1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 void AcquireRawAdcSamples125k(int at134khz
)
21 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
23 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
25 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
27 // Connect the A/D to the peak-detected low-frequency path.
28 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
30 // Give it a bit of time for the resonant antenna to settle.
33 // Now set up the SSC to get the ADC samples that are now streaming at us.
36 // Now call the acquisition routine
40 // split into two routines so we can avoid timing issues after sending commands //
41 void DoAcquisition125k(void)
43 uint8_t *dest
= (uint8_t *)BigBuf
;
44 int n
= sizeof(BigBuf
);
50 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
51 AT91C_BASE_SSC
->SSC_THR
= 0x43;
54 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
55 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
61 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
62 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
65 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
69 /* Make sure the tag is reset */
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
73 // see if 'h' was specified
74 if (command
[strlen((char *) command
) - 1] == 'h')
80 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
82 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
84 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
86 // Give it a bit of time for the resonant antenna to settle.
88 // And a little more time for the tag to fully power up
91 // Now set up the SSC to get the ADC samples that are now streaming at us.
94 // now modulate the reader field
95 while(*command
!= '\0' && *command
!= ' ') {
96 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
98 SpinDelayUs(delay_off
);
100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
102 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
104 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
106 if(*(command
++) == '0')
107 SpinDelayUs(period_0
);
109 SpinDelayUs(period_1
);
111 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
113 SpinDelayUs(delay_off
);
115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
125 /* blank r/w tag data stream
126 ...0000000000000000 01111111
127 1010101010101010101010101010101010101010101010101010101010101010
130 101010101010101[0]000...
132 [5555fe852c5555555555555555fe0000]
136 // some hardcoded initial params
137 // when we read a TI tag we sample the zerocross line at 2Mhz
138 // TI tags modulate a 1 as 16 cycles of 123.2Khz
139 // TI tags modulate a 0 as 16 cycles of 134.2Khz
140 #define FSAMPLE 2000000
141 #define FREQLO 123200
142 #define FREQHI 134200
144 signed char *dest
= (signed char *)BigBuf
;
145 int n
= sizeof(BigBuf
);
146 // int *dest = GraphBuffer;
147 // int n = GraphTraceLen;
149 // 128 bit shift register [shift3:shift2:shift1:shift0]
150 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
152 int i
, cycles
=0, samples
=0;
153 // how many sample points fit in 16 cycles of each frequency
154 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
155 // when to tell if we're close enough to one freq or another
156 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
158 // TI tags charge at 134.2Khz
159 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
161 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
162 // connects to SSP_DIN and the SSP_DOUT logic level controls
163 // whether we're modulating the antenna (high)
164 // or listening to the antenna (low)
165 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
167 // get TI tag data into the buffer
170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
172 for (i
=0; i
<n
-1; i
++) {
173 // count cycles by looking for lo to hi zero crossings
174 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
176 // after 16 cycles, measure the frequency
179 samples
=i
-samples
; // number of samples in these 16 cycles
181 // TI bits are coming to us lsb first so shift them
182 // right through our 128 bit right shift register
183 shift0
= (shift0
>>1) | (shift1
<< 31);
184 shift1
= (shift1
>>1) | (shift2
<< 31);
185 shift2
= (shift2
>>1) | (shift3
<< 31);
188 // check if the cycles fall close to the number
189 // expected for either the low or high frequency
190 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
191 // low frequency represents a 1
193 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
194 // high frequency represents a 0
196 // probably detected a gay waveform or noise
197 // use this as gaydar or discard shift register and start again
198 shift3
= shift2
= shift1
= shift0
= 0;
202 // for each bit we receive, test if we've detected a valid tag
204 // if we see 17 zeroes followed by 6 ones, we might have a tag
205 // remember the bits are backwards
206 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
207 // if start and end bytes match, we have a tag so break out of the loop
208 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
209 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
217 // if flag is set we have a tag
219 DbpString("Info: No valid tag detected.");
