]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
ADD: default_toys.lua a script which identify tnp3xx tags
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = (uint8_t *)BigBuf;
29 int n = sizeof(BigBuf);
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89 }
90 /**
91 * Initializes the FPGA, and acquires the samples.
92 **/
93 void AcquireRawAdcSamples125k(int divisor)
94 {
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
98 }
99 /**
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
101 **/
102
103 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104 {
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
107 }
108
109 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
110 {
111
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
116
117
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
120
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
123
124
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
129
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
132
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
135
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
142
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
154
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
156
157 // now do the read
158 DoAcquisition125k(-1);
159 }
160
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
164 0011010010100001
165 01111111
166 101010101010101[0]000...
167
168 [5555fe852c5555555555555555fe0000]
169 */
170 void ReadTItag(void)
171 {
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
179
180 signed char *dest = (signed char *)BigBuf;
181 int n = sizeof(BigBuf);
182
183 // 128 bit shift register [shift3:shift2:shift1:shift0]
184 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
185
186 int i, cycles=0, samples=0;
187 // how many sample points fit in 16 cycles of each frequency
188 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
189 // when to tell if we're close enough to one freq or another
190 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
191
192 // TI tags charge at 134.2Khz
193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
194 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
195
196 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
197 // connects to SSP_DIN and the SSP_DOUT logic level controls
198 // whether we're modulating the antenna (high)
199 // or listening to the antenna (low)
200 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
201
202 // get TI tag data into the buffer
203 AcquireTiType();
204
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
206
207 for (i=0; i<n-1; i++) {
208 // count cycles by looking for lo to hi zero crossings
209 if ( (dest[i]<0) && (dest[i+1]>0) ) {
210 cycles++;
211 // after 16 cycles, measure the frequency
212 if (cycles>15) {
213 cycles=0;
214 samples=i-samples; // number of samples in these 16 cycles
215
216 // TI bits are coming to us lsb first so shift them
217 // right through our 128 bit right shift register
218 shift0 = (shift0>>1) | (shift1 << 31);
219 shift1 = (shift1>>1) | (shift2 << 31);
220 shift2 = (shift2>>1) | (shift3 << 31);
221 shift3 >>= 1;
222
223 // check if the cycles fall close to the number
224 // expected for either the low or high frequency
225 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
226 // low frequency represents a 1
227 shift3 |= (1<<31);
228 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
229 // high frequency represents a 0
230 } else {
231 // probably detected a gay waveform or noise
232 // use this as gaydar or discard shift register and start again
233 shift3 = shift2 = shift1 = shift0 = 0;
234 }
235 samples = i;
236
237 // for each bit we receive, test if we've detected a valid tag
238
239 // if we see 17 zeroes followed by 6 ones, we might have a tag
240 // remember the bits are backwards
241 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
242 // if start and end bytes match, we have a tag so break out of the loop
243 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
244 cycles = 0xF0B; //use this as a flag (ugly but whatever)
245 break;
246 }
247 }
248 }
249 }
250 }
251
252 // if flag is set we have a tag
253 if (cycles!=0xF0B) {
254 DbpString("Info: No valid tag detected.");
255 } else {
256 // put 64 bit data into shift1 and shift0
257 shift0 = (shift0>>24) | (shift1 << 8);
258 shift1 = (shift1>>24) | (shift2 << 8);
259
260 // align 16 bit crc into lower half of shift2
261 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
262
263 // if r/w tag, check ident match
264 if ( shift3&(1<<15) ) {
265 DbpString("Info: TI tag is rewriteable");
266 // only 15 bits compare, last bit of ident is not valid
267 if ( ((shift3>>16)^shift0)&0x7fff ) {
268 DbpString("Error: Ident mismatch!");
269 } else {
270 DbpString("Info: TI tag ident is valid");
271 }
272 } else {
273 DbpString("Info: TI tag is readonly");
274 }
275
276 // WARNING the order of the bytes in which we calc crc below needs checking
277 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
278 // bytes in reverse or something
279 // calculate CRC
280 uint32_t crc=0;
281
282 crc = update_crc16(crc, (shift0)&0xff);
283 crc = update_crc16(crc, (shift0>>8)&0xff);
284 crc = update_crc16(crc, (shift0>>16)&0xff);
285 crc = update_crc16(crc, (shift0>>24)&0xff);
286 crc = update_crc16(crc, (shift1)&0xff);
287 crc = update_crc16(crc, (shift1>>8)&0xff);
288 crc = update_crc16(crc, (shift1>>16)&0xff);
289 crc = update_crc16(crc, (shift1>>24)&0xff);
290
291 Dbprintf("Info: Tag data: %x%08x, crc=%x",
292 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
293 if (crc != (shift2&0xffff)) {
294 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
295 } else {
296 DbpString("Info: CRC is good");
297 }
298 }
299 }
300
301 void WriteTIbyte(uint8_t b)
302 {
303 int i = 0;
304
305 // modulate 8 bits out to the antenna
306 for (i=0; i<8; i++)
307 {
308 if (b&(1<<i)) {
309 // stop modulating antenna
310 LOW(GPIO_SSC_DOUT);
311 SpinDelayUs(1000);
312 // modulate antenna
313 HIGH(GPIO_SSC_DOUT);
314 SpinDelayUs(1000);
315 } else {
316 // stop modulating antenna
317 LOW(GPIO_SSC_DOUT);
318 SpinDelayUs(300);
319 // modulate antenna
320 HIGH(GPIO_SSC_DOUT);
321 SpinDelayUs(1700);
322 }
323 }
324 }
325
326 void AcquireTiType(void)
327 {
328 int i, j, n;
329 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
330 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
331 #define TIBUFLEN 1250
332
333 // clear buffer
334 memset(BigBuf,0,sizeof(BigBuf));
335
336 // Set up the synchronous serial port
337 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
338 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
345 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
346
347 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
348 // 48/2 = 24 MHz clock must be divided by 12
349 AT91C_BASE_SSC->SSC_CMR = 12;
350
351 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
352 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
353 AT91C_BASE_SSC->SSC_TCMR = 0;
354 AT91C_BASE_SSC->SSC_TFMR = 0;
355
356 LED_D_ON();
357
358 // modulate antenna
359 HIGH(GPIO_SSC_DOUT);
360
361 // Charge TI tag for 50ms.
