35cf90cad25abd63f8bc60015beb6ef058733e75
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18 #include "lfsampling.h"
19 #include "protocols.h"
20 #include "usb_cdc.h" // for usb_poll_validate_length
21
22 /**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
29 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
30 {
31
32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
34
35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40 //clear read buffer
41 BigBuf_Clear_keep_EM();
42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
73
74 // now do the read
75 DoAcquisition_config(false);
76 }
77
78 /* blank r/w tag data stream
79 ...0000000000000000 01111111
80 1010101010101010101010101010101010101010101010101010101010101010
81 0011010010100001
82 01111111
83 101010101010101[0]000...
84
85 [5555fe852c5555555555555555fe0000]
86 */
87 void ReadTItag(void)
88 {
89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
96
97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
180 if (shift3 & (1<<15) ) {
181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
207 Dbprintf("Info: Tag data: %x%08x, crc=%x",
208 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
209 if (crc != (shift2&0xffff)) {
210 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
211 } else {
212 DbpString("Info: CRC is good");
213 }
214 }
215 }
216
217 void WriteTIbyte(uint8_t b)
218 {
219 int i = 0;
220
221 // modulate 8 bits out to the antenna
222 for (i=0; i<8; i++)
223 {
224 if (b&(1<<i)) {
225 // stop modulating antenna
226 LOW(GPIO_SSC_DOUT);
227 SpinDelayUs(1000);
228 // modulate antenna
229 HIGH(GPIO_SSC_DOUT);
230 SpinDelayUs(1000);
231 } else {
232 // stop modulating antenna
233 LOW(GPIO_SSC_DOUT);
234 SpinDelayUs(300);
235 // modulate antenna
236 HIGH(GPIO_SSC_DOUT);
237 SpinDelayUs(1700);
238 }
239 }
240 }
241
242 void AcquireTiType(void)
243 {
244 int i, j, n;
245 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
246 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
247 #define TIBUFLEN 1250
248
249 // clear buffer
250 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
251 BigBuf_Clear_ext(false);
252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
289 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
300 n = TIBUFLEN*32;
301 // unpack buffer
302 for (i=TIBUFLEN-1; i>=0; i--) {
303 for (j=0; j<32; j++) {
304 if(BigBuf[i] & (1 << j)) {
305 dest[--n] = 1;
306 } else {
307 dest[--n] = -1;
308 }
309 }
310 }
311 }
312
313 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
314 // if crc provided, it will be written with the data verbatim (even if bogus)
315 // if not provided a valid crc will be computed from the data and written.
316 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
317 {
318 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
319 if(crc == 0) {
320 crc = update_crc16(crc, (idlo)&0xff);
321 crc = update_crc16(crc, (idlo>>8)&0xff);
322 crc = update_crc16(crc, (idlo>>16)&0xff);
323 crc = update_crc16(crc, (idlo>>24)&0xff);
324 crc = update_crc16(crc, (idhi)&0xff);
325 crc = update_crc16(crc, (idhi>>8)&0xff);
326 crc = update_crc16(crc, (idhi>>16)&0xff);
327 crc = update_crc16(crc, (idhi>>24)&0xff);
328 }
329 Dbprintf("Writing to tag: %x%08x, crc=%x",
330 (unsigned int) idhi, (unsigned int) idlo, crc);
331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
382 DbpString("Now use `lf ti read` to check");
383 }
384
385 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
386 {
387 int i;
388 uint8_t *tab = BigBuf_get_addr();
389
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
392
393 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
394
395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
400
401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
405 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
406 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
407 DbpString("Stopped");
408 return;
409 }
410 WDT_HIT();
411 }
412 if (ledcontrol)
413 LED_D_ON();
414
415 if(tab[i])
416 OPEN_COIL();
417 else
418 SHORT_COIL();
419
420 if (ledcontrol)
421 LED_D_OFF();
422 //wait until SSC_CLK goes LOW
423 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
424 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
425 DbpString("Stopped");
426 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
427 return;
428 }
429 WDT_HIT();
430 }
431
432 i++;
433 if(i == period) {
434
435 i = 0;
436 if (gap) {
437 SHORT_COIL();
438 SpinDelayUs(gap);
439 }
440 }
441
442 }
443 }
444
445 #define DEBUG_FRAME_CONTENTS 1
446 void SimulateTagLowFrequencyBidir(int divisor, int t0)
447 {
448 }
449
450 // compose fc/8 fc/10 waveform (FSK2)
451 static void fc(int c, int *n)
452 {
453 uint8_t *dest = BigBuf_get_addr();
454 int idx;
455
456 // for when we want an fc8 pattern every 4 logical bits
457 if(c==0) {
458 dest[((*n)++)]=1;
459 dest[((*n)++)]=1;
460 dest[((*n)++)]=1;
461 dest[((*n)++)]=1;
462 dest[((*n)++)]=0;
463 dest[((*n)++)]=0;
464 dest[((*n)++)]=0;
465 dest[((*n)++)]=0;
466 }
467
468 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
469 if(c==8) {
470 for (idx=0; idx<6; idx++) {
471 dest[((*n)++)]=1;
472 dest[((*n)++)]=1;
473 dest[((*n)++)]=1;
474 dest[((*n)++)]=1;
475 dest[((*n)++)]=0;
476 dest[((*n)++)]=0;
477 dest[((*n)++)]=0;
478 dest[((*n)++)]=0;
479 }
480 }
481
482 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
483 if(c==10) {
484 for (idx=0; idx<5; idx++) {
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=1;
487 dest[((*n)++)]=1;
488 dest[((*n)++)]=1;
489 dest[((*n)++)]=1;
490 dest[((*n)++)]=0;
491 dest[((*n)++)]=0;
492 dest[((*n)++)]=0;
493 dest[((*n)++)]=0;
494 dest[((*n)++)]=0;
495 }
496 }
497 }
498 // compose fc/X fc/Y waveform (FSKx)
499 static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
500 {
501 uint8_t *dest = BigBuf_get_addr();
502 uint8_t halfFC = fc/2;
503 uint8_t wavesPerClock = clock/fc;
504 uint8_t mod = clock % fc; //modifier
