]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Only re-compile version.c as often as necessary
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // The main application code. This is the first thing called after start.c
3 // executes.
4 // Jonathan Westhues, Mar 2006
5 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
6 //-----------------------------------------------------------------------------
7
8 #include <proxmark3.h>
9 #include <stdlib.h>
10 #include "apps.h"
11 #ifdef WITH_LCD
12 #include "fonts.h"
13 #include "LCD.h"
14 #endif
15
16
17 //=============================================================================
18 // A buffer where we can queue things up to be sent through the FPGA, for
19 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
20 // is the order in which they go out on the wire.
21 //=============================================================================
22
23 BYTE ToSend[256];
24 int ToSendMax;
25 static int ToSendBit;
26
27 void BufferClear(void)
28 {
29 memset(BigBuf,0,sizeof(BigBuf));
30 DbpString("Buffer cleared");
31 }
32
33 void ToSendReset(void)
34 {
35 ToSendMax = -1;
36 ToSendBit = 8;
37 }
38
39 void ToSendStuffBit(int b)
40 {
41 if(ToSendBit >= 8) {
42 ToSendMax++;
43 ToSend[ToSendMax] = 0;
44 ToSendBit = 0;
45 }
46
47 if(b) {
48 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
49 }
50
51 ToSendBit++;
52
53 if(ToSendBit >= sizeof(ToSend)) {
54 ToSendBit = 0;
55 DbpString("ToSendStuffBit overflowed!");
56 }
57 }
58
59 //=============================================================================
60 // Debug print functions, to go out over USB, to the usual PC-side client.
61 //=============================================================================
62
63 void DbpString(char *str)
64 {
65 /* this holds up stuff unless we're connected to usb */
66 if (!UsbConnected())
67 return;
68
69 UsbCommand c;
70 c.cmd = CMD_DEBUG_PRINT_STRING;
71 c.ext1 = strlen(str);
72 memcpy(c.d.asBytes, str, c.ext1);
73
74 UsbSendPacket((BYTE *)&c, sizeof(c));
75 // TODO fix USB so stupid things like this aren't req'd
76 SpinDelay(50);
77 }
78
79 void DbpIntegers(int x1, int x2, int x3)
80 {
81 /* this holds up stuff unless we're connected to usb */
82 if (!UsbConnected())
83 return;
84
85 UsbCommand c;
86 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
87 c.ext1 = x1;
88 c.ext2 = x2;
89 c.ext3 = x3;
90
91 UsbSendPacket((BYTE *)&c, sizeof(c));
92 // XXX
93 SpinDelay(50);
94 }
95
96 //-----------------------------------------------------------------------------
97 // Read an ADC channel and block till it completes, then return the result
98 // in ADC units (0 to 1023). Also a routine to average 32 samples and
99 // return that.
100 //-----------------------------------------------------------------------------
101 static int ReadAdc(int ch)
102 {
103 DWORD d;
104
105 ADC_CONTROL = ADC_CONTROL_RESET;
106 ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
107 ADC_MODE_SAMPLE_HOLD_TIME(8);
108 ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);
109
110 ADC_CONTROL = ADC_CONTROL_START;
111 while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))
112 ;
113 d = ADC_CHANNEL_DATA(ch);
114
115 return d;
116 }
117
118 static int AvgAdc(int ch)
119 {
120 int i;
121 int a = 0;
122
123 for(i = 0; i < 32; i++) {
124 a += ReadAdc(ch);
125 }
126
127 return (a + 15) >> 5;
128 }
129
130 void MeasureAntennaTuning(void)
131 {
132 BYTE *dest = (BYTE *)BigBuf;
133 int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
134 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
135
136 UsbCommand c;
137
138 DbpString("Measuring antenna characteristics, please wait.");
139 memset(BigBuf,0,sizeof(BigBuf));
140
141 /*
142 * Sweeps the useful LF range of the proxmark from
143 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
144 * read the voltage in the antenna, the result left
145 * in the buffer is a graph which should clearly show
146 * the resonating frequency of your LF antenna
147 * ( hopefully around 95 if it is tuned to 125kHz!)