362 SpinDelay(50);
363
364 // stop modulating antenna and listen
365 LOW(GPIO_SSC_DOUT);
366
367 LED_D_OFF();
368
369 i = 0;
370 for(;;) {
371 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
372 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
373 i++; if(i >= TIBUFLEN) break;
374 }
375 WDT_HIT();
376 }
377
378 // return stolen pin to SSP
379 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
380 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
381
382 char *dest = (char *)BigBuf;
383 n = TIBUFLEN*32;
384 // unpack buffer
385 for (i=TIBUFLEN-1; i>=0; i--) {
386 for (j=0; j<32; j++) {
387 if(BigBuf[i] & (1 << j)) {
388 dest[--n] = 1;
389 } else {
390 dest[--n] = -1;
391 }
392 }
393 }
394 }
395
396 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
397 // if crc provided, it will be written with the data verbatim (even if bogus)
398 // if not provided a valid crc will be computed from the data and written.
399 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
400 {
401 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
402 if(crc == 0) {
403 crc = update_crc16(crc, (idlo)&0xff);
404 crc = update_crc16(crc, (idlo>>8)&0xff);
405 crc = update_crc16(crc, (idlo>>16)&0xff);
406 crc = update_crc16(crc, (idlo>>24)&0xff);
407 crc = update_crc16(crc, (idhi)&0xff);
408 crc = update_crc16(crc, (idhi>>8)&0xff);
409 crc = update_crc16(crc, (idhi>>16)&0xff);
410 crc = update_crc16(crc, (idhi>>24)&0xff);
411 }
412 Dbprintf("Writing to tag: %x%08x, crc=%x",
413 (unsigned int) idhi, (unsigned int) idlo, crc);
414
415 // TI tags charge at 134.2Khz
416 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
417 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
418 // connects to SSP_DIN and the SSP_DOUT logic level controls
419 // whether we're modulating the antenna (high)
420 // or listening to the antenna (low)
421 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
422 LED_A_ON();
423
424 // steal this pin from the SSP and use it to control the modulation
425 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
426 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
427
428 // writing algorithm:
429 // a high bit consists of a field off for 1ms and field on for 1ms
430 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
431 // initiate a charge time of 50ms (field on) then immediately start writing bits
432 // start by writing 0xBB (keyword) and 0xEB (password)
433 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
434 // finally end with 0x0300 (write frame)
435 // all data is sent lsb firts
436 // finish with 15ms programming time
437
438 // modulate antenna
439 HIGH(GPIO_SSC_DOUT);
440 SpinDelay(50); // charge time
441
442 WriteTIbyte(0xbb); // keyword
443 WriteTIbyte(0xeb); // password
444 WriteTIbyte( (idlo )&0xff );
445 WriteTIbyte( (idlo>>8 )&0xff );
446 WriteTIbyte( (idlo>>16)&0xff );
447 WriteTIbyte( (idlo>>24)&0xff );
448 WriteTIbyte( (idhi )&0xff );
449 WriteTIbyte( (idhi>>8 )&0xff );
450 WriteTIbyte( (idhi>>16)&0xff );
451 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
452 WriteTIbyte( (crc )&0xff ); // crc lo
453 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
454 WriteTIbyte(0x00); // write frame lo
455 WriteTIbyte(0x03); // write frame hi
456 HIGH(GPIO_SSC_DOUT);
457 SpinDelay(50); // programming time
458
459 LED_A_OFF();
460
461 // get TI tag data into the buffer
462 AcquireTiType();
463
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 DbpString("Now use tiread to check");
466 }
467
468 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
469 {
470 int i;
471 uint8_t *tab = (uint8_t *)BigBuf;
472
473 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
474 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
475
476 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
477
478 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
479 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
480
481 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
482 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
483
484 i = 0;
485 for(;;) {
486 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
487 if(BUTTON_PRESS()) {
488 DbpString("Stopped");
489 return;
490 }
491 WDT_HIT();
492 }
493
494 if (ledcontrol)
495 LED_D_ON();
496
497 if(tab[i])
498 OPEN_COIL();
499 else
500 SHORT_COIL();
501
502 if (ledcontrol)
503 LED_D_OFF();
504
505 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
506 if(BUTTON_PRESS()) {
507 DbpString("Stopped");
508 return;
509 }
510 WDT_HIT();
511 }
512
513 i++;
514 if(i == period) {
515 i = 0;
516 if (gap) {
517 SHORT_COIL();
518 SpinDelayUs(gap);
519 }
520 }
521 }
522 }
523
524 #define DEBUG_FRAME_CONTENTS 1
525 void SimulateTagLowFrequencyBidir(int divisor, int t0)
526 {
527 }
528
529 // compose fc/8 fc/10 waveform
530 static void fc(int c, int *n) {
531 uint8_t *dest = (uint8_t *)BigBuf;
532 int idx;
533
534 // for when we want an fc8 pattern every 4 logical bits
535 if(c==0) {
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 }
545 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
546 if(c==8) {
547 for (idx=0; idx<6; idx++) {
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 }
557 }
558
559 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
560 if(c==10) {
561 for (idx=0; idx<5; idx++) {
562 dest[((*n)++)]=1;
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=0;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 }
573 }
574 }
575
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a HID tag until the button is pressed
578 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
579 {
580 int n=0, i=0;
581 /*
582 HID tag bitstream format
583 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
584 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