505 uint8_t modAdj = fc/mod; //how often to apply modifier
506 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
507 // loop through clock - step field clock
508 for (uint8_t idx=0; idx < wavesPerClock; idx++){
509 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
510 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
511 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
512 *n += fc;
513 }
514 if (mod>0) (*modCnt)++;
515 if ((mod>0) && modAdjOk){ //fsk2
516 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
517 memset(dest+(*n), 0, fc-halfFC);
518 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
519 *n += fc;
520 }
521 }
522 if (mod>0 && !modAdjOk){ //fsk1
523 memset(dest+(*n), 0, mod-(mod/2));
524 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
525 *n += mod;
526 }
527 }
528
529 // prepare a waveform pattern in the buffer based on the ID given then
530 // simulate a HID tag until the button is pressed
531 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
532 {
533 int n=0, i=0;
534 /*
535 HID tag bitstream format
536 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
537 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
538 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
539 A fc8 is inserted before every 4 bits
540 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
541 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
542 */
543
544 if (hi>0xFFF) {
545 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
546 return;
547 }
548 fc(0,&n);
549 // special start of frame marker containing invalid bit sequences
550 fc(8, &n); fc(8, &n); // invalid
551 fc(8, &n); fc(10, &n); // logical 0
552 fc(10, &n); fc(10, &n); // invalid
553 fc(8, &n); fc(10, &n); // logical 0
554
555 WDT_HIT();
556 // manchester encode bits 43 to 32
557 for (i=11; i>=0; i--) {
558 if ((i%4)==3) fc(0,&n);
559 if ((hi>>i)&1) {
560 fc(10, &n); fc(8, &n); // low-high transition
561 } else {
562 fc(8, &n); fc(10, &n); // high-low transition
563 }
564 }
565
566 WDT_HIT();
567 // manchester encode bits 31 to 0
568 for (i=31; i>=0; i--) {
569 if ((i%4)==3) fc(0,&n);
570 if ((lo>>i)&1) {
571 fc(10, &n); fc(8, &n); // low-high transition
572 } else {
573 fc(8, &n); fc(10, &n); // high-low transition
574 }
575 }
576
577 if (ledcontrol)
578 LED_A_ON();
579 SimulateTagLowFrequency(n, 0, ledcontrol);
580
581 if (ledcontrol)
582 LED_A_OFF();
583 }
584
585 // prepare a waveform pattern in the buffer based on the ID given then
586 // simulate a FSK tag until the button is pressed
587 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
588 void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
589 {
590 int ledcontrol=1;
591 int n=0, i=0;
592 uint8_t fcHigh = arg1 >> 8;
593 uint8_t fcLow = arg1 & 0xFF;
594 uint16_t modCnt = 0;
595 uint8_t clk = arg2 & 0xFF;
596 uint8_t invert = (arg2 >> 8) & 1;
597
598 for (i=0; i<size; i++){
599 if (BitStream[i] == invert){
600 fcAll(fcLow, &n, clk, &modCnt);
601 } else {
602 fcAll(fcHigh, &n, clk, &modCnt);
603 }
604 }
605 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
606 /*Dbprintf("DEBUG: First 32:");
607 uint8_t *dest = BigBuf_get_addr();
608 i=0;
609 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
610 i+=16;
611 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
612 */
613 if (ledcontrol)
614 LED_A_ON();
615
616 SimulateTagLowFrequency(n, 0, ledcontrol);
617
618 if (ledcontrol)
619 LED_A_OFF();
620 }
621
622 // compose ask waveform for one bit(ASK)
623 static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
624 {
625 uint8_t *dest = BigBuf_get_addr();
626 uint8_t halfClk = clock/2;
627 // c = current bit 1 or 0
628 if (manchester==1){
629 memset(dest+(*n), c, halfClk);
630 memset(dest+(*n) + halfClk, c^1, halfClk);
631 } else {
632 memset(dest+(*n), c, clock);
633 }
634 *n += clock;
635 }
636
637 static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
638 {
639 uint8_t *dest = BigBuf_get_addr();
640 uint8_t halfClk = clock/2;
641 if (c){
642 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
643 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
644 } else {
645 memset(dest+(*n), c ^ *phase, clock);
646 *phase ^= 1;
647 }
648 *n += clock;
649 }
650
651 static void stAskSimBit(int *n, uint8_t clock) {
652 uint8_t *dest = BigBuf_get_addr();
653 uint8_t halfClk = clock/2;
654 //ST = .5 high .5 low 1.5 high .5 low 1 high
655 memset(dest+(*n), 1, halfClk);
656 memset(dest+(*n) + halfClk, 0, halfClk);
657 memset(dest+(*n) + clock, 1, clock + halfClk);
658 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
659 memset(dest+(*n) + clock*3, 1, clock);
660 *n += clock*4;
661 }
662
663 // args clock, ask/man or askraw, invert, transmission separator
664 void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
665 {
666 int ledcontrol = 1;
667 int n=0, i=0;
668 uint8_t clk = (arg1 >> 8) & 0xFF;
669 uint8_t encoding = arg1 & 0xFF;
670 uint8_t separator = arg2 & 1;
671 uint8_t invert = (arg2 >> 8) & 1;
672
673 if (encoding==2){ //biphase
674 uint8_t phase=0;
675 for (i=0; i<size; i++){
676 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
677 }
678 if (phase==1) { //run a second set inverted to keep phase in check
679 for (i=0; i<size; i++){
680 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
681 }
682 }
683 } else { // ask/manchester || ask/raw
684 for (i=0; i<size; i++){
685 askSimBit(BitStream[i]^invert, &n, clk, encoding);
686 }
687 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
688 for (i=0; i<size; i++){
689 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
690 }
691 }
692 }
693 if (separator==1 && encoding == 1)
694 stAskSimBit(&n, clk);
695 else if (separator==1)
696 Dbprintf("sorry but separator option not yet available");
697
698 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
699 //DEBUG
700 //Dbprintf("First 32:");
701 //uint8_t *dest = BigBuf_get_addr();
702 //i=0;
703 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
