1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
27 #include "lfsampling.h"
29 #include "mifareutil.h"
35 // Craig Young - 14a stand-alone code
36 #ifdef WITH_ISO14443a_StandAlone
37 #include "iso14443a.h"
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
50 struct common_area common_area
__attribute__((section(".commonarea")));
52 void ToSendReset(void)
58 void ToSendStuffBit(int b
)
62 ToSend
[ToSendMax
] = 0;
67 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
72 if(ToSendMax
>= sizeof(ToSend
)) {
74 DbpString("ToSendStuffBit overflowed!");
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
82 void DbpString(char *str
)
84 byte_t len
= strlen(str
);
85 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
89 void DbpIntegers(int x1
, int x2
, int x3
)
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
124 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
126 Dbprintf("%*D",l
,d
," ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
)
143 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
144 AT91C_BASE_ADC
->ADC_MR
=
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
160 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
162 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
164 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
166 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
185 int i
, adcval
= 0, peak
= 0;
188 * Sweeps the useful LF range of the proxmark from
189 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
190 * read the voltage in the antenna, the result left
191 * in the buffer is a graph which should clearly show
192 * the resonating frequency of your LF antenna
193 * ( hopefully around 95 if it is tuned to 125kHz!)
196 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
197 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
198 for (i
=255; i
>=19; i
--) {
200 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
202 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
203 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
204 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
206 LF_Results
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
207 if(LF_Results
[i
] > peak
) {
209 peak
= LF_Results
[i
];
215 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
220 void MeasureAntennaTuningHfOnly(int *vHf
)
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
224 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
227 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
233 void MeasureAntennaTuning(int mode
)
235 uint8_t LF_Results
[256] = {0};
236 int peakv
= 0, peakf
= 0;
237 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
241 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
242 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
243 MeasureAntennaTuningHfOnly(&vHf
);
244 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
246 if (mode
& FLAG_TUNE_LF
) {
247 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
249 if (mode
& FLAG_TUNE_HF
) {
250 MeasureAntennaTuningHfOnly(&vHf
);
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<<16), vHf
, peakf
| (peakv
<<16), LF_Results
, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
260 void MeasureAntennaTuningHf(void)
262 int vHf
= 0; // in mV
264 DbpString("Measuring HF antenna, press button to exit");
266 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
267 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
268 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
272 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
274 Dbprintf("%d mV",vHf
);
275 if (BUTTON_PRESS()) break;
277 DbpString("cancelled");
279 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
284 void ReadMem(int addr
)
286 const uint8_t *data
= ((uint8_t *)addr
);
288 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
289 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
292 /* osimage version information is linked in */
293 extern struct version_information version_information
;
294 /* bootrom version information is pointed to from _bootphase1_version_pointer */
295 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
296 void SendVersion(void)
298 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
299 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
301 /* Try to find the bootrom version information. Expect to find a pointer at
302 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
303 * pointer, then use it.
305 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
306 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
307 strcat(VersionString
, "bootrom version information appears invalid\n");
309 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
310 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
313 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
314 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
316 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
317 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
318 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
319 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
321 // Send Chip ID and used flash memory
322 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
323 uint32_t compressed_data_section_size
= common_area
.arg1
;
324 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
327 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
328 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
329 void printUSBSpeed(void)
331 Dbprintf("USB Speed:");
332 Dbprintf(" Sending USB packets to client...");
334 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
335 uint8_t *test_data
= BigBuf_get_addr();
338 uint32_t start_time
= end_time
= GetTickCount();
339 uint32_t bytes_transferred
= 0;
342 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
343 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
344 end_time
= GetTickCount();
345 bytes_transferred
+= USB_CMD_DATA_SIZE
;
349 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
350 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
351 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
352 1000 * bytes_transferred
/ (end_time
- start_time
));
357 * Prints runtime information about the PM3.