585 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
586 A fc8 is inserted before every 4 bits
587 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
588 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
589 */
590
591 if (hi>0xFFF) {
592 DbpString("Tags can only have 44 bits.");
593 return;
594 }
595 fc(0,&n);
596 // special start of frame marker containing invalid bit sequences
597 fc(8, &n); fc(8, &n); // invalid
598 fc(8, &n); fc(10, &n); // logical 0
599 fc(10, &n); fc(10, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601
602 WDT_HIT();
603 // manchester encode bits 43 to 32
604 for (i=11; i>=0; i--) {
605 if ((i%4)==3) fc(0,&n);
606 if ((hi>>i)&1) {
607 fc(10, &n); fc(8, &n); // low-high transition
608 } else {
609 fc(8, &n); fc(10, &n); // high-low transition
610 }
611 }
612
613 WDT_HIT();
614 // manchester encode bits 31 to 0
615 for (i=31; i>=0; i--) {
616 if ((i%4)==3) fc(0,&n);
617 if ((lo>>i)&1) {
618 fc(10, &n); fc(8, &n); // low-high transition
619 } else {
620 fc(8, &n); fc(10, &n); // high-low transition
621 }
622 }
623
624 if (ledcontrol)
625 LED_A_ON();
626
627 SimulateTagLowFrequency(n, 0, ledcontrol);
628
629 if (ledcontrol)
630 LED_A_OFF();
631 }
632
633 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
634 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
635 {
636 uint8_t *dest = (uint8_t *)BigBuf;
637
638 size_t size=0; //, found=0;
639 uint32_t hi2=0, hi=0, lo=0;
640
641 // Configure to go in 125Khz listen mode
642 LFSetupFPGAForADC(95, true);
643
644 while(!BUTTON_PRESS()) {
645
646 WDT_HIT();
647 if (ledcontrol) LED_A_ON();
648
649 DoAcquisition125k_internal(-1,true);
650 // FSK demodulator
651 size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
652
653 WDT_HIT();
654
655 if (size>0 && lo>0){
656 // final loop, go over previously decoded manchester data and decode into usable tag ID
657 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
658 if (hi2 != 0){ //extra large HID tags
659 Dbprintf("TAG ID: %x%08x%08x (%d)",
660 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
661 }else { //standard HID tags <38 bits
662 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
663 uint8_t bitlen = 0;
664 uint32_t fc = 0;
665 uint32_t cardnum = 0;
666 if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
667 uint32_t lo2=0;
668 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
669 uint8_t idx3 = 1;
670 while(lo2>1){ //find last bit set to 1 (format len bit)
671 lo2=lo2>>1;
672 idx3++;
673 }
674 bitlen =idx3+19;
675 fc =0;
676 cardnum=0;
677 if(bitlen==26){
678 cardnum = (lo>>1)&0xFFFF;
679 fc = (lo>>17)&0xFF;
680 }
681 if(bitlen==37){
682 cardnum = (lo>>1)&0x7FFFF;
683 fc = ((hi&0xF)<<12)|(lo>>20);
684 }
685 if(bitlen==34){
686 cardnum = (lo>>1)&0xFFFF;
687 fc= ((hi&1)<<15)|(lo>>17);
688 }
689 if(bitlen==35){
690 cardnum = (lo>>1)&0xFFFFF;
691 fc = ((hi&1)<<11)|(lo>>21);
692 }
693 }
694 else { //if bit 38 is not set then 37 bit format is used
695 bitlen= 37;
696 fc =0;
697 cardnum=0;
698 if(bitlen==37){
699 cardnum = (lo>>1)&0x7FFFF;
700 fc = ((hi&0xF)<<12)|(lo>>20);
701 }
702 }
703 //Dbprintf("TAG ID: %x%08x (%d)",
704 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
705 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
706 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
707 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
708 }
709 if (findone){
710 if (ledcontrol) LED_A_OFF();
711 return;
712 }
713 // reset
714 hi2 = hi = lo = 0;
715 }
716 WDT_HIT();
717 }
718 DbpString("Stopped");
719 if (ledcontrol) LED_A_OFF();
720 }
721
722 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
723 {
724 uint8_t *dest = (uint8_t *)BigBuf;
725
726 size_t size=0;
727 int clk=0, invert=0, errCnt=0;
728 uint64_t lo=0;
729 // Configure to go in 125Khz listen mode
730 LFSetupFPGAForADC(95, true);
731
732 while(!BUTTON_PRESS()) {
733
734 WDT_HIT();
735 if (ledcontrol) LED_A_ON();
736
737 DoAcquisition125k_internal(-1,true);
738 size = sizeof(BigBuf);
739 //Dbprintf("DEBUG: Buffer got");
740 //askdemod and manchester decode
741 errCnt = askmandemod(dest, &size, &clk, &invert);
742 //Dbprintf("DEBUG: ASK Got");
743 WDT_HIT();
744
745 if (errCnt>=0){
746 lo = Em410xDecode(dest,size);
747 //Dbprintf("DEBUG: EM GOT");
748 if (lo>0){
749 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
750 (uint32_t)(lo>>32),
751 (uint32_t)lo,
752 (uint32_t)(lo&0xFFFF),
753 (uint32_t)((lo>>16LL) & 0xFF),
754 (uint32_t)(lo & 0xFFFFFF));
755 }
756 if (findone){
757 if (ledcontrol) LED_A_OFF();
758 return;
759 }
760 } else{
761 //Dbprintf("DEBUG: No Tag");
762 }
763 WDT_HIT();
764 lo = 0;
765 clk=0;
766 invert=0;
767 errCnt=0;
768 size=0;
769 }
770 DbpString("Stopped");
771 if (ledcontrol) LED_A_OFF();
772 }
773
774 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
775 {
776 uint8_t *dest = (uint8_t *)BigBuf;
777 int idx=0;
778 uint32_t code=0, code2=0;
779 uint8_t version=0;
780 uint8_t facilitycode=0;
781 uint16_t number=0;
782 // Configure to go in 125Khz listen mode
783 LFSetupFPGAForADC(95, true);
784
785 while(!BUTTON_PRESS()) {
786 WDT_HIT();
787 if (ledcontrol) LED_A_ON();
788 DoAcquisition125k_internal(-1,true);
789 //fskdemod and get start index
790 WDT_HIT();
791 idx = IOdemodFSK(dest,sizeof(BigBuf));
792 if (idx>0){
793 //valid tag found
794
795 //Index map
796 //0 10 20 30 40 50 60
797 //| | | | | | |
798 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
799 //-----------------------------------------------------------------------------
800 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
801 //
802 //XSF(version)facility:codeone+codetwo
803 //Handle the data
804 if(findone){ //only print binary if we are doing one
805 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