704 //i+=16;
705 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
706
707 if (ledcontrol) LED_A_ON();
708 SimulateTagLowFrequency(n, 0, ledcontrol);
709 if (ledcontrol) LED_A_OFF();
710 }
711
712 //carrier can be 2,4 or 8
713 static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
714 {
715 uint8_t *dest = BigBuf_get_addr();
716 uint8_t halfWave = waveLen/2;
717 //uint8_t idx;
718 int i = 0;
719 if (phaseChg){
720 // write phase change
721 memset(dest+(*n), *curPhase^1, halfWave);
722 memset(dest+(*n) + halfWave, *curPhase, halfWave);
723 *n += waveLen;
724 *curPhase ^= 1;
725 i += waveLen;
726 }
727 //write each normal clock wave for the clock duration
728 for (; i < clk; i+=waveLen){
729 memset(dest+(*n), *curPhase, halfWave);
730 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
731 *n += waveLen;
732 }
733 }
734
735 // args clock, carrier, invert,
736 void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
737 {
738 int ledcontrol=1;
739 int n=0, i=0;
740 uint8_t clk = arg1 >> 8;
741 uint8_t carrier = arg1 & 0xFF;
742 uint8_t invert = arg2 & 0xFF;
743 uint8_t curPhase = 0;
744 for (i=0; i<size; i++){
745 if (BitStream[i] == curPhase){
746 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
747 } else {
748 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
749 }
750 }
751 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
752 //Dbprintf("DEBUG: First 32:");
753 //uint8_t *dest = BigBuf_get_addr();
754 //i=0;
755 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
756 //i+=16;
757 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
758
759 if (ledcontrol) LED_A_ON();
760 SimulateTagLowFrequency(n, 0, ledcontrol);
761 if (ledcontrol) LED_A_OFF();
762 }
763
764 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
765 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
766 {
767 uint8_t *dest = BigBuf_get_addr();
768 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
769 size_t size;
770 uint32_t hi2=0, hi=0, lo=0;
771 int idx=0;
772 // Configure to go in 125Khz listen mode
773 LFSetupFPGAForADC(95, true);
774
775 //clear read buffer
776 BigBuf_Clear_keep_EM();
777
778 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
779
780 WDT_HIT();
781 if (ledcontrol) LED_A_ON();
782
783 DoAcquisition_default(-1,true);
784 // FSK demodulator
785 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
786 size = 50*128*2; //big enough to catch 2 sequences of largest format
787 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
788
789 if (idx>0 && lo>0 && (size==96 || size==192)){
790 // go over previously decoded manchester data and decode into usable tag ID
791 if (hi2 != 0){ //extra large HID tags 88/192 bits
792 Dbprintf("TAG ID: %x%08x%08x (%d)",
793 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
794 }else { //standard HID tags 44/96 bits
795 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
796 uint8_t bitlen = 0;
797 uint32_t fc = 0;
798 uint32_t cardnum = 0;
799 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
800 uint32_t lo2=0;
801 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
802 uint8_t idx3 = 1;
803 while(lo2 > 1){ //find last bit set to 1 (format len bit)
804 lo2=lo2 >> 1;
805 idx3++;
806 }
807 bitlen = idx3+19;
808 fc =0;
809 cardnum=0;
810 if(bitlen == 26){
811 cardnum = (lo>>1)&0xFFFF;
812 fc = (lo>>17)&0xFF;
813 }
814 if(bitlen == 37){
815 cardnum = (lo>>1)&0x7FFFF;
816 fc = ((hi&0xF)<<12)|(lo>>20);
817 }
818 if(bitlen == 34){
819 cardnum = (lo>>1)&0xFFFF;
820 fc= ((hi&1)<<15)|(lo>>17);
821 }
822 if(bitlen == 35){
823 cardnum = (lo>>1)&0xFFFFF;
824 fc = ((hi&1)<<11)|(lo>>21);
825 }
826 }
827 else { //if bit 38 is not set then 37 bit format is used
828 bitlen= 37;
829 fc =0;
830 cardnum=0;
831 if(bitlen==37){
832 cardnum = (lo>>1)&0x7FFFF;
833 fc = ((hi&0xF)<<12)|(lo>>20);
834 }
835 }
836 //Dbprintf("TAG ID: %x%08x (%d)",
837 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
838 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
839 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
840 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
841 }
842 if (findone){
843 if (ledcontrol) LED_A_OFF();
844 *high = hi;
845 *low = lo;
846 break;
847 }
848 // reset
849 }
850 hi2 = hi = lo = idx = 0;
851 WDT_HIT();
852 }
853
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
855 DbpString("Stopped");
856 if (ledcontrol) LED_A_OFF();
857 }
858
859 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
860 void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
861 {
862 uint8_t *dest = BigBuf_get_addr();
863 size_t size;
864 int idx=0;
865 //clear read buffer
866 BigBuf_Clear_keep_EM();
867 // Configure to go in 125Khz listen mode
868 LFSetupFPGAForADC(95, true);
869
870 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
871
872 WDT_HIT();
873 if (ledcontrol) LED_A_ON();
874
875 DoAcquisition_default(-1,true);
876 // FSK demodulator
877 size = 50*128*2; //big enough to catch 2 sequences of largest format
878 idx = AWIDdemodFSK(dest, &size);
879
880 if (idx<=0 || size!=96) continue;
881 // Index map
882 // 0 10 20 30 40 50 60
883 // | | | | | | |
884 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
885 // -----------------------------------------------------------------------------
886 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
887 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
888 // |---26 bit---| |-----117----||-------------142-------------|
889 // b = format bit len, o = odd parity of last 3 bits
890 // f = facility code, c = card number
891 // w = wiegand parity
892 // (26 bit format shown)
893
894 //get raw ID before removing parities
895 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
896 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
897 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
898
899 size = removeParity(dest, idx+8, 4, 1, 88);
900 if (size != 66) continue;
901 // ok valid card found!