359 void SendStatus(void)
361 BigBuf_print_status();
363 printConfig(); //LF Sampling config
366 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
367 Dbprintf(" ToSendMax........%d",ToSendMax
);
368 Dbprintf(" ToSendBit........%d",ToSendBit
);
370 cmd_send(CMD_ACK
,1,0,0,0,0);
373 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
377 void StandAloneMode()
379 DbpString("Stand-alone mode! No PC necessary.");
380 // Oooh pretty -- notify user we're in elite samy mode now
382 LED(LED_ORANGE
, 200);
384 LED(LED_ORANGE
, 200);
386 LED(LED_ORANGE
, 200);
388 LED(LED_ORANGE
, 200);
397 #ifdef WITH_ISO14443a_StandAlone
398 void StandAloneMode14a()
401 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
404 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
405 int cardRead
[OPTS
] = {0};
406 uint8_t readUID
[10] = {0};
407 uint32_t uid_1st
[OPTS
]={0};
408 uint32_t uid_2nd
[OPTS
]={0};
409 uint32_t uid_tmp1
= 0;
410 uint32_t uid_tmp2
= 0;
411 iso14a_card_select_t hi14a_card
[OPTS
];
413 LED(selected
+ 1, 0);
421 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
425 LED(selected
+ 1, 0);
429 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
430 /* need this delay to prevent catching some weird data */
432 /* Code for reading from 14a tag */
433 uint8_t uid
[10] ={0};
435 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
440 if (BUTTON_PRESS()) {
441 if (cardRead
[selected
]) {
442 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
445 else if (cardRead
[(selected
+1)%OPTS
]) {
446 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
447 selected
= (selected
+1)%OPTS
;
448 break; // playing = 1;
451 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
455 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
))
459 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
460 memcpy(readUID
,uid
,10*sizeof(uint8_t));
461 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
462 // Set UID byte order
463 for (int i
=0; i
<4; i
++)
465 dst
= (uint8_t *)&uid_tmp2
;
466 for (int i
=0; i
<4; i
++)
468 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
469 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
473 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
474 uid_1st
[selected
] = (uid_tmp1
)>>8;
475 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
478 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
479 uid_1st
[selected
] = uid_tmp1
;
480 uid_2nd
[selected
] = uid_tmp2
;
486 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
487 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
490 LED(LED_ORANGE
, 200);
492 LED(LED_ORANGE
, 200);
495 LED(selected
+ 1, 0);
497 // Next state is replay:
500 cardRead
[selected
] = 1;
502 /* MF Classic UID clone */
503 else if (iGotoClone
==1)
507 LED(selected
+ 1, 0);
508 LED(LED_ORANGE
, 250);
512 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
514 // wait for button to be released
515 while(BUTTON_PRESS())
517 // Delay cloning until card is in place
520 Dbprintf("Starting clone. [Bank: %u]", selected
);
521 // need this delay to prevent catching some weird data
523 // Begin clone function here:
524 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
525 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
526 memcpy(c.d.asBytes, data, 16);
529 Block read is similar:
530 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
531 We need to imitate that call with blockNo 0 to set a uid.
533 The get and set commands are handled in this file:
534 // Work with "magic Chinese" card
535 case CMD_MIFARE_CSETBLOCK:
536 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
538 case CMD_MIFARE_CGETBLOCK:
539 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
542 mfCSetUID provides example logic for UID set workflow:
543 -Read block0 from card in field with MifareCGetBlock()
544 -Configure new values without replacing reserved bytes
545 memcpy(block0, uid, 4); // Copy UID bytes from byte array
547 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
548 Bytes 5-7 are reserved SAK and ATQA for mifare classic
549 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
551 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
552 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
553 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
554 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
555 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
559 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
560 memcpy(newBlock0
,oldBlock0
,16);
561 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
563 newBlock0
[0] = uid_1st
[selected
]>>24;
564 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
565 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
566 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
567 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
568 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
569 MifareCSetBlock(0, 0xFF,0, newBlock0
);
570 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
571 if (memcmp(testBlock0
,newBlock0
,16)==0)
573 DbpString("Cloned successfull!");
574 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
577 selected
= (selected
+1) % OPTS
;
580 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
585 LED(selected
+ 1, 0);
588 // Change where to record (or begin playing)
589 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
592 LED(selected
+ 1, 0);
594 // Begin transmitting
598 DbpString("Playing");
601 int button_action
= BUTTON_HELD(1000);
602 if (button_action
== 0) { // No button action, proceed with sim
603 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
604 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
605 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
606 DbpString("Mifare Classic");
607 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
609 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
610 DbpString("Mifare Ultralight");
611 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
613 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
614 DbpString("Mifare DESFire");
615 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
618 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
619 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
622 else if (button_action
== BUTTON_SINGLE_CLICK
) {
623 selected
= (selected
+ 1) % OPTS
;
624 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
628 else if (button_action
== BUTTON_HOLD
) {
629 Dbprintf("Playtime over. Begin cloning...");
636 /* We pressed a button so ignore it here with a delay */
639 LED(selected
+ 1, 0);
642 while(BUTTON_PRESS())
648 // samy's sniff and repeat routine
652 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
654 int high
[OPTS
], low
[OPTS
];
659 // Turn on selected LED
660 LED(selected
+ 1, 0);
667 // Was our button held down or pressed?