221 // put 64 bit data into shift1 and shift0
222 shift0
= (shift0
>>24) | (shift1
<< 8);
223 shift1
= (shift1
>>24) | (shift2
<< 8);
225 // align 16 bit crc into lower half of shift2
226 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
228 // if r/w tag, check ident match
229 if ( shift3
&(1<<15) ) {
230 DbpString("Info: TI tag is rewriteable");
231 // only 15 bits compare, last bit of ident is not valid
232 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
233 DbpString("Error: Ident mismatch!");
235 DbpString("Info: TI tag ident is valid");
238 DbpString("Info: TI tag is readonly");
241 // WARNING the order of the bytes in which we calc crc below needs checking
242 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
243 // bytes in reverse or something
247 crc
= update_crc16(crc
, (shift0
)&0xff);
248 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
249 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
250 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
251 crc
= update_crc16(crc
, (shift1
)&0xff);
252 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
253 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
254 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
256 Dbprintf("Info: Tag data: %x%08x, crc=%x",
257 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
258 if (crc
!= (shift2
&0xffff)) {
259 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
261 DbpString("Info: CRC is good");
266 void WriteTIbyte(uint8_t b
)
270 // modulate 8 bits out to the antenna
274 // stop modulating antenna
281 // stop modulating antenna
291 void AcquireTiType(void)
294 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
295 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
296 #define TIBUFLEN 1250
299 memset(BigBuf
,0,sizeof(BigBuf
));
301 // Set up the synchronous serial port
302 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
303 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
305 // steal this pin from the SSP and use it to control the modulation
306 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
307 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
309 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
310 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
312 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
313 // 48/2 = 24 MHz clock must be divided by 12
314 AT91C_BASE_SSC
->SSC_CMR
= 12;
316 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
317 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
318 AT91C_BASE_SSC
->SSC_TCMR
= 0;
319 AT91C_BASE_SSC
->SSC_TFMR
= 0;
326 // Charge TI tag for 50ms.
329 // stop modulating antenna and listen
336 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
337 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
338 i
++; if(i
>= TIBUFLEN
) break;
343 // return stolen pin to SSP
344 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
345 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
347 char *dest
= (char *)BigBuf
;
350 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
351 for (j
=0; j
<32; j
++) {
352 if(BigBuf
[i
] & (1 << j
)) {
361 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
362 // if crc provided, it will be written with the data verbatim (even if bogus)
363 // if not provided a valid crc will be computed from the data and written.
364 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
367 crc
= update_crc16(crc
, (idlo
)&0xff);
368 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
369 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
370 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
371 crc
= update_crc16(crc
, (idhi
)&0xff);
372 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
373 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
374 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
376 Dbprintf("Writing to tag: %x%08x, crc=%x",
377 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
379 // TI tags charge at 134.2Khz
380 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
381 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
382 // connects to SSP_DIN and the SSP_DOUT logic level controls
383 // whether we're modulating the antenna (high)
384 // or listening to the antenna (low)
385 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
388 // steal this pin from the SSP and use it to control the modulation
389 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
390 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
392 // writing algorithm:
393 // a high bit consists of a field off for 1ms and field on for 1ms
394 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
395 // initiate a charge time of 50ms (field on) then immediately start writing bits
396 // start by writing 0xBB (keyword) and 0xEB (password)
397 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
398 // finally end with 0x0300 (write frame)
399 // all data is sent lsb firts
400 // finish with 15ms programming time
404 SpinDelay(50); // charge time
406 WriteTIbyte(0xbb); // keyword
407 WriteTIbyte(0xeb); // password
408 WriteTIbyte( (idlo
)&0xff );
409 WriteTIbyte( (idlo
>>8 )&0xff );
410 WriteTIbyte( (idlo
>>16)&0xff );
411 WriteTIbyte( (idlo
>>24)&0xff );
412 WriteTIbyte( (idhi
)&0xff );