806 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
809 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
810 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
811 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
812 }
813 code = bytebits_to_byte(dest+idx,32);
814 code2 = bytebits_to_byte(dest+idx+32,32);
815 version = bytebits_to_byte(dest+idx+27,8); //14,4
816 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
817 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
818
819 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
820 // if we're only looking for one tag
821 if (findone){
822 if (ledcontrol) LED_A_OFF();
823 //LED_A_OFF();
824 return;
825 }
826 code=code2=0;
827 version=facilitycode=0;
828 number=0;
829 idx=0;
830 }
831 WDT_HIT();
832 }
833 DbpString("Stopped");
834 if (ledcontrol) LED_A_OFF();
835 }
836
837 /*------------------------------
838 * T5555/T5557/T5567 routines
839 *------------------------------
840 */
841
842 /* T55x7 configuration register definitions */
843 #define T55x7_POR_DELAY 0x00000001
844 #define T55x7_ST_TERMINATOR 0x00000008
845 #define T55x7_PWD 0x00000010
846 #define T55x7_MAXBLOCK_SHIFT 5
847 #define T55x7_AOR 0x00000200
848 #define T55x7_PSKCF_RF_2 0
849 #define T55x7_PSKCF_RF_4 0x00000400
850 #define T55x7_PSKCF_RF_8 0x00000800
851 #define T55x7_MODULATION_DIRECT 0
852 #define T55x7_MODULATION_PSK1 0x00001000
853 #define T55x7_MODULATION_PSK2 0x00002000
854 #define T55x7_MODULATION_PSK3 0x00003000
855 #define T55x7_MODULATION_FSK1 0x00004000
856 #define T55x7_MODULATION_FSK2 0x00005000
857 #define T55x7_MODULATION_FSK1a 0x00006000
858 #define T55x7_MODULATION_FSK2a 0x00007000
859 #define T55x7_MODULATION_MANCHESTER 0x00008000
860 #define T55x7_MODULATION_BIPHASE 0x00010000
861 #define T55x7_BITRATE_RF_8 0
862 #define T55x7_BITRATE_RF_16 0x00040000
863 #define T55x7_BITRATE_RF_32 0x00080000
864 #define T55x7_BITRATE_RF_40 0x000C0000
865 #define T55x7_BITRATE_RF_50 0x00100000
866 #define T55x7_BITRATE_RF_64 0x00140000
867 #define T55x7_BITRATE_RF_100 0x00180000
868 #define T55x7_BITRATE_RF_128 0x001C0000
869
870 /* T5555 (Q5) configuration register definitions */
871 #define T5555_ST_TERMINATOR 0x00000001
872 #define T5555_MAXBLOCK_SHIFT 0x00000001
873 #define T5555_MODULATION_MANCHESTER 0
874 #define T5555_MODULATION_PSK1 0x00000010
875 #define T5555_MODULATION_PSK2 0x00000020
876 #define T5555_MODULATION_PSK3 0x00000030
877 #define T5555_MODULATION_FSK1 0x00000040
878 #define T5555_MODULATION_FSK2 0x00000050
879 #define T5555_MODULATION_BIPHASE 0x00000060
880 #define T5555_MODULATION_DIRECT 0x00000070
881 #define T5555_INVERT_OUTPUT 0x00000080
882 #define T5555_PSK_RF_2 0
883 #define T5555_PSK_RF_4 0x00000100
884 #define T5555_PSK_RF_8 0x00000200
885 #define T5555_USE_PWD 0x00000400
886 #define T5555_USE_AOR 0x00000800
887 #define T5555_BITRATE_SHIFT 12
888 #define T5555_FAST_WRITE 0x00004000
889 #define T5555_PAGE_SELECT 0x00008000
890
891 /*
892 * Relevant times in microsecond
893 * To compensate antenna falling times shorten the write times
894 * and enlarge the gap ones.
895 */
896 #define START_GAP 250
897 #define WRITE_GAP 160
898 #define WRITE_0 144 // 192
899 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
900
901 // Write one bit to card
902 void T55xxWriteBit(int bit)
903 {
904 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
905 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
906 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
907 if (bit == 0)
908 SpinDelayUs(WRITE_0);
909 else
910 SpinDelayUs(WRITE_1);
911 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
912 SpinDelayUs(WRITE_GAP);
913 }
914
915 // Write one card block in page 0, no lock
916 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
917 {
918 //unsigned int i; //enio adjustment 12/10/14
919 uint32_t i;
920
921 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
922 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
923 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
924
925 // Give it a bit of time for the resonant antenna to settle.
926 // And for the tag to fully power up
927 SpinDelay(150);
928
929 // Now start writting
930 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
931 SpinDelayUs(START_GAP);
932
933 // Opcode
934 T55xxWriteBit(1);
935 T55xxWriteBit(0); //Page 0
936 if (PwdMode == 1){
937 // Pwd
938 for (i = 0x80000000; i != 0; i >>= 1)
939 T55xxWriteBit(Pwd & i);
940 }
941 // Lock bit
942 T55xxWriteBit(0);
943
944 // Data
945 for (i = 0x80000000; i != 0; i >>= 1)
946 T55xxWriteBit(Data & i);
947
948 // Block
949 for (i = 0x04; i != 0; i >>= 1)
950 T55xxWriteBit(Block & i);
951
952 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
953 // so wait a little more)
954 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
955 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
956 SpinDelay(20);
957 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
958 }
959
960 // Read one card block in page 0
961 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
962 {
963 uint8_t *dest = (uint8_t *)BigBuf;
964 //int m=0, i=0; //enio adjustment 12/10/14
965 uint32_t m=0, i=0;
966 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
967 m = sizeof(BigBuf);
968 // Clear destination buffer before sending the command
969 memset(dest, 128, m);
970 // Connect the A/D to the peak-detected low-frequency path.
971 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
972 // Now set up the SSC to get the ADC samples that are now streaming at us.
973 FpgaSetupSsc();
974
975 LED_D_ON();
976 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
977 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
978
979 // Give it a bit of time for the resonant antenna to settle.