668 int button_pressed
= BUTTON_HELD(1000);
671 // Button was held for a second, begin recording
672 if (button_pressed
> 0 && cardRead
== 0)
675 LED(selected
+ 1, 0);
679 DbpString("Starting recording");
681 // wait for button to be released
682 while(BUTTON_PRESS())
685 /* need this delay to prevent catching some weird data */
688 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
689 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
692 LED(selected
+ 1, 0);
693 // Finished recording
695 // If we were previously playing, set playing off
696 // so next button push begins playing what we recorded
703 else if (button_pressed
> 0 && cardRead
== 1)
706 LED(selected
+ 1, 0);
710 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
712 // wait for button to be released
713 while(BUTTON_PRESS())
716 /* need this delay to prevent catching some weird data */
719 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
720 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
723 LED(selected
+ 1, 0);
724 // Finished recording
726 // If we were previously playing, set playing off
727 // so next button push begins playing what we recorded
734 // Change where to record (or begin playing)
735 else if (button_pressed
)
737 // Next option if we were previously playing
739 selected
= (selected
+ 1) % OPTS
;
743 LED(selected
+ 1, 0);
745 // Begin transmitting
749 DbpString("Playing");
750 // wait for button to be released
751 while(BUTTON_PRESS())
753 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
754 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
755 DbpString("Done playing");
756 if (BUTTON_HELD(1000) > 0)
758 DbpString("Exiting");
763 /* We pressed a button so ignore it here with a delay */
766 // when done, we're done playing, move to next option
767 selected
= (selected
+ 1) % OPTS
;
770 LED(selected
+ 1, 0);
773 while(BUTTON_PRESS())
782 Listen and detect an external reader. Determine the best location
786 Inside the ListenReaderField() function, there is two mode.
787 By default, when you call the function, you will enter mode 1.
788 If you press the PM3 button one time, you will enter mode 2.
789 If you press the PM3 button a second time, you will exit the function.
791 DESCRIPTION OF MODE 1:
792 This mode just listens for an external reader field and lights up green
793 for HF and/or red for LF. This is the original mode of the detectreader
796 DESCRIPTION OF MODE 2:
797 This mode will visually represent, using the LEDs, the actual strength of the
798 current compared to the maximum current detected. Basically, once you know
799 what kind of external reader is present, it will help you spot the best location to place
800 your antenna. You will probably not get some good results if there is a LF and a HF reader
801 at the same place! :-)
805 static const char LIGHT_SCHEME
[] = {
806 0x0, /* ---- | No field detected */
807 0x1, /* X--- | 14% of maximum current detected */
808 0x2, /* -X-- | 29% of maximum current detected */
809 0x4, /* --X- | 43% of maximum current detected */
810 0x8, /* ---X | 57% of maximum current detected */
811 0xC, /* --XX | 71% of maximum current detected */
812 0xE, /* -XXX | 86% of maximum current detected */
813 0xF, /* XXXX | 100% of maximum current detected */
815 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
817 void ListenReaderField(int limit
)
819 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
820 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
821 int mode
=1, display_val
, display_max
, i
;
825 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
828 // switch off FPGA - we don't want to measure our own signal
829 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
830 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
834 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
836 if(limit
!= HF_ONLY
) {
837 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
841 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
843 if (limit
!= LF_ONLY
) {
844 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
849 if (BUTTON_PRESS()) {
854 DbpString("Signal Strength Mode");
858 DbpString("Stopped");
866 if (limit
!= HF_ONLY
) {
868 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
874 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
875 // see if there's a significant change
876 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
877 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
884 if (limit
!= LF_ONLY
) {
886 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
892 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
893 // see if there's a significant change
894 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
895 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
903 if (limit
== LF_ONLY
) {
905 display_max
= lf_max
;
906 } else if (limit
== HF_ONLY
) {
908 display_max
= hf_max
;
909 } else { /* Pick one at random */
910 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
912 display_max
= hf_max
;
915 display_max
= lf_max
;
918 for (i
=0; i
<LIGHT_LEN
; i
++) {
919 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
920 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
921 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
922 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
923 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
931 void UsbPacketReceived(uint8_t *packet
, int len
)
933 UsbCommand
*c
= (UsbCommand
*)packet
;
935 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
939 case CMD_SET_LF_SAMPLING_CONFIG
:
940 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