413 WriteTIbyte( (idhi
>>8 )&0xff );
414 WriteTIbyte( (idhi
>>16)&0xff );
415 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
416 WriteTIbyte( (crc
)&0xff ); // crc lo
417 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
418 WriteTIbyte(0x00); // write frame lo
419 WriteTIbyte(0x03); // write frame hi
421 SpinDelay(50); // programming time
425 // get TI tag data into the buffer
428 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
429 DbpString("Now use tiread to check");
432 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
435 uint8_t *tab
= (uint8_t *)BigBuf
;
437 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
439 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
441 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
442 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
444 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
445 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
449 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
451 DbpString("Stopped");
468 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
470 DbpString("Stopped");
487 #define DEBUG_FRAME_CONTENTS 1
488 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
492 // compose fc/8 fc/10 waveform
493 static void fc(int c
, int *n
) {
494 uint8_t *dest
= (uint8_t *)BigBuf
;
497 // for when we want an fc8 pattern every 4 logical bits
508 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
510 for (idx
=0; idx
<6; idx
++) {
522 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
524 for (idx
=0; idx
<5; idx
++) {
539 // prepare a waveform pattern in the buffer based on the ID given then
540 // simulate a HID tag until the button is pressed
541 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
545 HID tag bitstream format
546 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
547 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
548 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
549 A fc8 is inserted before every 4 bits
550 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
551 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
555 DbpString("Tags can only have 44 bits.");
559 // special start of frame marker containing invalid bit sequences
560 fc(8, &n
); fc(8, &n
); // invalid
561 fc(8, &n
); fc(10, &n
); // logical 0
562 fc(10, &n
); fc(10, &n
); // invalid
563 fc(8, &n
); fc(10, &n
); // logical 0
566 // manchester encode bits 43 to 32
567 for (i
=11; i
>=0; i
--) {
568 if ((i
%4)==3) fc(0,&n
);
570 fc(10, &n
); fc(8, &n
); // low-high transition
572 fc(8, &n
); fc(10, &n
); // high-low transition
577 // manchester encode bits 31 to 0
578 for (i
=31; i
>=0; i
--) {
579 if ((i
%4)==3) fc(0,&n
);
581 fc(10, &n
); fc(8, &n
); // low-high transition
583 fc(8, &n
); fc(10, &n
); // high-low transition
589 SimulateTagLowFrequency(n
, 0, ledcontrol
);
596 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
597 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
599 uint8_t *dest
= (uint8_t *)BigBuf
;
600 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
601 uint32_t hi2
=0, hi
=0, lo
=0;
603 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
604 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
606 // Connect the A/D to the peak-detected low-frequency path.
607 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
609 // Give it a bit of time for the resonant antenna to settle.
612 // Now set up the SSC to get the ADC samples that are now streaming at us.
620 DbpString("Stopped");
630 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
631 AT91C_BASE_SSC
->SSC_THR
= 0x43;
635 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
636 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
637 // we don't care about actual value, only if it's more or less than a
638 // threshold essentially we capture zero crossings for later analysis
639 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
651 // sync to first lo-hi transition
652 for( idx
=1; idx
<m
; idx
++) {
653 if (dest
[idx
-1]<dest
[idx
])
659 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
660 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
661 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
662 for( i
=0; idx
<m
; idx
++) {
663 if (dest
[idx
-1]<dest
[idx
]) {
678 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
683 for( idx
=0; idx
<m
; idx
++) {
684 if (dest
[idx
]==lastval
) {
687 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
688 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
689 // swallowed up by rounding
690 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
691 // special start of frame markers use invalid manchester states (no transitions) by using sequences
694 n
=(n
+1)/6; // fc/8 in sets of 6
696 n
=(n
+1)/5; // fc/10 in sets of 5
698 switch (n
) { // stuff appropriate bits in buffer
701 dest
[i
++]=dest
[idx
-1];
704 dest
[i
++]=dest
[idx
-1];
705 dest
[i
++]=dest
[idx
-1];
707 case 3: // 3 bit start of frame markers
708 dest
[i
++]=dest
[idx
-1];
709 dest
[i
++]=dest
[idx
-1];
710 dest
[i
++]=dest
[idx
-1];
712 // When a logic 0 is immediately followed by the start of the next transmisson
713 // (special pattern) a pattern of 4 bit duration lengths is created.
