]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/hitag2.c
added hitag bit count output in log
[proxmark3-svn] / armsrc / hitag2.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Hitag2 emulation (preliminary test version)
7 //
8 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
9 //-----------------------------------------------------------------------------
10 // Hitag2 complete rewrite of the code
11 // - Fixed modulation/encoding issues
12 // - Rewrote code for transponder emulation
13 // - Added snooping of transponder communication
14 // - Added reader functionality
15 //
16 // (c) 2012 Roel Verdult
17 //-----------------------------------------------------------------------------
18
19 #include "proxmark3.h"
20 #include "apps.h"
21 #include "util.h"
22 #include "hitag2.h"
23 #include "string.h"
24
25 static bool bQuiet;
26
27 bool bCrypto;
28 bool bAuthenticating;
29 bool bPwd;
30 bool bSuccessful;
31
32 size_t nbytes(size_t nbits) {
33 return (nbits/8)+((nbits%8)>0);
34 }
35
36 int LogTraceHitag(const uint8_t * btBytes, int iBits, int iSamples, uint32_t dwParity, int bReader)
37 {
38 // Return when trace is full
39 if (traceLen >= TRACE_SIZE) return FALSE;
40
41 // Trace the random, i'm curious
42 rsamples += iSamples;
43 trace[traceLen++] = ((rsamples >> 0) & 0xff);
44 trace[traceLen++] = ((rsamples >> 8) & 0xff);
45 trace[traceLen++] = ((rsamples >> 16) & 0xff);
46 trace[traceLen++] = ((rsamples >> 24) & 0xff);
47 if (!bReader) {
48 trace[traceLen - 1] |= 0x80;
49 }
50 trace[traceLen++] = ((dwParity >> 0) & 0xff);
51 trace[traceLen++] = ((dwParity >> 8) & 0xff);
52 trace[traceLen++] = ((dwParity >> 16) & 0xff);
53 trace[traceLen++] = ((dwParity >> 24) & 0xff);
54 trace[traceLen++] = iBits;
55 memcpy(trace + traceLen, btBytes, nbytes(iBits));
56 traceLen += nbytes(iBits);
57 return TRUE;
58 }
59
60 struct hitag2_tag {
61 uint32_t uid;
62 enum {
63 TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr
64 TAG_STATE_ACTIVATING = 0x02 , // In activation phase (password mode), sent UID, awaiting reader password
65 TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands
66 TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written
67 } state;
68 unsigned int active_sector;
69 byte_t crypto_active;
70 uint64_t cs;
71 byte_t sectors[12][4];
72 };
73
74 static struct hitag2_tag tag = {
75 .state = TAG_STATE_RESET,
76 .sectors = { // Password mode: | Crypto mode:
77 [0] = { 0x02, 0x4e, 0x02, 0x20}, // UID | UID
78 [1] = { 0x4d, 0x49, 0x4b, 0x52}, // Password RWD | 32 bit LSB key
79 [2] = { 0x20, 0xf0, 0x4f, 0x4e}, // Reserved | 16 bit MSB key, 16 bit reserved
80 [3] = { 0x0e, 0xaa, 0x48, 0x54}, // Configuration, password TAG | Configuration, password TAG
81 [4] = { 0x46, 0x5f, 0x4f, 0x4b}, // Data: F_OK
82 [5] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
83 [6] = { 0xaa, 0xaa, 0xaa, 0xaa}, // Data: ....
84 [7] = { 0x55, 0x55, 0x55, 0x55}, // Data: UUUU
85 [8] = { 0x00, 0x00, 0x00, 0x00}, // RSK Low
86 [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High
87 [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF
88 [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC
89 },
90 };
91
92 //#define TRACE_LENGTH 3000
93 //uint8_t *trace = (uint8_t *) BigBuf;
94 //int traceLen = 0;
95 //int rsamples = 0;
96
97 #define AUTH_TABLE_OFFSET FREE_BUFFER_OFFSET
98 #define AUTH_TABLE_LENGTH FREE_BUFFER_SIZE
99 byte_t* auth_table = (byte_t *)BigBuf+AUTH_TABLE_OFFSET;
100 size_t auth_table_pos = 0;
101 size_t auth_table_len = AUTH_TABLE_LENGTH;
102
103 byte_t password[4];
104 byte_t NrAr[8];
105 byte_t key[8];
106 uint64_t cipher_state;
107
108 /* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
109 // Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007.
110 // For educational purposes only.
111 // No warranties or guarantees of any kind.
112 // This code is released into the public domain by its author.