980 // And for the tag to fully power up
981 SpinDelay(150);
982
983 // Now start writting
984 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
985 SpinDelayUs(START_GAP);
986
987 // Opcode
988 T55xxWriteBit(1);
989 T55xxWriteBit(0); //Page 0
990 if (PwdMode == 1){
991 // Pwd
992 for (i = 0x80000000; i != 0; i >>= 1)
993 T55xxWriteBit(Pwd & i);
994 }
995 // Lock bit
996 T55xxWriteBit(0);
997 // Block
998 for (i = 0x04; i != 0; i >>= 1)
999 T55xxWriteBit(Block & i);
1000
1001 // Turn field on to read the response
1002 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1003 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1004
1005 // Now do the acquisition
1006 i = 0;
1007 for(;;) {
1008 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1009 AT91C_BASE_SSC->SSC_THR = 0x43;
1010 }
1011 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1012 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1013 // we don't care about actual value, only if it's more or less than a
1014 // threshold essentially we capture zero crossings for later analysis
1015 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1016 i++;
1017 if (i >= m) break;
1018 }
1019 }
1020
1021 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1022 LED_D_OFF();
1023 DbpString("DONE!");
1024 }
1025
1026 // Read card traceability data (page 1)
1027 void T55xxReadTrace(void){
1028 uint8_t *dest = (uint8_t *)BigBuf;
1029 int m=0, i=0;
1030
1031 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1032 m = sizeof(BigBuf);
1033 // Clear destination buffer before sending the command
1034 memset(dest, 128, m);
1035 // Connect the A/D to the peak-detected low-frequency path.
1036 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1037 // Now set up the SSC to get the ADC samples that are now streaming at us.
1038 FpgaSetupSsc();
1039
1040 LED_D_ON();
1041 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1042 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1043
1044 // Give it a bit of time for the resonant antenna to settle.
1045 // And for the tag to fully power up
1046 SpinDelay(150);
1047
1048 // Now start writting
1049 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1050 SpinDelayUs(START_GAP);
1051
1052 // Opcode
1053 T55xxWriteBit(1);
1054 T55xxWriteBit(1); //Page 1
1055
1056 // Turn field on to read the response
1057 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1058 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1059
1060 // Now do the acquisition
1061 i = 0;
1062 for(;;) {
1063 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1064 AT91C_BASE_SSC->SSC_THR = 0x43;
1065 }
1066 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1067 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1068 i++;
1069 if (i >= m) break;
1070 }
1071 }
1072
1073 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1074 LED_D_OFF();
1075 DbpString("DONE!");
1076 }
1077
1078 /*-------------- Cloning routines -----------*/
1079 // Copy HID id to card and setup block 0 config
1080 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1081 {
1082 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1083 int last_block = 0;
1084
1085 if (longFMT){
1086 // Ensure no more than 84 bits supplied
1087 if (hi2>0xFFFFF) {
1088 DbpString("Tags can only have 84 bits.");
1089 return;
1090 }
1091 // Build the 6 data blocks for supplied 84bit ID
1092 last_block = 6;
1093 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1094 for (int i=0;i<4;i++) {
1095 if (hi2 & (1<<(19-i)))
1096 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1097 else
1098 data1 |= (1<<((3-i)*2)); // 0 -> 01
1099 }
1100
1101 data2 = 0;
1102 for (int i=0;i<16;i++) {
1103 if (hi2 & (1<<(15-i)))
1104 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1105 else
1106 data2 |= (1<<((15-i)*2)); // 0 -> 01
1107 }
1108
1109 data3 = 0;
1110 for (int i=0;i<16;i++) {
1111 if (hi & (1<<(31-i)))
1112 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1113 else
1114 data3 |= (1<<((15-i)*2)); // 0 -> 01
1115 }
1116
1117 data4 = 0;
1118 for (int i=0;i<16;i++) {
1119 if (hi & (1<<(15-i)))
1120 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1121 else
1122 data4 |= (1<<((15-i)*2)); // 0 -> 01
1123 }
1124
1125 data5 = 0;
1126 for (int i=0;i<16;i++) {
1127 if (lo & (1<<(31-i)))
1128 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1129 else
1130 data5 |= (1<<((15-i)*2)); // 0 -> 01
1131 }
1132
1133 data6 = 0;
1134 for (int i=0;i<16;i++) {
1135 if (lo & (1<<(15-i)))
1136 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1137 else
1138 data6 |= (1<<((15-i)*2)); // 0 -> 01
1139 }
1140 }
1141 else {
1142 // Ensure no more than 44 bits supplied
1143 if (hi>0xFFF) {
1144 DbpString("Tags can only have 44 bits.");
1145 return;
1146 }
1147
1148 // Build the 3 data blocks for supplied 44bit ID
1149 last_block = 3;
1150
1151 data1 = 0x1D000000; // load preamble
1152
1153 for (int i=0;i<12;i++) {
1154 if (hi & (1<<(11-i)))
1155 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1156 else
1157 data1 |= (1<<((11-i)*2)); // 0 -> 01
1158 }
1159
1160 data2 = 0;
1161 for (int i=0;i<16;i++) {
1162 if (lo & (1<<(31-i)))
1163 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1164 else
1165 data2 |= (1<<((15-i)*2)); // 0 -> 01
1166 }
1167
1168 data3 = 0;
1169 for (int i=0;i<16;i++) {
1170 if (lo & (1<<(15-i)))
1171 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1172 else
1173 data3 |= (1<<((15-i)*2)); // 0 -> 01
1174 }
1175 }
1176
1177 LED_D_ON();
1178 // Program the data blocks for supplied ID
1179 // and the block 0 for HID format
1180 T55xxWriteBlock(data1,1,0,0);
1181 T55xxWriteBlock(data2,2,0,0);
1182 T55xxWriteBlock(data3,3,0,0);
1183
1184 if (longFMT) { // if long format there are 6 blocks
1185 T55xxWriteBlock(data4,4,0,0);
1186 T55xxWriteBlock(data5,5,0,0);
1187 T55xxWriteBlock(data6,6,0,0);
1188 }
1189
1190 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1191 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1192 T55x7_MODULATION_FSK2a |
1193 last_block << T55x7_MAXBLOCK_SHIFT,
1194 0,0,0);
1195
1196 LED_D_OFF();
1197
1198 DbpString("DONE!");
1199 }
1200
1201 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1202 {
1203 int data1=0, data2=0; //up to six blocks for long format
1204
1205 data1 = hi; // load preamble
1206 data2 = lo;
1207
1208 LED_D_ON();
1209 // Program the data blocks for supplied ID
1210 // and the block 0 for HID format
1211 T55xxWriteBlock(data1,1,0,0);
1212 T55xxWriteBlock(data2,2,0,0);
1213
1214 //Config Block
1215 T55xxWriteBlock(0x00147040,0,0,0);
1216 LED_D_OFF();
1217
1218 DbpString("DONE!");
1219 }
1220
1221 // Define 9bit header for EM410x tags
1222 #define EM410X_HEADER 0x1FF
1223 #define EM410X_ID_LENGTH 40
1224
1225 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1226 {
1227 int i, id_bit;
1228 uint64_t id = EM410X_HEADER;
1229 uint64_t rev_id = 0; // reversed ID
1230 int c_parity[4]; // column parity
1231 int r_parity = 0; // row parity
1232 uint32_t clock = 0;
1233
1234 // Reverse ID bits given as parameter (for simpler operations)
1235 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1236 if (i < 32) {
1237 rev_id = (rev_id << 1) | (id_lo & 1);
1238 id_lo >>= 1;
1239 } else {
1240 rev_id = (rev_id << 1) | (id_hi & 1);
1241 id_hi >>= 1;
1242 }
1243 }
1244
1245 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1246 id_bit = rev_id & 1;
1247
1248 if (i % 4 == 0) {
1249 // Don't write row parity bit at start of parsing
1250 if (i)
1251 id = (id << 1) | r_parity;
1252 // Start counting parity for new row
1253 r_parity = id_bit;
1254 } else {
1255 // Count row parity
1256 r_parity ^= id_bit;
1257 }
1258
1259 // First elements in column?