715 dest
[i
++]=dest
[idx
-1];
716 dest
[i
++]=dest
[idx
-1];
717 dest
[i
++]=dest
[idx
-1];
718 dest
[i
++]=dest
[idx
-1];
720 default: // this shouldn't happen, don't stuff any bits
730 // final loop, go over previously decoded manchester data and decode into usable tag ID
731 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
732 for( idx
=0; idx
<m
-6; idx
++) {
733 // search for a start of frame marker
734 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
738 if (found
&& (hi2
|hi
|lo
)) {
740 Dbprintf("TAG ID: %x%08x%08x (%d)",
741 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
744 Dbprintf("TAG ID: %x%08x (%d)",
745 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
747 /* if we're only looking for one tag */
761 if (dest
[idx
] && (!dest
[idx
+1]) ) {
762 hi2
=(hi2
<<1)|(hi
>>31);
765 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
766 hi2
=(hi2
<<1)|(hi
>>31);
777 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
781 if (found
&& (hi
|lo
)) {
783 Dbprintf("TAG ID: %x%08x%08x (%d)",
784 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
787 Dbprintf("TAG ID: %x%08x (%d)",
788 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
790 /* if we're only looking for one tag */
808 /*------------------------------
809 * T5555/T5557/T5567 routines
810 *------------------------------
813 /* T55x7 configuration register definitions */
814 #define T55x7_POR_DELAY 0x00000001
815 #define T55x7_ST_TERMINATOR 0x00000008
816 #define T55x7_PWD 0x00000010
817 #define T55x7_MAXBLOCK_SHIFT 5
818 #define T55x7_AOR 0x00000200
819 #define T55x7_PSKCF_RF_2 0
820 #define T55x7_PSKCF_RF_4 0x00000400
821 #define T55x7_PSKCF_RF_8 0x00000800
822 #define T55x7_MODULATION_DIRECT 0
823 #define T55x7_MODULATION_PSK1 0x00001000
824 #define T55x7_MODULATION_PSK2 0x00002000
825 #define T55x7_MODULATION_PSK3 0x00003000
826 #define T55x7_MODULATION_FSK1 0x00004000
827 #define T55x7_MODULATION_FSK2 0x00005000
828 #define T55x7_MODULATION_FSK1a 0x00006000
829 #define T55x7_MODULATION_FSK2a 0x00007000
830 #define T55x7_MODULATION_MANCHESTER 0x00008000
831 #define T55x7_MODULATION_BIPHASE 0x00010000
832 #define T55x7_BITRATE_RF_8 0
833 #define T55x7_BITRATE_RF_16 0x00040000
834 #define T55x7_BITRATE_RF_32 0x00080000
835 #define T55x7_BITRATE_RF_40 0x000C0000
836 #define T55x7_BITRATE_RF_50 0x00100000
837 #define T55x7_BITRATE_RF_64 0x00140000
838 #define T55x7_BITRATE_RF_100 0x00180000
839 #define T55x7_BITRATE_RF_128 0x001C0000
841 /* T5555 (Q5) configuration register definitions */
842 #define T5555_ST_TERMINATOR 0x00000001
843 #define T5555_MAXBLOCK_SHIFT 0x00000001
844 #define T5555_MODULATION_MANCHESTER 0
845 #define T5555_MODULATION_PSK1 0x00000010
846 #define T5555_MODULATION_PSK2 0x00000020
847 #define T5555_MODULATION_PSK3 0x00000030
848 #define T5555_MODULATION_FSK1 0x00000040
849 #define T5555_MODULATION_FSK2 0x00000050
850 #define T5555_MODULATION_BIPHASE 0x00000060
851 #define T5555_MODULATION_DIRECT 0x00000070
852 #define T5555_INVERT_OUTPUT 0x00000080
853 #define T5555_PSK_RF_2 0
854 #define T5555_PSK_RF_4 0x00000100
855 #define T5555_PSK_RF_8 0x00000200
856 #define T5555_USE_PWD 0x00000400
857 #define T5555_USE_AOR 0x00000800
858 #define T5555_BITRATE_SHIFT 12
859 #define T5555_FAST_WRITE 0x00004000
860 #define T5555_PAGE_SELECT 0x00008000
863 * Relevant times in microsecond
864 * To compensate antenna falling times shorten the write times
865 * and enlarge the gap ones.
867 #define START_GAP 250
868 #define WRITE_GAP 160
869 #define WRITE_0 144 // 192
870 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
872 // Write one bit to card
873 void T55xxWriteBit(int bit
)
875 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
876 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
878 SpinDelayUs(WRITE_0
);
880 SpinDelayUs(WRITE_1
);
881 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
882 SpinDelayUs(WRITE_GAP
);
885 // Write one card block in page 0, no lock
886 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
890 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
891 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
893 // Give it a bit of time for the resonant antenna to settle.
