMD_HID_SIM_TAG:
3fe4ff4f 837 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 838 break;
abd6112f 839 case CMD_FSK_SIM_TAG:
840 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
841 break;
842 case CMD_ASK_SIM_TAG:
843 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
844 break;
872e3d4d 845 case CMD_PSK_SIM_TAG:
846 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
847 break;
848 case CMD_HID_CLONE_TAG:
1c611bbd 849 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 850 break;
a1f3bb12 851 case CMD_IO_DEMOD_FSK:
3fe4ff4f 852 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 853 break;
3fe4ff4f 854 case CMD_IO_CLONE_TAG:
a1f3bb12 855 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
856 break;
66707a3b 857 case CMD_EM410X_DEMOD:
858 CmdEM410xdemod(c->arg[0], 0, 0, 1);
859 break;
2d4eae76 860 case CMD_EM410X_WRITE_TAG:
861 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
862 break;
7e67e42f 863 case CMD_READ_TI_TYPE:
864 ReadTItag();
865 break;
866 case CMD_WRITE_TI_TYPE:
867 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
868 break;
869 case CMD_SIMULATE_TAG_125K:
31d1caa5 870 LED_A_ON();
7e67e42f 871 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
31d1caa5 872 LED_A_OFF();
7e67e42f 873 break;
874 case CMD_LF_SIMULATE_BIDIR:
875 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
876 break;
3fe4ff4f 877 case CMD_INDALA_CLONE_TAG:
2414f978 878 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
879 break;
3fe4ff4f 880 case CMD_INDALA_CLONE_TAG_L:
2414f978 881 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
882 break;
1c611bbd 883 case CMD_T55XX_READ_BLOCK:
884 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
885 break;
886 case CMD_T55XX_WRITE_BLOCK:
887 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
888 break;
3fe4ff4f 889 case CMD_T55XX_READ_TRACE:
1c611bbd 890 T55xxReadTrace();
891 break;
3fe4ff4f 892 case CMD_PCF7931_READ:
1c611bbd 893 ReadPCF7931();
894 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 895 break;
896 case CMD_EM4X_READ_WORD:
897 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
898 break;
899 case CMD_EM4X_WRITE_WORD:
900 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
901 break;
dbf6e824
CY
902 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
903 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
904 break;
15c4dc5a 905#endif
906
d19929cb 907#ifdef WITH_HITAG
908 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
909 SnoopHitag(c->arg[0]);
910 break;
911 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
912 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
913 break;
914 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
915 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
916 break;
917#endif
f168b263 918
15c4dc5a 919#ifdef WITH_ISO15693
920 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
921 AcquireRawAdcSamplesIso15693();
922 break;
9455b51c 923 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
924 RecordRawAdcSamplesIso15693();
925 break;
926
927 case CMD_ISO_15693_COMMAND:
928 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
929 break;
930
931 case CMD_ISO_15693_FIND_AFI:
932 BruteforceIso15693Afi(c->arg[0]);
933 break;
934
935 case CMD_ISO_15693_DEBUG:
936 SetDebugIso15693(c->arg[0]);
937 break;
15c4dc5a 938
15c4dc5a 939 case CMD_READER_ISO_15693:
940 ReaderIso15693(c->arg[0]);
941 break;
7e67e42f 942 case CMD_SIMTAG_ISO_15693:
3fe4ff4f 943 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 944 break;
15c4dc5a 945#endif
946
7e67e42f 947#ifdef WITH_LEGICRF
948 case CMD_SIMULATE_TAG_LEGIC_RF:
949 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
950 break;
3612a8a8 951
7e67e42f 952 case CMD_WRITER_LEGIC_RF:
953 LegicRfWriter(c->arg[1], c->arg[0]);
954 break;
3612a8a8 955
15c4dc5a 956 case CMD_READER_LEGIC_RF:
957 LegicRfReader(c->arg[0], c->arg[1]);
958 break;
15c4dc5a 959#endif
960
961#ifdef WITH_ISO14443b
15c4dc5a 962 case CMD_READ_SRI512_TAG:
51d4f6f1 963 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 964 break;
7e67e42f 965 case CMD_READ_SRIX4K_TAG:
51d4f6f1 966 ReadSTMemoryIso14443b(0x7F);
7e67e42f 967 break;
132a0217 968 case CMD_SNOOP_ISO_14443B:
51d4f6f1 969 SnoopIso14443b();
7e67e42f 970 break;
132a0217 971 case CMD_SIMULATE_TAG_ISO_14443B:
51d4f6f1 972 SimulateIso14443bTag();
7e67e42f 973 break;
7cf3ef20 974 case CMD_ISO_14443B_COMMAND:
975 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