148 */
149 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
150 for (i=255; i>19; i--) {
151 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
152 SpinDelay(20);
153 // Vref = 3.3V, and a 10000:240 voltage divider on the input
154 // can measure voltages up to 137500 mV
155 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
156 if (i==95) vLf125 = adcval; // voltage at 125Khz
157 if (i==89) vLf134 = adcval; // voltage at 134Khz
158
159 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
160 if(dest[i] > peak) {
161 peakv = adcval;
162 peak = dest[i];
163 peakf = i;
164 ptr = i;
165 }
166 }
167
168 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
169 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
170 SpinDelay(20);
171 // Vref = 3300mV, and an 10:1 voltage divider on the input
172 // can measure voltages up to 33000 mV
173 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
174
175 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
176 c.ext1 = (vLf125 << 0) | (vLf134 << 16);
177 c.ext2 = vHf;
178 c.ext3 = peakf | (peakv << 16);
179 UsbSendPacket((BYTE *)&c, sizeof(c));
180 }
181
182 void SimulateTagHfListen(void)
183 {
184 BYTE *dest = (BYTE *)BigBuf;
185 int n = sizeof(BigBuf);
186 BYTE v = 0;
187 int i;
188 int p = 0;
189
190 // We're using this mode just so that I can test it out; the simulated
191 // tag mode would work just as well and be simpler.
192 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
193
194 // We need to listen to the high-frequency, peak-detected path.
195 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
196
197 FpgaSetupSsc();
198
199 i = 0;
200 for(;;) {
201 if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
202 SSC_TRANSMIT_HOLDING = 0xff;
203 }
204 if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
205 BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
206
207 v <<= 1;
208 if(r & 1) {
209 v |= 1;
210 }
211 p++;
212
213 if(p >= 8) {
214 dest[i] = v;
215 v = 0;
216 p = 0;
217 i++;
218
219 if(i >= n) {
220 break;
221 }
222 }
223 }
224 }
225 DbpString("simulate tag (now type bitsamples)");
226 }
227
228 void ReadMem(int addr)
229 {
230 const DWORD *data = ((DWORD *)addr);
231 int i;
232
233 DbpString("Reading memory at address");
234 DbpIntegers(0, 0, addr);
235 for (i = 0; i < 8; i+= 2)
236 DbpIntegers(0, data[i], data[i+1]);
237 }
238
239 /* osimage version information is linked in */
240 extern struct version_information version_information;
241 /* bootrom version information is pointed to from _bootphase1_version_pointer */
242 extern char _bootphase1_version_pointer, _flash_start, _flash_end;
243 void SendVersion(void)
244 {
245 char temp[48]; /* Limited data payload in USB packets */
246 DbpString("Prox/RFID mark3 RFID instrument");
247
248 /* Try to find the bootrom version information. Expect to find a pointer at
249 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
250 * pointer, then use it.
251 */
252 void *bootrom_version = *(void**)&_bootphase1_version_pointer;
253 if( bootrom_version < (void*)&_flash_start || bootrom_version >= (void*)&_flash_end ) {
254 DbpString("bootrom version information appears invalid");
255 } else {
256 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
257 DbpString(temp);
258 }
259
260 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
261 DbpString(temp);
262
263 FpgaGatherVersion(temp, sizeof(temp));
264 DbpString(temp);
265 }
266
267 // samy's sniff and repeat routine
268 void SamyRun()
269 {
270 DbpString("Stand-alone mode! No PC necessary.");
271
272 // 3 possible options? no just 2 for now
273 #define OPTS 2
274
275 int high[OPTS], low[OPTS];
276
277 // Oooh pretty -- notify user we're in elite samy mode now
278 LED(LED_RED, 200);
279 LED(LED_ORANGE, 200);
280 LED(LED_GREEN, 200);
281 LED(LED_ORANGE, 200);
282 LED(LED_RED, 200);
283 LED(LED_ORANGE, 200);
284 LED(LED_GREEN, 200);
285 LED(LED_ORANGE, 200);
286 LED(LED_RED, 200);
287
288 int selected = 0;
289 int playing = 0;
290
291 // Turn on selected LED
292 LED(selected + 1, 0);
293
294 for (;;)
295 {
296 UsbPoll(FALSE);
297 WDT_HIT();
298
299 // Was our button held down or pressed?