894 // And for the tag to fully power up
897 // Now start writting
898 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
899 SpinDelayUs(START_GAP
);
903 T55xxWriteBit(0); //Page 0
906 for (i
= 0x80000000; i
!= 0; i
>>= 1)
907 T55xxWriteBit(Pwd
& i
);
913 for (i
= 0x80000000; i
!= 0; i
>>= 1)
914 T55xxWriteBit(Data
& i
);
917 for (i
= 0x04; i
!= 0; i
>>= 1)
918 T55xxWriteBit(Block
& i
);
920 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
921 // so wait a little more)
922 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
923 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
925 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
928 // Read one card block in page 0
929 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
931 uint8_t *dest
= (uint8_t *)BigBuf
;
935 // Clear destination buffer before sending the command
936 memset(dest
, 128, m
);
937 // Connect the A/D to the peak-detected low-frequency path.
938 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
939 // Now set up the SSC to get the ADC samples that are now streaming at us.
943 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
944 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
946 // Give it a bit of time for the resonant antenna to settle.
947 // And for the tag to fully power up
950 // Now start writting
951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
952 SpinDelayUs(START_GAP
);
956 T55xxWriteBit(0); //Page 0
959 for (i
= 0x80000000; i
!= 0; i
>>= 1)
960 T55xxWriteBit(Pwd
& i
);
965 for (i
= 0x04; i
!= 0; i
>>= 1)
966 T55xxWriteBit(Block
& i
);
968 // Turn field on to read the response
969 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
970 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
972 // Now do the acquisition
975 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
976 AT91C_BASE_SSC
->SSC_THR
= 0x43;
978 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
979 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
980 // we don't care about actual value, only if it's more or less than a
981 // threshold essentially we capture zero crossings for later analysis
982 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
993 // Read card traceability data (page 1)
994 void T55xxReadTrace(void){
995 uint8_t *dest
= (uint8_t *)BigBuf
;
999 // Clear destination buffer before sending the command
1000 memset(dest
, 128, m
);
1001 // Connect the A/D to the peak-detected low-frequency path.
1002 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1003 // Now set up the SSC to get the ADC samples that are now streaming at us.
1007 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1008 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
1010 // Give it a bit of time for the resonant antenna to settle.
1011 // And for the tag to fully power up
1014 // Now start writting
1015 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1016 SpinDelayUs(START_GAP
);
1020 T55xxWriteBit(1); //Page 1
1022 // Turn field on to read the response
1023 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1024 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
1026 // Now do the acquisition
1029 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1030 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1032 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1033 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1039 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1044 /*-------------- Cloning routines -----------*/
1045 // Copy HID id to card and setup block 0 config
1046 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1048 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1052 // Ensure no more than 84 bits supplied
1054 DbpString("Tags can only have 84 bits.");
1057 // Build the 6 data blocks for supplied 84bit ID
1059 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1060 for (int i
=0;i
<4;i
++) {
1061 if (hi2
& (1<<(19-i
)))
1062 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1064 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1068 for (int i
=0;i
<16;i
++) {
1069 if (hi2
& (1<<(15-i
)))
1070 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1072 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1076 for (int i
=0;i
<16;i
++) {
1077 if (hi
& (1<<(31-i
)))
1078 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1080 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1084 for (int i
=0;i
<16;i
++) {
1085 if (hi
& (1<<(15-i
)))
1086 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1088 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1092 for (int i
=0;i
<16;i
++) {
1093 if (lo
& (1<<(31-i
)))
1094 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1096 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1100 for (int i
=0;i
<16;i
++) {
1101 if (lo
& (1<<(15-i
)))
1102 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1104 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1108 // Ensure no more than 44 bits supplied
1110 DbpString("Tags can only have 44 bits.");