902
903 // Index map
904 // 0 10 20 30 40 50 60
905 // | | | | | | |
906 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
907 // -----------------------------------------------------------------------------
908 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
909 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
910 // |26 bit| |-117--| |-----142------|
911 // b = format bit len, o = odd parity of last 3 bits
912 // f = facility code, c = card number
913 // w = wiegand parity
914 // (26 bit format shown)
915
916 uint32_t fc = 0;
917 uint32_t cardnum = 0;
918 uint32_t code1 = 0;
919 uint32_t code2 = 0;
920 uint8_t fmtLen = bytebits_to_byte(dest,8);
921 if (fmtLen==26){
922 fc = bytebits_to_byte(dest+9, 8);
923 cardnum = bytebits_to_byte(dest+17, 16);
924 code1 = bytebits_to_byte(dest+8,fmtLen);
925 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
926 } else {
927 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
928 if (fmtLen>32){
929 code1 = bytebits_to_byte(dest+8,fmtLen-32);
930 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
931 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
932 } else{
933 code1 = bytebits_to_byte(dest+8,fmtLen);
934 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
935 }
936 }
937 if (findone){
938 if (ledcontrol) LED_A_OFF();
939 break;
940 }
941 // reset
942 idx = 0;
943 WDT_HIT();
944 }
945 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
946 DbpString("Stopped");
947 if (ledcontrol) LED_A_OFF();
948 }
949
950 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
951 {
952 uint8_t *dest = BigBuf_get_addr();
953
954 size_t size=0, idx=0;
955 int clk=0, invert=0, errCnt=0, maxErr=20;
956 uint32_t hi=0;
957 uint64_t lo=0;
958 //clear read buffer
959 BigBuf_Clear_keep_EM();
960 // Configure to go in 125Khz listen mode
961 LFSetupFPGAForADC(95, true);
962
963 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
964
965 WDT_HIT();
966 if (ledcontrol) LED_A_ON();
967
968 DoAcquisition_default(-1,true);
969 size = BigBuf_max_traceLen();
970 //askdemod and manchester decode
971 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
972 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
973 WDT_HIT();
974
975 if (errCnt<0) continue;
976
977 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
978 if (errCnt){
979 if (size>64){
980 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
981 hi,
982 (uint32_t)(lo>>32),
983 (uint32_t)lo,
984 (uint32_t)(lo&0xFFFF),
985 (uint32_t)((lo>>16LL) & 0xFF),
986 (uint32_t)(lo & 0xFFFFFF));
987 } else {
988 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
989 (uint32_t)(lo>>32),
990 (uint32_t)lo,
991 (uint32_t)(lo&0xFFFF),
992 (uint32_t)((lo>>16LL) & 0xFF),
993 (uint32_t)(lo & 0xFFFFFF));
994 }
995
996 if (findone){
997 if (ledcontrol) LED_A_OFF();
998 *high=lo>>32;
999 *low=lo & 0xFFFFFFFF;
1000 break;
1001 }
1002 }
1003 WDT_HIT();
1004 hi = lo = size = idx = 0;
1005 clk = invert = errCnt = 0;
1006 }
1007 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1008 DbpString("Stopped");
1009 if (ledcontrol) LED_A_OFF();
1010 }
1011
1012 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
1013 {
1014 uint8_t *dest = BigBuf_get_addr();
1015 int idx=0;
1016 uint32_t code=0, code2=0;
1017 uint8_t version=0;
1018 uint8_t facilitycode=0;
1019 uint16_t number=0;
1020 //clear read buffer
1021 BigBuf_Clear_keep_EM();
1022 // Configure to go in 125Khz listen mode
1023 LFSetupFPGAForADC(95, true);
1024
1025 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1026 WDT_HIT();
1027 if (ledcontrol) LED_A_ON();
1028 DoAcquisition_default(-1,true);
1029 //fskdemod and get start index
1030 WDT_HIT();
1031 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
1032 if (idx<0) continue;
1033 //valid tag found
1034
1035 //Index map
1036 //0 10 20 30 40 50 60
1037 //| | | | | | |
1038 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1039 //-----------------------------------------------------------------------------
1040 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1041 //
1042 //XSF(version)facility:codeone+codetwo
1043 //Handle the data
1044 if(findone){ //only print binary if we are doing one
1045 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1046 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1047 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1048 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1049 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1050 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1051 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1052 }
1053 code = bytebits_to_byte(dest+idx,32);
1054 code2 = bytebits_to_byte(dest+idx+32,32);
1055 version = bytebits_to_byte(dest+idx+27,8); //14,4
1056 facilitycode = bytebits_to_byte(dest+idx+18,8);
1057 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1058
1059 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
1060 // if we're only looking for one tag
1061 if (findone){
1062 if (ledcontrol) LED_A_OFF();
1063 //LED_A_OFF();
1064 *high=code;
1065 *low=code2;
1066 break;
1067 }
1068 code=code2=0;
1069 version=facilitycode=0;
1070 number=0;
1071 idx=0;
1072
1073 WDT_HIT();
1074 }
1075 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1076 DbpString("Stopped");
1077 if (ledcontrol) LED_A_OFF();
1078 }
1079
1080 /*------------------------------
1081 * T5555/T5557/T5567/T5577 routines
1082 *------------------------------
1083 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1084 *
1085 * Relevant communication times in microsecond
1086 * To compensate antenna falling times shorten the write times
1087 * and enlarge the gap ones.