942 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
943 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0]),0,0,0,0);
945 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
946 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
948 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
949 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
951 case CMD_HID_DEMOD_FSK
:
952 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
954 case CMD_HID_SIM_TAG
:
955 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
957 case CMD_FSK_SIM_TAG
:
958 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
960 case CMD_ASK_SIM_TAG
:
961 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
963 case CMD_PSK_SIM_TAG
:
964 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
966 case CMD_HID_CLONE_TAG
:
967 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
969 case CMD_IO_DEMOD_FSK
:
970 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
972 case CMD_IO_CLONE_TAG
:
973 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
975 case CMD_EM410X_DEMOD
:
976 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
978 case CMD_EM410X_WRITE_TAG
:
979 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
981 case CMD_READ_TI_TYPE
:
984 case CMD_WRITE_TI_TYPE
:
985 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
987 case CMD_SIMULATE_TAG_125K
:
989 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
992 case CMD_LF_SIMULATE_BIDIR
:
993 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
995 case CMD_INDALA_CLONE_TAG
:
996 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
998 case CMD_INDALA_CLONE_TAG_L
:
999 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1001 case CMD_T55XX_READ_BLOCK
:
1002 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1004 case CMD_T55XX_WRITE_BLOCK
:
1005 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1007 case CMD_T55XX_WAKEUP
:
1008 T55xxWakeUp(c
->arg
[0]);
1010 case CMD_T55XX_RESET_READ
:
1013 case CMD_PCF7931_READ
:
1016 case CMD_PCF7931_WRITE
:
1017 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1019 case CMD_EM4X_READ_WORD
:
1020 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1022 case CMD_EM4X_WRITE_WORD
:
1023 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1025 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1026 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1028 case CMD_VIKING_CLONE_TAG
:
1029 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1037 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1038 SnoopHitag(c
->arg
[0]);
1040 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1041 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1043 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1044 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1046 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1047 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1049 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1050 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1052 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1053 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1055 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1056 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1060 #ifdef WITH_ISO15693
1061 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1062 AcquireRawAdcSamplesIso15693();
1064 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1065 RecordRawAdcSamplesIso15693();
1068 case CMD_ISO_15693_COMMAND
:
1069 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1072 case CMD_ISO_15693_FIND_AFI
:
1073 BruteforceIso15693Afi(c
->arg
[0]);
1076 case CMD_ISO_15693_DEBUG
:
1077 SetDebugIso15693(c
->arg
[0]);
1080 case CMD_READER_ISO_15693
:
1081 ReaderIso15693(c
->arg
[0]);
1083 case CMD_SIMTAG_ISO_15693
:
1084 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1089 case CMD_SIMULATE_TAG_LEGIC_RF
:
1090 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1093 case CMD_WRITER_LEGIC_RF
:
1094 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1097 case CMD_READER_LEGIC_RF
:
1098 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1102 #ifdef WITH_ISO14443b
1103 case CMD_READ_SRI512_TAG
:
1104 ReadSTMemoryIso14443b(0x0F);
1106 case CMD_READ_SRIX4K_TAG
:
1107 ReadSTMemoryIso14443b(0x7F);
1109 case CMD_SNOOP_ISO_14443B
:
1112 case CMD_SIMULATE_TAG_ISO_14443B
:
1113 SimulateIso14443bTag();
1115 case CMD_ISO_14443B_COMMAND
:
1116 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1120 #ifdef WITH_ISO14443a
1121 case CMD_SNOOP_ISO_14443a
:
1122 SnoopIso14443a(c
->arg
[0]);
1124 case CMD_READER_ISO_14443a
:
1127 case CMD_SIMULATE_TAG_ISO_14443a
:
1128 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1131 case CMD_EPA_PACE_COLLECT_NONCE
:
1132 EPA_PACE_Collect_Nonce(c
);
1134 case CMD_EPA_PACE_REPLAY
:
1138 case CMD_READER_MIFARE
:
1139 ReaderMifare(c
->arg
[0]);
1141 case CMD_MIFARE_READBL
:
1142 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1144 case CMD_MIFAREU_READBL
:
1145 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1147 case CMD_MIFAREUC_AUTH
:
1148 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1150 case CMD_MIFAREU_READCARD
:
1151 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1153 case CMD_MIFAREUC_SETPWD
:
1154 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1156 case CMD_MIFARE_READSC
:
1157 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1159 case CMD_MIFARE_WRITEBL
:
1160 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 //case CMD_MIFAREU_WRITEBL_COMPAT:
1163 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1165 case CMD_MIFAREU_WRITEBL