300 int button_pressed = BUTTON_HELD(1000);
301 SpinDelay(300);
302
303 // Button was held for a second, begin recording
304 if (button_pressed > 0)
305 {
306 LEDsoff();
307 LED(selected + 1, 0);
308 LED(LED_RED2, 0);
309
310 // record
311 DbpString("Starting recording");
312
313 // wait for button to be released
314 while(BUTTON_PRESS())
315 WDT_HIT();
316
317 /* need this delay to prevent catching some weird data */
318 SpinDelay(500);
319
320 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
321 DbpString("Recorded");
322 DbpIntegers(selected, high[selected], low[selected]);
323
324 LEDsoff();
325 LED(selected + 1, 0);
326 // Finished recording
327
328 // If we were previously playing, set playing off
329 // so next button push begins playing what we recorded
330 playing = 0;
331 }
332
333 // Change where to record (or begin playing)
334 else if (button_pressed)
335 {
336 // Next option if we were previously playing
337 if (playing)
338 selected = (selected + 1) % OPTS;
339 playing = !playing;
340
341 LEDsoff();
342 LED(selected + 1, 0);
343
344 // Begin transmitting
345 if (playing)
346 {
347 LED(LED_GREEN, 0);
348 DbpString("Playing");
349 // wait for button to be released
350 while(BUTTON_PRESS())
351 WDT_HIT();
352 DbpIntegers(selected, high[selected], low[selected]);
353 CmdHIDsimTAG(high[selected], low[selected], 0);
354 DbpString("Done playing");
355 if (BUTTON_HELD(1000) > 0)
356 {
357 DbpString("Exiting");
358 LEDsoff();
359 return;
360 }
361
362 /* We pressed a button so ignore it here with a delay */
363 SpinDelay(300);
364
365 // when done, we're done playing, move to next option
366 selected = (selected + 1) % OPTS;
367 playing = !playing;
368 LEDsoff();
369 LED(selected + 1, 0);
370 }
371 else
372 while(BUTTON_PRESS())
373 WDT_HIT();
374 }
375 }
376 }
377
378
379 /*
380 OBJECTIVE
381 Listen and detect an external reader. Determine the best location
382 for the antenna.
383
384 INSTRUCTIONS:
385 Inside the ListenReaderField() function, there is two mode.
386 By default, when you call the function, you will enter mode 1.
387 If you press the PM3 button one time, you will enter mode 2.
388 If you press the PM3 button a second time, you will exit the function.
389
390 DESCRIPTION OF MODE 1:
391 This mode just listens for an external reader field and lights up green
392 for HF and/or red for LF. This is the original mode of the detectreader
393 function.
394
395 DESCRIPTION OF MODE 2:
396 This mode will visually represent, using the LEDs, the actual strength of the
397 current compared to the maximum current detected. Basically, once you know
398 what kind of external reader is present, it will help you spot the best location to place
399 your antenna. You will probably not get some good results if there is a LF and a HF reader
400 at the same place! :-)
401
402 LIGHT SCHEME USED:
403 */
404 static const char LIGHT_SCHEME[] = {
405 0x0, /* ---- | No field detected */
406 0x1, /* X--- | 14% of maximum current detected */
407 0x2, /* -X-- | 29% of maximum current detected */
408 0x4, /* --X- | 43% of maximum current detected */
409 0x8, /* ---X | 57% of maximum current detected */
410 0xC, /* --XX | 71% of maximum current detected */
411 0xE, /* -XXX | 86% of maximum current detected */
412 0xF, /* XXXX | 100% of maximum current detected */
413 };
414 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
415
416 void ListenReaderField(int limit)
417 {
418 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
419 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
420 int mode=1, display_val, display_max, i;
421
422 #define LF_ONLY 1
423 #define HF_ONLY 2
424
425 LEDsoff();
426
427 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
428
429 if(limit != HF_ONLY) {
430 DbpString("LF 125/134 Baseline:");
431 DbpIntegers(lf_av,0,0);