1260 if (i < 4)
1261 // Fill out first elements
1262 c_parity[i] = id_bit;
1263 else
1264 // Count column parity
1265 c_parity[i % 4] ^= id_bit;
1266
1267 // Insert ID bit
1268 id = (id << 1) | id_bit;
1269 rev_id >>= 1;
1270 }
1271
1272 // Insert parity bit of last row
1273 id = (id << 1) | r_parity;
1274
1275 // Fill out column parity at the end of tag
1276 for (i = 0; i < 4; ++i)
1277 id = (id << 1) | c_parity[i];
1278
1279 // Add stop bit
1280 id <<= 1;
1281
1282 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1283 LED_D_ON();
1284
1285 // Write EM410x ID
1286 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1287 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1288
1289 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1290 if (card) {
1291 // Clock rate is stored in bits 8-15 of the card value
1292 clock = (card & 0xFF00) >> 8;
1293 Dbprintf("Clock rate: %d", clock);
1294 switch (clock)
1295 {
1296 case 32:
1297 clock = T55x7_BITRATE_RF_32;
1298 break;
1299 case 16:
1300 clock = T55x7_BITRATE_RF_16;
1301 break;
1302 case 0:
1303 // A value of 0 is assumed to be 64 for backwards-compatibility
1304 // Fall through...
1305 case 64:
1306 clock = T55x7_BITRATE_RF_64;
1307 break;
1308 default:
1309 Dbprintf("Invalid clock rate: %d", clock);
1310 return;
1311 }
1312
1313 // Writing configuration for T55x7 tag
1314 T55xxWriteBlock(clock |
1315 T55x7_MODULATION_MANCHESTER |
1316 2 << T55x7_MAXBLOCK_SHIFT,
1317 0, 0, 0);
1318 }
1319 else
1320 // Writing configuration for T5555(Q5) tag
1321 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1322 T5555_MODULATION_MANCHESTER |
1323 2 << T5555_MAXBLOCK_SHIFT,
1324 0, 0, 0);
1325
1326 LED_D_OFF();
1327 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1328 (uint32_t)(id >> 32), (uint32_t)id);
1329 }
1330
1331 // Clone Indala 64-bit tag by UID to T55x7
1332 void CopyIndala64toT55x7(int hi, int lo)
1333 {
1334 //Program the 2 data blocks for supplied 64bit UID
1335 // and the block 0 for Indala64 format
1336 T55xxWriteBlock(hi,1,0,0);
1337 T55xxWriteBlock(lo,2,0,0);
1338 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1339 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1340 T55x7_MODULATION_PSK1 |
1341 2 << T55x7_MAXBLOCK_SHIFT,
1342 0, 0, 0);
1343 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1344 // T5567WriteBlock(0x603E1042,0);
1345
1346 DbpString("DONE!");
1347 }
1348
1349 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1350 {
1351 //Program the 7 data blocks for supplied 224bit UID
1352 // and the block 0 for Indala224 format
1353 T55xxWriteBlock(uid1,1,0,0);
1354 T55xxWriteBlock(uid2,2,0,0);
1355 T55xxWriteBlock(uid3,3,0,0);
1356 T55xxWriteBlock(uid4,4,0,0);
1357 T55xxWriteBlock(uid5,5,0,0);
1358 T55xxWriteBlock(uid6,6,0,0);
1359 T55xxWriteBlock(uid7,7,0,0);
1360 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1361 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1362 T55x7_MODULATION_PSK1 |
1363 7 << T55x7_MAXBLOCK_SHIFT,
1364 0,0,0);
1365 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1366 // T5567WriteBlock(0x603E10E2,0);
1367
1368 DbpString("DONE!");
1369 }
1370
1371
1372 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1373 #define max(x,y) ( x<y ? y:x)
1374
1375 int DemodPCF7931(uint8_t **outBlocks) {
1376 uint8_t BitStream[256];
1377 uint8_t Blocks[8][16];
1378 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1379 int GraphTraceLen = sizeof(BigBuf);
1380 int i, j, lastval, bitidx, half_switch;
1381 int clock = 64;
1382 int tolerance = clock / 8;
1383 int pmc, block_done;
1384 int lc, warnings = 0;
1385 int num_blocks = 0;
1386 int lmin=128, lmax=128;
1387 uint8_t dir;
1388
1389 AcquireRawAdcSamples125k(0);
1390
1391 lmin = 64;
1392 lmax = 192;
1393
1394 i = 2;
1395
1396 /* Find first local max/min */
1397 if(GraphBuffer[1] > GraphBuffer[0]) {
1398 while(i < GraphTraceLen) {
1399 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1400 break;
1401 i++;
1402 }
1403 dir = 0;
1404 }
1405 else {
1406 while(i < GraphTraceLen) {
1407 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1408 break;
1409 i++;
1410 }
1411 dir = 1;
1412 }
1413
1414 lastval = i++;
1415 half_switch = 0;
1416 pmc = 0;
1417 block_done = 0;
1418
1419 for (bitidx = 0; i < GraphTraceLen; i++)
1420 {
1421 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1422 {
1423 lc = i - lastval;
1424 lastval = i;
1425
1426 // Switch depending on lc length:
1427 // Tolerance is 1/8 of clock rate (arbitrary)
1428 if (abs(lc-clock/4) < tolerance) {
1429 // 16T0
1430 if((i - pmc) == lc) { /* 16T0 was previous one */
1431 /* It's a PMC ! */
1432 i += (128+127+16+32+33+16)-1;
1433 lastval = i;
1434 pmc = 0;
1435 block_done = 1;
1436 }
1437 else {
1438 pmc = i;
1439 }
1440 } else if (abs(lc-clock/2) < tolerance) {
1441 // 32TO
1442 if((i - pmc) == lc) { /* 16T0 was previous one */
1443 /* It's a PMC ! */
1444 i += (128+127+16+32+33)-1;
1445 lastval = i;
1446 pmc = 0;
1447 block_done = 1;
1448 }
1449 else if(half_switch == 1) {
1450 BitStream[bitidx++] = 0;
1451 half_switch = 0;
1452 }
1453 else
1454 half_switch++;
1455 } else if (abs(lc-clock) < tolerance) {
1456 // 64TO
1457 BitStream[bitidx++] = 1;
1458 } else {
1459 // Error
1460 warnings++;
1461 if (warnings > 10)
1462 {
1463 Dbprintf("Error: too many detection errors, aborting.");
1464 return 0;
1465 }
1466 }
1467
1468 if(block_done == 1) {
1469 if(bitidx == 128) {
1470 for(j=0; j<16; j++) {
1471 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1472 64*BitStream[j*8+6]+
1473 32*BitStream[j*8+5]+
1474 16*BitStream[j*8+4]+
1475 8*BitStream[j*8+3]+
1476 4*BitStream[j*8+2]+
1477 2*BitStream[j*8+1]+