976 break;
15c4dc5a 977#endif
978
979#ifdef WITH_ISO14443a
7e67e42f 980 case CMD_SNOOP_ISO_14443a:
5cd9ec01 981 SnoopIso14443a(c->arg[0]);
7e67e42f 982 break;
15c4dc5a 983 case CMD_READER_ISO_14443a:
902cb3c0 984 ReaderIso14443a(c);
15c4dc5a 985 break;
7e67e42f 986 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 987 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 988 break;
3fe4ff4f 989
5acd09bd 990 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 991 EPA_PACE_Collect_Nonce(c);
5acd09bd 992 break;
3bb07d96
FM
993 case CMD_EPA_PACE_REPLAY:
994 EPA_PACE_Replay(c);
995 break;
7e67e42f 996
15c4dc5a 997 case CMD_READER_MIFARE:
f168b263 998 ReaderMifare(c->arg[0]);
15c4dc5a 999 break;
20f9a2a1
M
1000 case CMD_MIFARE_READBL:
1001 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1002 break;
981bd429 1003 case CMD_MIFAREU_READBL:
f168b263 1004 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1005 break;
8258f409 1006 case CMD_MIFAREUC_AUTH:
1007 MifareUC_Auth(c->arg[0],c->d.asBytes);
a631936e 1008 break;
981bd429 1009 case CMD_MIFAREU_READCARD:
75377d29 1010 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1011 break;
f168b263 1012 case CMD_MIFAREUC_SETPWD:
1013 MifareUSetPwd(c->arg[0], c->d.asBytes);
1014 break;
20f9a2a1
M
1015 case CMD_MIFARE_READSC:
1016 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1017 break;
1018 case CMD_MIFARE_WRITEBL:
1019 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1020 break;
4973f23d 1021 //case CMD_MIFAREU_WRITEBL_COMPAT:
1022 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1023 //break;
981bd429 1024 case CMD_MIFAREU_WRITEBL:
4973f23d 1025 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
f168b263 1026 break;
20f9a2a1
M
1027 case CMD_MIFARE_NESTED:
1028 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1029 break;
1030 case CMD_MIFARE_CHKKEYS:
1031 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1032 break;
1033 case CMD_SIMULATE_MIFARE_CARD:
1034 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1035 break;
8556b852
M
1036
1037 // emulator
1038 case CMD_MIFARE_SET_DBGMODE:
1039 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1040 break;
1041 case CMD_MIFARE_EML_MEMCLR:
1042 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1043 break;
1044 case CMD_MIFARE_EML_MEMSET:
1045 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1046 break;
1047 case CMD_MIFARE_EML_MEMGET:
1048 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1049 break;
1050 case CMD_MIFARE_EML_CARDLOAD:
1051 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1052 break;
1053
1054 // Work with "magic Chinese" card
3fe4ff4f 1055 case CMD_MIFARE_CSETBLOCK:
0675f200 1056 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 1057 break;
3fe4ff4f 1058 case CMD_MIFARE_CGETBLOCK:
545a1f38 1059 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 1060 break;
3fe4ff4f 1061 case CMD_MIFARE_CIDENT:
1062 MifareCIdent();
1063 break;
b62a5a84
M
1064
1065 // mifare sniffer
1066 case CMD_MIFARE_SNIFFER:
5cd9ec01 1067 SniffMifare(c->arg[0]);
b62a5a84 1068 break;
a631936e 1069
20f9a2a1
M
1070#endif
1071
7e67e42f 1072#ifdef WITH_ICLASS
cee5a30d 1073 // Makes use of ISO14443a FPGA Firmware
1074 case CMD_SNOOP_ICLASS:
1075 SnoopIClass();
1076 break;
1e262141 1077 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1078 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1079 break;
1080 case CMD_READER_ICLASS:
1081 ReaderIClass(c->arg[0]);
1082 break;
c3963755 1083 case CMD_READER_ICLASS_REPLAY:
fecd8202 1084 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
c3963755 1085 break;
e80aeb96
MHS
1086 case CMD_ICLASS_EML_MEMSET:
1087 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1088 break;
cee5a30d 1089#endif
1090
7e67e42f 1091 case CMD_BUFF_CLEAR:
117d9ec2 1092 BigBuf_Clear();
15c4dc5a 1093 break;
15c4dc5a 1094
1095 case CMD_MEASURE_ANTENNA_TUNING:
1096 MeasureAntennaTuning();
1097 break;
1098
1099 case CMD_MEASURE_ANTENNA_TUNING_HF:
1100 MeasureAntennaTuningHf();
1101 break;
1102
1103 case CMD_LISTEN_READER_FIELD:
1104 ListenReaderField(c->arg[0]);
1105 break;
1106
15c4dc5a 1107 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1108 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1109 SpinDelay(200);
1110 LED_D_OFF(); // LED D indicates field ON or OFF
1111 break;
1112
1c611bbd 1113 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 1114
1c611bbd 1115 LED_B_ON();