1114 // Build the 3 data blocks for supplied 44bit ID
1117 data1
= 0x1D000000; // load preamble
1119 for (int i
=0;i
<12;i
++) {
1120 if (hi
& (1<<(11-i
)))
1121 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1123 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1127 for (int i
=0;i
<16;i
++) {
1128 if (lo
& (1<<(31-i
)))
1129 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1131 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1135 for (int i
=0;i
<16;i
++) {
1136 if (lo
& (1<<(15-i
)))
1137 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1139 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1144 // Program the data blocks for supplied ID
1145 // and the block 0 for HID format
1146 T55xxWriteBlock(data1
,1,0,0);
1147 T55xxWriteBlock(data2
,2,0,0);
1148 T55xxWriteBlock(data3
,3,0,0);
1150 if (longFMT
) { // if long format there are 6 blocks
1151 T55xxWriteBlock(data4
,4,0,0);
1152 T55xxWriteBlock(data5
,5,0,0);
1153 T55xxWriteBlock(data6
,6,0,0);
1156 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1157 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1158 T55x7_MODULATION_FSK2a
|
1159 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1167 // Define 9bit header for EM410x tags
1168 #define EM410X_HEADER 0x1FF
1169 #define EM410X_ID_LENGTH 40
1171 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1174 uint64_t id
= EM410X_HEADER
;
1175 uint64_t rev_id
= 0; // reversed ID
1176 int c_parity
[4]; // column parity
1177 int r_parity
= 0; // row parity
1179 // Reverse ID bits given as parameter (for simpler operations)
1180 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1182 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1185 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1190 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1191 id_bit
= rev_id
& 1;
1194 // Don't write row parity bit at start of parsing
1196 id
= (id
<< 1) | r_parity
;
1197 // Start counting parity for new row
1204 // First elements in column?
1206 // Fill out first elements
1207 c_parity
[i
] = id_bit
;
1209 // Count column parity
1210 c_parity
[i
% 4] ^= id_bit
;
1213 id
= (id
<< 1) | id_bit
;
1217 // Insert parity bit of last row
1218 id
= (id
<< 1) | r_parity
;
1220 // Fill out column parity at the end of tag
1221 for (i
= 0; i
< 4; ++i
)
1222 id
= (id
<< 1) | c_parity
[i
];
1227 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1231 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1232 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1234 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1236 // Writing configuration for T55x7 tag
1237 T55xxWriteBlock(T55x7_BITRATE_RF_64
|
1238 T55x7_MODULATION_MANCHESTER
|
1239 2 << T55x7_MAXBLOCK_SHIFT
,
1242 // Writing configuration for T5555(Q5) tag
1243 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1244 T5555_MODULATION_MANCHESTER
|
1245 2 << T5555_MAXBLOCK_SHIFT
,
1249 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1250 (uint32_t)(id
>> 32), (uint32_t)id
);
1253 // Clone Indala 64-bit tag by UID to T55x7
1254 void CopyIndala64toT55x7(int hi
, int lo
)
1257 //Program the 2 data blocks for supplied 64bit UID
1258 // and the block 0 for Indala64 format
1259 T55xxWriteBlock(hi
,1,0,0);
1260 T55xxWriteBlock(lo
,2,0,0);
1261 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1262 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1263 T55x7_MODULATION_PSK1
|
1264 2 << T55x7_MAXBLOCK_SHIFT
,
1266 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1267 // T5567WriteBlock(0x603E1042,0);
1273 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1276 //Program the 7 data blocks for supplied 224bit UID
1277 // and the block 0 for Indala224 format
1278 T55xxWriteBlock(uid1
,1,0,0);
1279 T55xxWriteBlock(uid2
,2,0,0);
1280 T55xxWriteBlock(uid3
,3,0,0);
1281 T55xxWriteBlock(uid4
,4,0,0);
1282 T55xxWriteBlock(uid5
,5,0,0);
1283 T55xxWriteBlock(uid6
,6,0,0);
1284 T55xxWriteBlock(uid7
,7,0,0);
1285 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1286 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1287 T55x7_MODULATION_PSK1
|
1288 7 << T55x7_MAXBLOCK_SHIFT
,
1290 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1291 // T5567WriteBlock(0x603E10E2,0);
1298 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1299 #define max(x,y) ( x<y ? y:x)
1301 int DemodPCF7931(uint8_t **outBlocks
) {
1302 uint8_t BitStream
[256];
1303 uint8_t Blocks
[8][16];
1304 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1305 int GraphTraceLen
= sizeof(BigBuf
);
1306 int i
, j
, lastval
, bitidx
, half_switch
;
1308 int tolerance
= clock
/ 8;
1309 int pmc
, block_done
;
1310 int lc
, warnings
= 0;
1312 int lmin
=128, lmax
=128;
1315 AcquireRawAdcSamples125k(0);
1322 /* Find first local max/min */
1323 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1324 while(i
< GraphTraceLen
) {
1325 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1332 while(i
< GraphTraceLen
) {
1333 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1345 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1347 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1352 // Switch depending on lc length:
1353 // Tolerance is 1/8 of clock rate (arbitrary)
1354 if (abs(lc
-clock
/4) < tolerance
) {
1356 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1358 i
+= (128+127+16+32+33+16)-1;
1366 } else if (abs(lc
-clock
/2) < tolerance
) {
1368 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1370 i
+= (128+127+16+32+33)-1;
1375 else if(half_switch
== 1) {
1376 BitStream
[bitidx
++] = 0;
1381 } else if (abs(lc
-clock
) < tolerance
) {
1383 BitStream
[bitidx
++] = 1;
1389 Dbprintf("Error: too many detection errors, aborting.");
1394 if(block_done
== 1) {
1396 for(j
=0; j
<16; j
++) {
1397 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1398 64*BitStream
[j
*8+6]+
1399 32*BitStream
[j
*8+5]+
1400 16*BitStream
[j
*8+4]+
1412 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1418 if(num_blocks
== 4) break;
1420 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1424 int IsBlock0PCF7931(uint8_t *Block
) {
1425 // Assume RFU means 0 :)
1426 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1428 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1433 int IsBlock1PCF7931(uint8_t *Block
) {
1434 // Assume RFU means 0 :)
1435 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1436 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1444 void ReadPCF7931() {
1445 uint8_t Blocks
[8][17];
1446 uint8_t tmpBlocks
[4][16];
1447 int i
, j
, ind
, ind2
, n
;
1454 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1457 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1458 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1461 if(error
==10 && num_blocks
== 0) {
1462 Dbprintf("Error, no tag or bad tag");
1465 else if (tries
==20 || error
==10) {
1466 Dbprintf("Error reading the tag");
1467 Dbprintf("Here is the partial content");
1472 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1473 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1474 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1476 for(i
=0; i
<n
; i
++) {
1477 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1479 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1483 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1484 Blocks
[0][ALLOC
] = 1;
1485 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1486 Blocks
[1][ALLOC
] = 1;
1487 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1489 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1491 // Handle following blocks
1492 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1495 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1496 Blocks
[ind2
][ALLOC
] = 1;
1504 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1505 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1506 for(j
=0; j
<max_blocks
; j
++) {
1507 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1508 // Found an identical block
1509 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1512 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1513 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1514 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1515 Blocks
[ind2
][ALLOC
] = 1;
1517 if(num_blocks
== max_blocks
) goto end
;
1520 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1521 if(ind2
> max_blocks
)
1523 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1524 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1525 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1526 Blocks
[ind2
][ALLOC
] = 1;
1528 if(num_blocks
== max_blocks
) goto end
;
1537 if (BUTTON_PRESS()) return;
1538 } while (num_blocks
!= max_blocks
);
1540 Dbprintf("-----------------------------------------");
1541 Dbprintf("Memory content:");
1542 Dbprintf("-----------------------------------------");
1543 for(i
=0; i
<max_blocks
; i
++) {
1544 if(Blocks
[i
][ALLOC
]==1)
1545 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1546 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1547 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1549 Dbprintf("<missing block %d>", i
);
1551 Dbprintf("-----------------------------------------");
1557 //-----------------------------------
1558 // EM4469 / EM4305 routines
1559 //-----------------------------------
1560 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1561 #define FWD_CMD_WRITE 0xA
1562 #define FWD_CMD_READ 0x9
1563 #define FWD_CMD_DISABLE 0x5
1566 uint8_t forwardLink_data
[64]; //array of forwarded bits
1567 uint8_t * forward_ptr
; //ptr for forward message preparation
1568 uint8_t fwd_bit_sz
; //forwardlink bit counter
1569 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1571 //====================================================================
1572 // prepares command bits
1574 //====================================================================
1575 //--------------------------------------------------------------------
1576 uint8_t Prepare_Cmd( uint8_t cmd
) {
1577 //--------------------------------------------------------------------
1579 *forward_ptr
++ = 0; //start bit