1088 * Q5 tags seems to have issues when these values changes.
1089 */
1090 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1091 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1092 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1093 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1094 #define READ_GAP 15*8
1095
1096 void TurnReadLFOn(int delay) {
1097 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1098 // Give it a bit of time for the resonant antenna to settle.
1099 WaitUS(delay); //155*8 //50*8
1100 }
1101
1102 // Write one bit to card
1103 void T55xxWriteBit(int bit) {
1104 if (!bit)
1105 TurnReadLFOn(WRITE_0);
1106 else
1107 TurnReadLFOn(WRITE_1);
1108 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1109 WaitUS(WRITE_GAP);
1110 }
1111
1112 // Send T5577 reset command then read stream (see if we can identify the start of the stream)
1113 void T55xxResetRead(void) {
1114 LED_A_ON();
1115 //clear buffer now so it does not interfere with timing later
1116 BigBuf_Clear_keep_EM();
1117
1118 // Set up FPGA, 125kHz
1119 LFSetupFPGAForADC(95, true);
1120 StartTicks();
1121 // make sure tag is fully powered up...
1122 WaitMS(5);
1123
1124 // Trigger T55x7 in mode.
1125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1126 WaitUS(START_GAP);
1127
1128 // reset tag - op code 00
1129 T55xxWriteBit(0);
1130 T55xxWriteBit(0);
1131
1132 TurnReadLFOn(READ_GAP);
1133
1134 // Acquisition
1135 doT55x7Acquisition(BigBuf_max_traceLen());
1136
1137 // Turn the field off
1138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1139 cmd_send(CMD_ACK,0,0,0,0,0);
1140 LED_A_OFF();
1141 }
1142
1143 // Write one card block in page 0, no lock
1144 void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1145 LED_A_ON();
1146 bool PwdMode = arg & 0x1;
1147 uint8_t Page = (arg & 0x2)>>1;
1148 bool testMode = arg & 0x4;
1149 uint32_t i = 0;
1150
1151 // Set up FPGA, 125kHz
1152 LFSetupFPGAForADC(95, true);
1153 StartTicks();
1154 // make sure tag is fully powered up...
1155 WaitMS(5);
1156 // Trigger T55x7 in mode.
1157 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1158 WaitUS(START_GAP);
1159
1160 if (testMode) Dbprintf("TestMODE");
1161 // Std Opcode 10
1162 T55xxWriteBit(testMode ? 0 : 1);
1163 T55xxWriteBit(testMode ? 1 : Page); //Page 0
1164 if (PwdMode){
1165 // Send Pwd
1166 for (i = 0x80000000; i != 0; i >>= 1)
1167 T55xxWriteBit(Pwd & i);
1168 }
1169 // Send Lock bit
1170 T55xxWriteBit(0);
1171
1172 // Send Data
1173 for (i = 0x80000000; i != 0; i >>= 1)
1174 T55xxWriteBit(Data & i);
1175
1176 // Send Block number
1177 for (i = 0x04; i != 0; i >>= 1)
1178 T55xxWriteBit(Block & i);
1179
1180 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1181 // so wait a little more)
1182
1183 // "there is a clock delay before programming"
1184 // - programming takes ~5.6ms for t5577 ~18ms for E5550
1185 // so we should wait 1 clock + 5.6ms then read response?
1186 // but we need to know we are dealing with t55x7 vs e5550 (or q5) marshmellow...
1187 if (testMode) {
1188 // Turn field on to read the response
1189 TurnReadLFOn(READ_GAP);
1190
1191 // Acquisition
1192 // Now do the acquisition
1193 // Now do the acquisition
1194 DoPartialAcquisition(20, true, 12000);
1195
1196 //doT55x7Acquisition(12000);
1197 } else {
1198 TurnReadLFOn(20 * 1000);
1199 }
1200 //could attempt to do a read to confirm write took
1201 // as the tag should repeat back the new block
1202 // until it is reset, but to confirm it we would
1203 // need to know the current block 0 config mode for
1204 // modulation clock an other details to demod the response...
1205 // response should be (for t55x7) a 0 bit then (ST if on)
1206 // block data written in on repeat until reset.