1478 BitStream[j*8];
1479 }
1480 num_blocks++;
1481 }
1482 bitidx = 0;
1483 block_done = 0;
1484 half_switch = 0;
1485 }
1486 if(i < GraphTraceLen)
1487 {
1488 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1489 else dir = 1;
1490 }
1491 }
1492 if(bitidx==255)
1493 bitidx=0;
1494 warnings = 0;
1495 if(num_blocks == 4) break;
1496 }
1497 memcpy(outBlocks, Blocks, 16*num_blocks);
1498 return num_blocks;
1499 }
1500
1501 int IsBlock0PCF7931(uint8_t *Block) {
1502 // Assume RFU means 0 :)
1503 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1504 return 1;
1505 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1506 return 1;
1507 return 0;
1508 }
1509
1510 int IsBlock1PCF7931(uint8_t *Block) {
1511 // Assume RFU means 0 :)
1512 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1513 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1514 return 1;
1515
1516 return 0;
1517 }
1518
1519 #define ALLOC 16
1520
1521 void ReadPCF7931() {
1522 uint8_t Blocks[8][17];
1523 uint8_t tmpBlocks[4][16];
1524 int i, j, ind, ind2, n;
1525 int num_blocks = 0;
1526 int max_blocks = 8;
1527 int ident = 0;
1528 int error = 0;
1529 int tries = 0;
1530
1531 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1532
1533 do {
1534 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1535 n = DemodPCF7931((uint8_t**)tmpBlocks);
1536 if(!n)
1537 error++;
1538 if(error==10 && num_blocks == 0) {
1539 Dbprintf("Error, no tag or bad tag");
1540 return;
1541 }
1542 else if (tries==20 || error==10) {
1543 Dbprintf("Error reading the tag");
1544 Dbprintf("Here is the partial content");
1545 goto end;
1546 }
1547
1548 for(i=0; i<n; i++)
1549 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1550 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1551 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1552 if(!ident) {
1553 for(i=0; i<n; i++) {
1554 if(IsBlock0PCF7931(tmpBlocks[i])) {
1555 // Found block 0 ?
1556 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1557 // Found block 1!
1558 // \o/
1559 ident = 1;
1560 memcpy(Blocks[0], tmpBlocks[i], 16);
1561 Blocks[0][ALLOC] = 1;
1562 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1563 Blocks[1][ALLOC] = 1;
1564 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1565 // Debug print
1566 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1567 num_blocks = 2;
1568 // Handle following blocks
1569 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1570 if(j==n) j=0;
1571 if(j==i) break;
1572 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1573 Blocks[ind2][ALLOC] = 1;
1574 }
1575 break;
1576 }
1577 }
1578 }
1579 }
1580 else {
1581 for(i=0; i<n; i++) { // Look for identical block in known blocks
1582 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1583 for(j=0; j<max_blocks; j++) {
1584 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1585 // Found an identical block
1586 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1587 if(ind2 < 0)
1588 ind2 = max_blocks;
1589 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1590 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1591 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1592 Blocks[ind2][ALLOC] = 1;
1593 num_blocks++;
1594 if(num_blocks == max_blocks) goto end;
1595 }
1596 }
1597 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1598 if(ind2 > max_blocks)
1599 ind2 = 0;
1600 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1601 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1602 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1603 Blocks[ind2][ALLOC] = 1;
1604 num_blocks++;
1605 if(num_blocks == max_blocks) goto end;
1606 }
1607 }
1608 }
1609 }
1610 }
1611 }
1612 }
1613 tries++;
1614 if (BUTTON_PRESS()) return;
1615 } while (num_blocks != max_blocks);
1616 end:
1617 Dbprintf("-----------------------------------------");
1618 Dbprintf("Memory content:");
1619 Dbprintf("-----------------------------------------");
1620 for(i=0; i<max_blocks; i++) {
1621 if(Blocks[i][ALLOC]==1)
1622 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1623 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1624 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1625 else
1626 Dbprintf("<missing block %d>", i);
1627 }
1628 Dbprintf("-----------------------------------------");
1629
1630 return ;
1631 }
1632
1633
1634 //-----------------------------------
1635 // EM4469 / EM4305 routines
1636 //-----------------------------------
1637 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1638 #define FWD_CMD_WRITE 0xA
1639 #define FWD_CMD_READ 0x9
1640 #define FWD_CMD_DISABLE 0x5
1641
1642
1643 uint8_t forwardLink_data[64]; //array of forwarded bits
1644 uint8_t * forward_ptr; //ptr for forward message preparation
1645 uint8_t fwd_bit_sz; //forwardlink bit counter
1646 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1647
1648 //====================================================================
1649 // prepares command bits
1650 // see EM4469 spec
1651 //====================================================================
1652 //--------------------------------------------------------------------
1653 uint8_t Prepare_Cmd( uint8_t cmd ) {
1654 //--------------------------------------------------------------------
1655
1656 *forward_ptr++ = 0; //start bit
1657 *forward_ptr++ = 0; //second pause for 4050 code
1658
1659 *forward_ptr++ = cmd;
1660 cmd >>= 1;
1661 *forward_ptr++ = cmd;
1662 cmd >>= 1;
1663 *forward_ptr++ = cmd;
1664 cmd >>= 1;
1665 *forward_ptr++ = cmd;
1666
1667 return 6; //return number of emited bits
1668 }
1669
1670 //====================================================================