432 lf_baseline= lf_av;
433 }
434
435 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
436
437 if (limit != LF_ONLY) {
438 DbpString("HF 13.56 Baseline:");
439 DbpIntegers(hf_av,0,0);
440 hf_baseline= hf_av;
441 }
442
443 for(;;) {
444 if (BUTTON_PRESS()) {
445 SpinDelay(500);
446 switch (mode) {
447 case 1:
448 mode=2;
449 DbpString("Signal Strength Mode");
450 break;
451 case 2:
452 default:
453 DbpString("Stopped");
454 LEDsoff();
455 return;
456 break;
457 }
458 }
459 WDT_HIT();
460
461 if (limit != HF_ONLY) {
462 if(mode==1) {
463 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
464 else LED_D_OFF();
465 }
466
467 ++lf_count;
468 lf_av_new= ReadAdc(ADC_CHAN_LF);
469 // see if there's a significant change
470 if(abs(lf_av - lf_av_new) > 10) {
471 DbpString("LF 125/134 Field Change:");
472 DbpIntegers(lf_av,lf_av_new,lf_count);
473 lf_av= lf_av_new;
474 if (lf_av > lf_max)
475 lf_max = lf_av;
476 lf_count= 0;
477 }
478 }
479
480 if (limit != LF_ONLY) {
481 if (mode == 1){
482 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
483 else LED_B_OFF();
484 }
485
486 ++hf_count;
487 hf_av_new= ReadAdc(ADC_CHAN_HF);
488 // see if there's a significant change
489 if(abs(hf_av - hf_av_new) > 10) {
490 DbpString("HF 13.56 Field Change:");
491 DbpIntegers(hf_av,hf_av_new,hf_count);
492 hf_av= hf_av_new;
493 if (hf_av > hf_max)
494 hf_max = hf_av;
495 hf_count= 0;
496 }
497 }
498
499 if(mode == 2) {
500 if (limit == LF_ONLY) {
501 display_val = lf_av;
502 display_max = lf_max;
503 } else if (limit == HF_ONLY) {
504 display_val = hf_av;
505 display_max = hf_max;
506 } else { /* Pick one at random */
507 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
508 display_val = hf_av;
509 display_max = hf_max;
510 } else {
511 display_val = lf_av;
512 display_max = lf_max;
513 }
514 }
515 for (i=0; i<LIGHT_LEN; i++) {
516 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
517 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
518 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
519 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
520 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
521 break;
522 }
523 }
524 }
525 }
526 }
527
528 void UsbPacketReceived(BYTE *packet, int len)
529 {
530 UsbCommand *c = (UsbCommand *)packet;
531
532 switch(c->cmd) {
533 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
534 AcquireRawAdcSamples125k(c->ext1);
535 break;
536
537 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
538 ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
539 break;
540
541 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
542 AcquireRawAdcSamplesIso15693();
543 break;
544
545 case CMD_BUFF_CLEAR:
546 BufferClear();
547 break;
548
549 case CMD_READER_ISO_15693:
550 ReaderIso15693(c->ext1);
551 break;
552
553 case CMD_SIMTAG_ISO_15693:
554 SimTagIso15693(c->ext1);
555 break;
556
557 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
558 AcquireRawAdcSamplesIso14443(c->ext1);
559 break;
560
561 case CMD_READ_SRI512_TAG:
562 ReadSRI512Iso14443(c->ext1);
563 break;
564
565 case CMD_READER_ISO_14443a:
566 ReaderIso14443a(c->ext1);
567 break;
568
569 case CMD_SNOOP_ISO_14443:
570 SnoopIso14443();
571 break;
572
573 case CMD_SNOOP_ISO_14443a:
574 SnoopIso14443a();
575 break;
576
577 case CMD_SIMULATE_TAG_HF_LISTEN:
578 SimulateTagHfListen();
579 break;
580
581 case CMD_SIMULATE_TAG_ISO_14443:
582 SimulateIso14443Tag();
583 break;
584
585 case CMD_SIMULATE_TAG_ISO_14443a:
586 SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID
587 break;
588
589 case CMD_MEASURE_ANTENNA_TUNING:
590 MeasureAntennaTuning();
591 break;
592
593 case CMD_LISTEN_READER_FIELD:
594 ListenReaderField(c->ext1);
595 break;
596
597 case CMD_HID_DEMOD_FSK:
598 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
599 break;
600
601 case CMD_HID_SIM_TAG:
602 CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID
603 break;
604
605 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
606 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
607 SpinDelay(200);
608 LED_D_OFF(); // LED D indicates field ON or OFF
609 break;
610
611 case CMD_READ_TI_TYPE:
612 ReadTItag();
613 break;
614
615 case CMD_WRITE_TI_TYPE:
616 WriteTItag(c->ext1,c->ext2,c->ext3);
617 break;
618
619 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
620 UsbCommand n;
621 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
622 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
623 } else {
624 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
625 }
626 n.ext1 = c->ext1;
627 memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));
628 UsbSendPacket((BYTE *)&n, sizeof(n));
629 break;
630 }
631 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
632 BYTE *b = (BYTE *)BigBuf;
633 memcpy(b+c->ext1, c->d.asBytes, 48);
634 break;
635 }
636 case CMD_SIMULATE_TAG_125K:
637 LED_A_ON();
638 SimulateTagLowFrequency(c->ext1, 1);
639 LED_A_OFF();
640 break;
641 case CMD_READ_MEM:
642 ReadMem(c->ext1);
643 break;
644 case CMD_SET_LF_DIVISOR:
645 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
646 break;
647 case CMD_VERSION:
648 SendVersion();
649 break;
650 case CMD_LF_SIMULATE_BIDIR:
651 SimulateTagLowFrequencyBidir(c->ext1, c->ext2);
652 break;
653 #ifdef WITH_LCD
654 case CMD_LCD_RESET:
655 LCDReset();
656 break;
657 case CMD_LCD:
658 LCDSend(c->ext1);
659 break;
660 #endif
661 case CMD_SETUP_WRITE:
662 case CMD_FINISH_WRITE:
663 case CMD_HARDWARE_RESET:
664 USB_D_PLUS_PULLUP_OFF();
665 SpinDelay(1000);
666 SpinDelay(1000);
667 RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
668 for(;;) {
669 // We're going to reset, and the bootrom will take control.
670 }
671 break;
672
673 default:
674 DbpString("unknown command");
675 break;
676 }
677 }
678
679 void AppMain(void)
680 {
681 memset(BigBuf,0,sizeof(BigBuf));
682 SpinDelay(100);
683
684 LED_D_OFF();
685 LED_C_OFF();
686 LED_B_OFF();
687 LED_A_OFF();
688
689 UsbStart();
690
691 // The FPGA gets its clock from us from PCK0 output, so set that up.
692 PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);
693 PIO_DISABLE = (1 << GPIO_PCK0);
694 PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;
695 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
696 PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |
697 PMC_CLK_PRESCALE_DIV_4;
698 PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);
699
700 // Reset SPI
701 SPI_CONTROL = SPI_CONTROL_RESET;
702 // Reset SSC
703 SSC_CONTROL = SSC_CONTROL_RESET;
704
705 // Load the FPGA image, which we have stored in our flash.
706 FpgaDownloadAndGo();
707
708 #ifdef WITH_LCD
709
710 LCDInit();
711
712 // test text on different colored backgrounds
713 LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
714 LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
715 LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
716 LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
717 LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
718 LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
719 LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
720 LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
721
722 // color bands
723 LCDFill(0, 1+8* 8, 132, 8, BLACK);
724 LCDFill(0, 1+8* 9, 132, 8, WHITE);
725 LCDFill(0, 1+8*10, 132, 8, RED);
726 LCDFill(0, 1+8*11, 132, 8, GREEN);
727 LCDFill(0, 1+8*12, 132, 8, BLUE);
728 LCDFill(0, 1+8*13, 132, 8, YELLOW);
729 LCDFill(0, 1+8*14, 132, 8, CYAN);
730 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
731
732 #endif
733
734 for(;;) {
735 UsbPoll(FALSE);
736 WDT_HIT();
737
738 if (BUTTON_HELD(1000) > 0)
739 SamyRun();
740 }
741 }
Impressum, Datenschutz