1207
1208 // turn field off
1209 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1210 LED_A_OFF();
1211 }
1212
1213 // Write one card block in page 0, no lock
1214 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) {
1215 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1216 cmd_send(CMD_ACK,0,0,0,0,0);
1217 }
1218
1219 // Read one card block in page [page]
1220 void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
1221 LED_A_ON();
1222 bool PwdMode = arg0 & 0x1;
1223 uint8_t Page = (arg0 & 0x2) >> 1;
1224 uint32_t i = 0;
1225 bool RegReadMode = (Block == 0xFF);
1226
1227 //clear buffer now so it does not interfere with timing later
1228 BigBuf_Clear_ext(false);
1229
1230 //make sure block is at max 7
1231 Block &= 0x7;
1232
1233 // Set up FPGA, 125kHz to power up the tag
1234 LFSetupFPGAForADC(95, true);
1235 StartTicks();
1236 // make sure tag is fully powered up...
1237 WaitMS(5);
1238 // Trigger T55x7 Direct Access Mode with start gap
1239 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1240 WaitUS(START_GAP);
1241
1242 // Opcode 1[page]
1243 T55xxWriteBit(1);
1244 T55xxWriteBit(Page); //Page 0
1245
1246 if (PwdMode){
1247 // Send Pwd
1248 for (i = 0x80000000; i != 0; i >>= 1)
1249 T55xxWriteBit(Pwd & i);
1250 }
1251 // Send a zero bit separation
1252 T55xxWriteBit(0);
1253
1254 // Send Block number (if direct access mode)
1255 if (!RegReadMode)
1256 for (i = 0x04; i != 0; i >>= 1)
1257 T55xxWriteBit(Block & i);
1258
1259 // Turn field on to read the response
1260 TurnReadLFOn(135*8);
1261
1262 // Acquisition
1263 // Now do the acquisition
1264 DoPartialAcquisition(0, true, 12000);
1265
1266 // doT55x7Acquisition(12000);
1267
1268 // Turn the field off
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1270 cmd_send(CMD_ACK,0,0,0,0,0);
1271 LED_A_OFF();
1272 }
1273
1274 void T55xxWakeUp(uint32_t Pwd){
1275 LED_B_ON();
1276 uint32_t i = 0;
1277
1278 // Set up FPGA, 125kHz
1279 LFSetupFPGAForADC(95, true);
1280 StartTicks();
1281 // make sure tag is fully powered up...
1282 WaitMS(5);
1283
1284 // Trigger T55x7 Direct Access Mode
1285 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1286 WaitUS(START_GAP);
1287
1288 // Opcode 10
1289 T55xxWriteBit(1);
1290 T55xxWriteBit(0); //Page 0
1291
1292 // Send Pwd
1293 for (i = 0x80000000; i != 0; i >>= 1)
1294 T55xxWriteBit(Pwd & i);
1295
1296 // Turn and leave field on to let the begin repeating transmission
1297 TurnReadLFOn(20*1000);
1298 }
1299
1300 /*-------------- Cloning routines -----------*/
1301
1302 void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1303 // write last block first and config block last (if included)
1304 for (uint8_t i = numblocks+startblock; i > startblock; i--) {
1305 T55xxWriteBlockExt(blockdata[i-1],i-1,0,0);
1306 }
1307 }
1308
1309 // Copy HID id to card and setup block 0 config
1310 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1311 uint32_t data[] = {0,0,0,0,0,0,0};
1312 uint8_t last_block = 0;
1313
1314 if (longFMT) {
1315 // Ensure no more than 84 bits supplied
1316 if (hi2>0xFFFFF) {
1317 DbpString("Tags can only have 84 bits.");
1318 return;
1319 }
1320 // Build the 6 data blocks for supplied 84bit ID
1321 last_block = 6;
1322 // load preamble (1D) & long format identifier (9E manchester encoded)
1323 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1324 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1325 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1326 data[3] = manchesterEncode2Bytes(hi >> 16);
1327 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1328 data[5] = manchesterEncode2Bytes(lo >> 16);
1329 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1330 } else {
1331 // Ensure no more than 44 bits supplied
1332 if (hi>0xFFF) {
1333 DbpString("Tags can only have 44 bits.");
1334 return;
1335 }
1336 // Build the 3 data blocks for supplied 44bit ID
1337 last_block = 3;
1338 // load preamble
1339 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1340 data[2] = manchesterEncode2Bytes(lo >> 16);
1341 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
1342 }
1343 // load chip config block
1344 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
1345
1346 //TODO add selection of chip for Q5 or T55x7
1347 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1348
1349 LED_D_ON();
1350 // Program the data blocks for supplied ID
1351 // and the block 0 for HID format
1352 WriteT55xx(data, 0, last_block+1);
1353
1354 LED_D_OFF();
1355
1356 DbpString("DONE!");
1357 }
1358
1359 void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1360 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1361 //TODO add selection of chip for Q5 or T55x7
1362 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
1363
1364 LED_D_ON();
1365 // Program the data blocks for supplied ID
1366 // and the block 0 config
1367 WriteT55xx(data, 0, 3);
1368
1369 LED_D_OFF();
1370
1371 DbpString("DONE!");
1372 }
1373
1374 // Clone Indala 64-bit tag by UID to T55x7
1375 void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1376 //Program the 2 data blocks for supplied 64bit UID
1377 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1378 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
1379 //TODO add selection of chip for Q5 or T55x7
1380 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1381
1382 WriteT55xx(data, 0, 3);
1383 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1384 // T5567WriteBlock(0x603E1042,0);
1385 DbpString("DONE!");
1386 }
1387 // Clone Indala 224-bit tag by UID to T55x7
1388 void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1389 //Program the 7 data blocks for supplied 224bit UID
1390 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1391 // and the block 0 for Indala224 format
1392 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1393 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
1394 //TODO add selection of chip for Q5 or T55x7
1395 // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1396 WriteT55xx(data, 0, 8);
1397 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1398 // T5567WriteBlock(0x603E10E2,0);
1399 DbpString("DONE!");
1400 }
1401 // clone viking tag to T55xx
1402 void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1403 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1404 if (Q5) data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1405 // Program the data blocks for supplied ID and the block 0 config
1406 WriteT55xx(data, 0, 3);
1407 LED_D_OFF();
1408 cmd_send(CMD_ACK,0,0,0,0,0);
1409 }
1410
1411 // Define 9bit header for EM410x tags
1412 #define EM410X_HEADER 0x1FF
1413 #define EM410X_ID_LENGTH 40
1414
1415 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
1416 int i, id_bit;
1417 uint64_t id = EM410X_HEADER;
1418 uint64_t rev_id = 0; // reversed ID
1419 int c_parity[4]; // column parity
1420 int r_parity = 0; // row parity
1421 uint32_t clock = 0;
1422
1423 // Reverse ID bits given as parameter (for simpler operations)
1424 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1425 if (i < 32) {
1426 rev_id = (rev_id << 1) | (id_lo & 1);
1427 id_lo >>= 1;
1428 } else {
1429 rev_id = (rev_id << 1) | (id_hi & 1);
1430 id_hi >>= 1;
1431 }
1432 }
1433
1434 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1435 id_bit = rev_id & 1;
1436
1437 if (i % 4 == 0) {
1438 // Don't write row parity bit at start of parsing
1439 if (i)
1440 id = (id << 1) | r_parity;
1441 // Start counting parity for new row
1442 r_parity = id_bit;
1443 } else {
1444 // Count row parity
1445 r_parity ^= id_bit;
1446 }
1447
1448 // First elements in column?