117d9ec2 1116 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 1117 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1118 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1119 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1120 }
1121 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1122 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1123 LED_B_OFF();
1c611bbd 1124 break;
15c4dc5a 1125
1126 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1127 uint8_t *b = BigBuf_get_addr();
3fe4ff4f 1128 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1129 cmd_send(CMD_ACK,0,0,0,0,0);
1130 break;
1131 }
15c4dc5a 1132 case CMD_READ_MEM:
1133 ReadMem(c->arg[0]);
1134 break;
1135
1136 case CMD_SET_LF_DIVISOR:
7cc204bf 1137 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1138 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1139 break;
1140
1141 case CMD_SET_ADC_MUX:
1142 switch(c->arg[0]) {
1143 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1144 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1145 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1146 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1147 }
1148 break;
1149
1150 case CMD_VERSION:
1151 SendVersion();
1152 break;
1153
15c4dc5a 1154#ifdef WITH_LCD
1155 case CMD_LCD_RESET:
1156 LCDReset();
1157 break;
1158 case CMD_LCD:
1159 LCDSend(c->arg[0]);
1160 break;
1161#endif
1162 case CMD_SETUP_WRITE:
1163 case CMD_FINISH_WRITE:
1c611bbd 1164 case CMD_HARDWARE_RESET:
1165 usb_disable();
15c4dc5a 1166 SpinDelay(1000);
1167 SpinDelay(1000);
1168 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1169 for(;;) {
1170 // We're going to reset, and the bootrom will take control.
1171 }
1c611bbd 1172 break;
15c4dc5a 1173
1c611bbd 1174 case CMD_START_FLASH:
15c4dc5a 1175 if(common_area.flags.bootrom_present) {
1176 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1177 }
1c611bbd 1178 usb_disable();
15c4dc5a 1179 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1180 for(;;);
1c611bbd 1181 break;
e30c654b 1182
15c4dc5a 1183 case CMD_DEVICE_INFO: {
902cb3c0 1184 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1185 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1186 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1187 break;
1188 }
1189 default:
15c4dc5a 1190 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1191 break;
15c4dc5a 1192 }
1193}
1194
1195void __attribute__((noreturn)) AppMain(void)
1196{
1197 SpinDelay(100);
9e8255d4 1198 clear_trace();
15c4dc5a 1199 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1200 /* Initialize common area */
1201 memset(&common_area, 0, sizeof(common_area));
1202 common_area.magic = COMMON_AREA_MAGIC;
1203 common_area.version = 1;
1204 }
1205 common_area.flags.osimage_present = 1;
1206
1207 LED_D_OFF();
1208 LED_C_OFF();
1209 LED_B_OFF();
1210 LED_A_OFF();
1211
3fe4ff4f 1212 // Init USB device
902cb3c0 1213 usb_enable();
15c4dc5a 1214
1215 // The FPGA gets its clock from us from PCK0 output, so set that up.
1216 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1217 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1218 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1219 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1220 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1221 AT91C_PMC_PRES_CLK_4;
1222 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1223
1224 // Reset SPI
1225 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1226 // Reset SSC
1227 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1228
1229 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1230 // (the HF version by default)
1231 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1232
9ca155ba 1233 StartTickCount();
902cb3c0 1234
15c4dc5a 1235#ifdef WITH_LCD
15c4dc5a 1236 LCDInit();
15c4dc5a 1237#endif
1238
902cb3c0 1239 byte_t rx[sizeof(UsbCommand)];
1240 size_t rx_len;
1241
15c4dc5a 1242 for(;;) {
902cb3c0 1243 if (usb_poll()) {
1244 rx_len = usb_read(rx,sizeof(UsbCommand));
1245 if (rx_len) {
1246 UsbPacketReceived(rx,rx_len);
1247 }
1248 }
15c4dc5a 1249 WDT_HIT();
1250
1251#ifdef WITH_LF
e46fe044 1252#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1253 if (BUTTON_HELD(1000) > 0)
1254 SamyRun();
e46fe044
CY
1255#endif
1256#endif
1257#ifdef WITH_ISO14443a
1258#ifdef WITH_ISO14443a_StandAlone
1259 if (BUTTON_HELD(1000) > 0)
1260 StandAloneMode14a();
1261#endif
15c4dc5a 1262#endif
1263 }
1264}
Impressum, Datenschutz