1671 // prepares address bits
1672 // see EM4469 spec
1673 //====================================================================
1674
1675 //--------------------------------------------------------------------
1676 uint8_t Prepare_Addr( uint8_t addr ) {
1677 //--------------------------------------------------------------------
1678
1679 register uint8_t line_parity;
1680
1681 uint8_t i;
1682 line_parity = 0;
1683 for(i=0;i<6;i++) {
1684 *forward_ptr++ = addr;
1685 line_parity ^= addr;
1686 addr >>= 1;
1687 }
1688
1689 *forward_ptr++ = (line_parity & 1);
1690
1691 return 7; //return number of emited bits
1692 }
1693
1694 //====================================================================
1695 // prepares data bits intreleaved with parity bits
1696 // see EM4469 spec
1697 //====================================================================
1698
1699 //--------------------------------------------------------------------
1700 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1701 //--------------------------------------------------------------------
1702
1703 register uint8_t line_parity;
1704 register uint8_t column_parity;
1705 register uint8_t i, j;
1706 register uint16_t data;
1707
1708 data = data_low;
1709 column_parity = 0;
1710
1711 for(i=0; i<4; i++) {
1712 line_parity = 0;
1713 for(j=0; j<8; j++) {
1714 line_parity ^= data;
1715 column_parity ^= (data & 1) << j;
1716 *forward_ptr++ = data;
1717 data >>= 1;
1718 }
1719 *forward_ptr++ = line_parity;
1720 if(i == 1)
1721 data = data_hi;
1722 }
1723
1724 for(j=0; j<8; j++) {
1725 *forward_ptr++ = column_parity;
1726 column_parity >>= 1;
1727 }
1728 *forward_ptr = 0;
1729
1730 return 45; //return number of emited bits
1731 }
1732
1733 //====================================================================
1734 // Forward Link send function
1735 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1736 // fwd_bit_count set with number of bits to be sent
1737 //====================================================================
1738 void SendForward(uint8_t fwd_bit_count) {
1739
1740 fwd_write_ptr = forwardLink_data;
1741 fwd_bit_sz = fwd_bit_count;
1742
1743 LED_D_ON();
1744
1745 //Field on
1746 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1747 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1748 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1749
1750 // Give it a bit of time for the resonant antenna to settle.
1751 // And for the tag to fully power up
1752 SpinDelay(150);
1753
1754 // force 1st mod pulse (start gap must be longer for 4305)
1755 fwd_bit_sz--; //prepare next bit modulation
1756 fwd_write_ptr++;
1757 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1758 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1759 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1760 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1761 SpinDelayUs(16*8); //16 cycles on (8us each)
1762
1763 // now start writting
1764 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1765 if(((*fwd_write_ptr++) & 1) == 1)
1766 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1767 else {
1768 //These timings work for 4469/4269/4305 (with the 55*8 above)
1769 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1770 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1771 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1772 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1773 SpinDelayUs(9*8); //16 cycles on (8us each)
1774 }
1775 }
1776 }
1777
1778 void EM4xLogin(uint32_t Password) {
1779
1780 uint8_t fwd_bit_count;
1781
1782 forward_ptr = forwardLink_data;
1783 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1784 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1785
1786 SendForward(fwd_bit_count);
1787
1788 //Wait for command to complete
1789 SpinDelay(20);
1790
1791 }
1792
1793 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1794
1795 uint8_t fwd_bit_count;
1796 uint8_t *dest = (uint8_t *)BigBuf;
1797 int m=0, i=0;
1798
1799 //If password mode do login
1800 if (PwdMode == 1) EM4xLogin(Pwd);
1801
1802 forward_ptr = forwardLink_data;
1803 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1804 fwd_bit_count += Prepare_Addr( Address );
1805
1806 m = sizeof(BigBuf);
1807 // Clear destination buffer before sending the command
1808 memset(dest, 128, m);
1809 // Connect the A/D to the peak-detected low-frequency path.
1810 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1811 // Now set up the SSC to get the ADC samples that are now streaming at us.
1812 FpgaSetupSsc();
1813
1814 SendForward(fwd_bit_count);
1815
1816 // Now do the acquisition
1817 i = 0;
1818 for(;;) {
1819 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1820 AT91C_BASE_SSC->SSC_THR = 0x43;
1821 }
1822 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1823 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1824 i++;
1825 if (i >= m) break;
1826 }
1827 }
1828 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1829 LED_D_OFF();
1830 }
1831
1832 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1833
1834 uint8_t fwd_bit_count;
1835
1836 //If password mode do login
1837 if (PwdMode == 1) EM4xLogin(Pwd);
1838
1839 forward_ptr = forwardLink_data;
1840 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1841 fwd_bit_count += Prepare_Addr( Address );
1842 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1843
1844 SendForward(fwd_bit_count);
1845
1846 //Wait for write to complete
1847 SpinDelay(20);
1848 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1849 LED_D_OFF();
1850 }
Impressum, Datenschutz