1449 if (i < 4)
1450 // Fill out first elements
1451 c_parity[i] = id_bit;
1452 else
1453 // Count column parity
1454 c_parity[i % 4] ^= id_bit;
1455
1456 // Insert ID bit
1457 id = (id << 1) | id_bit;
1458 rev_id >>= 1;
1459 }
1460
1461 // Insert parity bit of last row
1462 id = (id << 1) | r_parity;
1463
1464 // Fill out column parity at the end of tag
1465 for (i = 0; i < 4; ++i)
1466 id = (id << 1) | c_parity[i];
1467
1468 // Add stop bit
1469 id <<= 1;
1470
1471 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1472 LED_D_ON();
1473
1474 // Write EM410x ID
1475 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
1476
1477 clock = (card & 0xFF00) >> 8;
1478 clock = (clock == 0) ? 64 : clock;
1479 Dbprintf("Clock rate: %d", clock);
1480 if (card & 0xFF) { //t55x7
1481 clock = GetT55xxClockBit(clock);
1482 if (clock == 0) {
1483 Dbprintf("Invalid clock rate: %d", clock);
1484 return;
1485 }
1486 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
1487 } else { //t5555 (Q5)
1488 data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
1489 }
1490
1491 WriteT55xx(data, 0, 3);
1492
1493 LED_D_OFF();
1494 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1495 (uint32_t)(id >> 32), (uint32_t)id);
1496 }
1497
1498 //-----------------------------------
1499 // EM4469 / EM4305 routines
1500 //-----------------------------------
1501 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1502 #define FWD_CMD_WRITE 0xA
1503 #define FWD_CMD_READ 0x9
1504 #define FWD_CMD_DISABLE 0x5
1505
1506 uint8_t forwardLink_data[64]; //array of forwarded bits
1507 uint8_t * forward_ptr; //ptr for forward message preparation
1508 uint8_t fwd_bit_sz; //forwardlink bit counter
1509 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1510
1511 //====================================================================
1512 // prepares command bits
1513 // see EM4469 spec
1514 //====================================================================
1515 //--------------------------------------------------------------------
1516 // VALUES TAKEN FROM EM4x function: SendForward
1517 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1518 // WRITE_GAP = 128; (16*8)
1519 // WRITE_1 = 256 32*8; (32*8)
1520
1521 // These timings work for 4469/4269/4305 (with the 55*8 above)
1522 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1523
1524 uint8_t Prepare_Cmd( uint8_t cmd ) {
1525
1526 *forward_ptr++ = 0; //start bit
1527 *forward_ptr++ = 0; //second pause for 4050 code
1528
1529 *forward_ptr++ = cmd;
1530 cmd >>= 1;
1531 *forward_ptr++ = cmd;
1532 cmd >>= 1;
1533 *forward_ptr++ = cmd;
1534 cmd >>= 1;
1535 *forward_ptr++ = cmd;
1536
1537 return 6; //return number of emited bits
1538 }
1539
1540 //====================================================================
1541 // prepares address bits
1542 // see EM4469 spec
1543 //====================================================================
1544 uint8_t Prepare_Addr( uint8_t addr ) {
1545
1546 register uint8_t line_parity;
1547
1548 uint8_t i;
1549 line_parity = 0;
1550 for(i=0;i<6;i++) {
1551 *forward_ptr++ = addr;
1552 line_parity ^= addr;
1553 addr >>= 1;
1554 }
1555
1556 *forward_ptr++ = (line_parity & 1);
1557
1558 return 7; //return number of emited bits
1559 }
1560
1561 //====================================================================
1562 // prepares data bits intreleaved with parity bits
1563 // see EM4469 spec
1564 //====================================================================
1565 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1566
1567 register uint8_t line_parity;
1568 register uint8_t column_parity;
1569 register uint8_t i, j;
1570 register uint16_t data;
1571
1572 data = data_low;
1573 column_parity = 0;
1574
1575 for(i=0; i<4; i++) {
1576 line_parity = 0;
1577 for(j=0; j<8; j++) {
1578 line_parity ^= data;
1579 column_parity ^= (data & 1) << j;
1580 *forward_ptr++ = data;
1581 data >>= 1;
1582 }
1583 *forward_ptr++ = line_parity;
1584 if(i == 1)
1585 data = data_hi;
1586 }
1587
1588 for(j=0; j<8; j++) {
1589 *forward_ptr++ = column_parity;
1590 column_parity >>= 1;
1591 }
1592 *forward_ptr = 0;
1593
1594 return 45; //return number of emited bits
1595 }
1596
1597 //====================================================================
1598 // Forward Link send function
1599 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1600 // fwd_bit_count set with number of bits to be sent
1601 //====================================================================
1602 void SendForward(uint8_t fwd_bit_count) {
1603
1604 fwd_write_ptr = forwardLink_data;
1605 fwd_bit_sz = fwd_bit_count;
1606
1607 // Set up FPGA, 125kHz or 95 divisor
1608 LFSetupFPGAForADC(95, true);
1609
1610 // force 1st mod pulse (start gap must be longer for 4305)
1611 fwd_bit_sz--; //prepare next bit modulation
1612 fwd_write_ptr++;
1613 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1614 WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here...