:
1166 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1168 case CMD_MIFARE_NESTED
:
1169 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1171 case CMD_MIFARE_CHKKEYS
:
1172 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1174 case CMD_SIMULATE_MIFARE_CARD
:
1175 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1179 case CMD_MIFARE_SET_DBGMODE
:
1180 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1182 case CMD_MIFARE_EML_MEMCLR
:
1183 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1185 case CMD_MIFARE_EML_MEMSET
:
1186 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1188 case CMD_MIFARE_EML_MEMGET
:
1189 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1191 case CMD_MIFARE_EML_CARDLOAD
:
1192 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1195 // Work with "magic Chinese" card
1196 case CMD_MIFARE_CSETBLOCK
:
1197 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1199 case CMD_MIFARE_CGETBLOCK
:
1200 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1202 case CMD_MIFARE_CIDENT
:
1207 case CMD_MIFARE_SNIFFER
:
1208 SniffMifare(c
->arg
[0]);
1214 // Makes use of ISO14443a FPGA Firmware
1215 case CMD_SNOOP_ICLASS
:
1218 case CMD_SIMULATE_TAG_ICLASS
:
1219 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1221 case CMD_READER_ICLASS
:
1222 ReaderIClass(c
->arg
[0]);
1224 case CMD_READER_ICLASS_REPLAY
:
1225 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1227 case CMD_ICLASS_EML_MEMSET
:
1228 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1230 case CMD_ICLASS_WRITEBLOCK
:
1231 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1233 case CMD_ICLASS_READCHECK
: // auth step 1
1234 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1236 case CMD_ICLASS_READBLOCK
:
1237 iClass_ReadBlk(c
->arg
[0]);
1239 case CMD_ICLASS_AUTHENTICATION
: //check
1240 iClass_Authentication(c
->d
.asBytes
);
1242 case CMD_ICLASS_DUMP
:
1243 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1245 case CMD_ICLASS_CLONE
:
1246 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1250 case CMD_HF_SNIFFER
:
1251 HfSnoop(c
->arg
[0], c
->arg
[1]);
1255 case CMD_BUFF_CLEAR
:
1259 case CMD_MEASURE_ANTENNA_TUNING
:
1260 MeasureAntennaTuning(c
->arg
[0]);
1263 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1264 MeasureAntennaTuningHf();
1267 case CMD_LISTEN_READER_FIELD
:
1268 ListenReaderField(c
->arg
[0]);
1271 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1274 LED_D_OFF(); // LED D indicates field ON or OFF
1277 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1280 uint8_t *BigBuf
= BigBuf_get_addr();
1281 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1282 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1283 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1285 // Trigger a finish downloading signal with an ACK frame
1286 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1290 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1291 uint8_t *b
= BigBuf_get_addr();
1292 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1293 cmd_send(CMD_ACK
,0,0,0,0,0);
1300 case CMD_SET_LF_DIVISOR
:
1301 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1302 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1305 case CMD_SET_ADC_MUX
:
1307 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1308 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1309 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1310 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1321 cmd_send(CMD_ACK
,0,0,0,0,0);
1331 case CMD_SETUP_WRITE
:
1332 case CMD_FINISH_WRITE
:
1333 case CMD_HARDWARE_RESET
:
1337 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1339 // We're going to reset, and the bootrom will take control.
1343 case CMD_START_FLASH
:
1344 if(common_area
.flags
.bootrom_present
) {
1345 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1348 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1352 case CMD_DEVICE_INFO
: {
1353 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1354 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1355 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1359 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1364 void __attribute__((noreturn
)) AppMain(void)
1368 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1369 /* Initialize common area */
1370 memset(&common_area
, 0, sizeof(common_area
));
1371 common_area
.magic
= COMMON_AREA_MAGIC
;
1372 common_area
.version
= 1;
1374 common_area
.flags
.osimage_present
= 1;
1384 // The FPGA gets its clock from us from PCK0 output, so set that up.
1385 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1386 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1387 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1388 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1389 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1390 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1391 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1394 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1396 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1398 // Load the FPGA image, which we have stored in our flash.
1399 // (the HF version by default)
1400 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1408 byte_t rx
[sizeof(UsbCommand
)];
1413 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1415 UsbPacketReceived(rx
,rx_len
);
1421 #ifndef WITH_ISO14443a_StandAlone
1422 if (BUTTON_HELD(1000) > 0)
1426 #ifdef WITH_ISO14443a
1427 #ifdef WITH_ISO14443a_StandAlone
1428 if (BUTTON_HELD(1000) > 0)
1429 StandAloneMode14a();