1580 *forward_ptr
++ = 0; //second pause for 4050 code
1582 *forward_ptr
++ = cmd
;
1584 *forward_ptr
++ = cmd
;
1586 *forward_ptr
++ = cmd
;
1588 *forward_ptr
++ = cmd
;
1590 return 6; //return number of emited bits
1593 //====================================================================
1594 // prepares address bits
1596 //====================================================================
1598 //--------------------------------------------------------------------
1599 uint8_t Prepare_Addr( uint8_t addr
) {
1600 //--------------------------------------------------------------------
1602 register uint8_t line_parity
;
1607 *forward_ptr
++ = addr
;
1608 line_parity
^= addr
;
1612 *forward_ptr
++ = (line_parity
& 1);
1614 return 7; //return number of emited bits
1617 //====================================================================
1618 // prepares data bits intreleaved with parity bits
1620 //====================================================================
1622 //--------------------------------------------------------------------
1623 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1624 //--------------------------------------------------------------------
1626 register uint8_t line_parity
;
1627 register uint8_t column_parity
;
1628 register uint8_t i
, j
;
1629 register uint16_t data
;
1634 for(i
=0; i
<4; i
++) {
1636 for(j
=0; j
<8; j
++) {
1637 line_parity
^= data
;
1638 column_parity
^= (data
& 1) << j
;
1639 *forward_ptr
++ = data
;
1642 *forward_ptr
++ = line_parity
;
1647 for(j
=0; j
<8; j
++) {
1648 *forward_ptr
++ = column_parity
;
1649 column_parity
>>= 1;
1653 return 45; //return number of emited bits
1656 //====================================================================
1657 // Forward Link send function
1658 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1659 // fwd_bit_count set with number of bits to be sent
1660 //====================================================================
1661 void SendForward(uint8_t fwd_bit_count
) {
1663 fwd_write_ptr
= forwardLink_data
;
1664 fwd_bit_sz
= fwd_bit_count
;
1669 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1670 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
1672 // Give it a bit of time for the resonant antenna to settle.
1673 // And for the tag to fully power up
1676 // force 1st mod pulse (start gap must be longer for 4305)
1677 fwd_bit_sz
--; //prepare next bit modulation
1679 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1680 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1681 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1682 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);//field on
1683 SpinDelayUs(16*8); //16 cycles on (8us each)
1685 // now start writting
1686 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1687 if(((*fwd_write_ptr
++) & 1) == 1)
1688 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1690 //These timings work for 4469/4269/4305 (with the 55*8 above)
1691 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1692 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1693 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1694 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);//field on
1695 SpinDelayUs(9*8); //16 cycles on (8us each)
1700 void EM4xLogin(uint32_t Password
) {
1702 uint8_t fwd_bit_count
;
1704 forward_ptr
= forwardLink_data
;
1705 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1706 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1708 SendForward(fwd_bit_count
);
1710 //Wait for command to complete
1715 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1717 uint8_t fwd_bit_count
;
1718 uint8_t *dest
= (uint8_t *)BigBuf
;
1721 //If password mode do login
1722 if (PwdMode
== 1) EM4xLogin(Pwd
);
1724 forward_ptr
= forwardLink_data
;
1725 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1726 fwd_bit_count
+= Prepare_Addr( Address
);
1729 // Clear destination buffer before sending the command
1730 memset(dest
, 128, m
);
1731 // Connect the A/D to the peak-detected low-frequency path.
1732 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1733 // Now set up the SSC to get the ADC samples that are now streaming at us.
1736 SendForward(fwd_bit_count
);
1738 // Now do the acquisition
1741 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1742 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1744 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1745 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1750 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1754 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1756 uint8_t fwd_bit_count
;
1758 //If password mode do login
1759 if (PwdMode
== 1) EM4xLogin(Pwd
);
1761 forward_ptr
= forwardLink_data
;
1762 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1763 fwd_bit_count
+= Prepare_Addr( Address
);
1764 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1766 SendForward(fwd_bit_count
);
1768 //Wait for write to complete
1770 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off