1615 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1616 WaitUS(18*8); //18 cycles on (8us each)
1617
1618 // now start writting
1619 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1620 if(((*fwd_write_ptr++) & 1) == 1)
1621 WaitUS(32*8); //32 cycles at 125Khz (8us each)
1622 else {
1623 //These timings work for 4469/4269/4305 (with the 55*8 above)
1624 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1625 WaitUS(23*8); //23 cycles off (8us each)
1626 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1627 WaitUS(18*8); //18 cycles on (8us each)
1628 }
1629 }
1630 }
1631
1632 void EM4xLogin(uint32_t Password) {
1633
1634 uint8_t fwd_bit_count;
1635
1636 forward_ptr = forwardLink_data;
1637 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1638 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1639
1640 SendForward(fwd_bit_count);
1641
1642 //Wait for command to complete
1643 SpinDelay(20);
1644 }
1645
1646 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1647
1648 uint8_t fwd_bit_count;
1649
1650 // Clear destination buffer before sending the command
1651 BigBuf_Clear_ext(false);
1652
1653 LED_A_ON();
1654 StartTicks();
1655 //If password mode do login
1656 if (PwdMode == 1) EM4xLogin(Pwd);
1657
1658 forward_ptr = forwardLink_data;
1659 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1660 fwd_bit_count += Prepare_Addr( Address );
1661
1662 SendForward(fwd_bit_count);
1663 WaitUS(400);
1664 // Now do the acquisition
1665 DoPartialAcquisition(20, true, 6000);
1666
1667 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1668 LED_A_OFF();
1669 cmd_send(CMD_ACK,0,0,0,0,0);
1670 }
1671
1672 void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) {
1673
1674 bool PwdMode = (flag & 0xF);
1675 uint8_t Address = (flag >> 8) & 0xFF;
1676 uint8_t fwd_bit_count;
1677
1678 //clear buffer now so it does not interfere with timing later
1679 BigBuf_Clear_ext(false);
1680
1681 LED_A_ON();
1682 StartTicks();
1683 //If password mode do login
1684 if (PwdMode) EM4xLogin(Pwd);
1685
1686 forward_ptr = forwardLink_data;
1687 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1688 fwd_bit_count += Prepare_Addr( Address );
1689 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1690
1691 SendForward(fwd_bit_count);
1692
1693 //Wait for write to complete
1694 //SpinDelay(10);
1695
1696 WaitUS(6500);
1697 //Capture response if one exists
1698 DoPartialAcquisition(20, true, 6000);
1699
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1701 LED_A_OFF();
1702 cmd_send(CMD_ACK,0,0,0,0,0);
1703 }
1704 /*
1705 Reading a COTAG.
1706
1707 COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
1708 because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
1709
1710 READER START SEQUENCE:
1711 burst 800 us, gap 2.2 msecs
1712 burst 3.6 msecs gap 2.2 msecs
1713 burst 800 us gap 2.2 msecs
1714 pulse 3.6 msecs
1715
1716 This triggers a COTAG tag to response
1717 */
1718 void Cotag(uint32_t arg0) {
1719
1720 #define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
1721 #define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
1722
1723 uint8_t rawsignal = arg0 & 0xF;
1724
1725 LED_A_ON();
1726
1727 // Switching to LF image on FPGA. This might empty BigBuff
1728 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1729
1730 //clear buffer now so it does not interfere with timing later
1731 BigBuf_Clear_ext(false);
1732
1733 // Set up FPGA, 132kHz to power up the tag
1734 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
1735 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1736
1737 // Connect the A/D to the peak-detected low-frequency path.
1738 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1739
1740 // Now set up the SSC to get the ADC samples that are now streaming at us.
1741 FpgaSetupSsc();
1742
1743 // start clock - 1.5ticks is 1us
1744 StartTicks();
1745
1746 //send COTAG start pulse
1747 ON(740) OFF
1748 ON(3330) OFF
1749 ON(740) OFF
1750 ON(1000)
1751
1752 switch(rawsignal) {
1753 case 0: doCotagAcquisition(50000); break;
1754 case 1: doCotagAcquisitionManchester(); break;
1755 case 2: DoAcquisition_config(TRUE); break;
1756 }
1757
1758 // Turn the field off
1759 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1760 cmd_send(CMD_ACK,0,0,0,0,0);
1761 LED_A_OFF();
1762 }
Impressum, Datenschutz