113
114 // Basic macros:
115
116 #define u8 uint8_t
117 #define u32 uint32_t
118 #define u64 uint64_t
119 #define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
120 #define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
121 #define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
122 #define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
123 #define bit(x,n) (((x)>>(n))&1)
124 #define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
125 #define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
126 #define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
127
128 // Single bit Hitag2 functions:
129
130 #define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
131
132 static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
133 static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
134 static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
135
136 static u32 _f20 (const u64 x)
137 {
138 u32 i5;
139
140 i5 = ((ht2_f4a >> i4 (x, 1, 2, 4, 5)) & 1)* 1
141 + ((ht2_f4b >> i4 (x, 7,11,13,14)) & 1)* 2
142 + ((ht2_f4b >> i4 (x,16,20,22,25)) & 1)* 4
143 + ((ht2_f4b >> i4 (x,27,28,30,32)) & 1)* 8
144 + ((ht2_f4a >> i4 (x,33,42,43,45)) & 1)*16;
145
146 return (ht2_f5c >> i5) & 1;
147 }
148
149 static u64 _hitag2_init (const u64 key, const u32 serial, const u32 IV)
150 {
151 u32 i;
152 u64 x = ((key & 0xFFFF) << 32) + serial;
153
154 for (i = 0; i < 32; i++)
155 {
156 x >>= 1;
157 x += (u64) (_f20 (x) ^ (((IV >> i) ^ (key >> (i+16))) & 1)) << 47;
158 }
159 return x;
160 }
161
162 static u64 _hitag2_round (u64 *state)
163 {
164 u64 x = *state;
165
166 x = (x >> 1) +
167 ((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6)
168 ^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22)
169 ^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41)
170 ^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47);
171
172 *state = x;
173 return _f20 (x);
174 }
175
176 static u32 _hitag2_byte (u64 * x)
177 {
178 u32 i, c;
179
180 for (i = 0, c = 0; i < 8; i++) c += (u32) _hitag2_round (x) << (i^7);
181 return c;
182 }
183
184 int hitag2_reset(void)
185 {
186 tag.state = TAG_STATE_RESET;
187 tag.crypto_active = 0;
188 return 0;
189 }
190
191 int hitag2_init(void)
192 {
193 // memcpy(&tag, &resetdata, sizeof(tag));
194 hitag2_reset();
195 return 0;
196 }
197
198 static void hitag2_cipher_reset(struct hitag2_tag *tag, const byte_t *iv)
199 {
200 uint64_t key = ((uint64_t)tag->sectors[2][2]) |
201 ((uint64_t)tag->sectors[2][3] << 8) |
202 ((uint64_t)tag->sectors[1][0] << 16) |
203 ((uint64_t)tag->sectors[1][1] << 24) |
204 ((uint64_t)tag->sectors[1][2] << 32) |
205 ((uint64_t)tag->sectors[1][3] << 40);
206 uint32_t uid = ((uint32_t)tag->sectors[0][0]) |
207 ((uint32_t)tag->sectors[0][1] << 8) |
208 ((uint32_t)tag->sectors[0][2] << 16) |
209 ((uint32_t)tag->sectors[0][3] << 24);
210 uint32_t iv_ = (((uint32_t)(iv[0]))) |
211 (((uint32_t)(iv[1])) << 8) |
212 (((uint32_t)(iv[2])) << 16) |
213 (((uint32_t)(iv[3])) << 24);
214 tag->cs = _hitag2_init(rev64(key), rev32(uid), rev32(iv_));
215 }
216
217 static int hitag2_cipher_authenticate(uint64_t* cs, const byte_t *authenticator_is)
218 {
219 byte_t authenticator_should[4];
220 authenticator_should[0] = ~_hitag2_byte(cs);
221 authenticator_should[1] = ~_hitag2_byte(cs);
222 authenticator_should[2] = ~_hitag2_byte(cs);
223 authenticator_should[3] = ~_hitag2_byte(cs);
224 return (memcmp(authenticator_should, authenticator_is, 4) == 0);
225 }
226
227 static int hitag2_cipher_transcrypt(uint64_t* cs, byte_t *data, unsigned int bytes, unsigned int bits)
228 {
229 int i;
230 for(i=0; i<bytes; i++) data[i] ^= _hitag2_byte(cs);
231 for(i=0; i<bits; i++) data[bytes] ^= _hitag2_round(cs) << (7-i);
232 return 0;
233 }
234
235 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
236 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
237 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
238 // T0 = TIMER_CLOCK1 / 125000 = 192
239 #define T0 192
240
241 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
242 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
243
244 #define HITAG_FRAME_LEN 20
245 #define HITAG_T_STOP 36 /* T_EOF should be > 36 */
246 #define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
247 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
248 #define HITAG_T_1_MIN 25 /* T[1] should be 26..30 */
249 //#define HITAG_T_EOF 40 /* T_EOF should be > 36 */
250 #define HITAG_T_EOF 80 /* T_EOF should be > 36 */
251 #define HITAG_T_WAIT_1 200 /* T_wresp should be 199..206 */
252 #define HITAG_T_WAIT_2 90 /* T_wresp should be 199..206 */
253 #define HITAG_T_WAIT_MAX 300 /* bit more than HITAG_T_WAIT_1 + HITAG_T_WAIT_2 */
254
255 #define HITAG_T_TAG_ONE_HALF_PERIOD 10
256 #define HITAG_T_TAG_TWO_HALF_PERIOD 25
257 #define HITAG_T_TAG_THREE_HALF_PERIOD 41
258 #define HITAG_T_TAG_FOUR_HALF_PERIOD 57
259
260 #define HITAG_T_TAG_HALF_PERIOD 16
261 #define HITAG_T_TAG_FULL_PERIOD 32
262
263 #define HITAG_T_TAG_CAPTURE_ONE_HALF 13
264 #define HITAG_T_TAG_CAPTURE_TWO_HALF 25
265 #define HITAG_T_TAG_CAPTURE_THREE_HALF 41
266 #define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
267
268
269 static void hitag_send_bit(int bit) {
270 LED_A_ON();
271 // Reset clock for the next bit
272 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
273
274 // Fixed modulation, earlier proxmark version used inverted signal
275 if(bit == 0) {
276 // Manchester: Unloaded, then loaded |__--|
277 LOW(GPIO_SSC_DOUT);
278 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD);
279 HIGH(GPIO_SSC_DOUT);
280 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD);
281 } else {
282 // Manchester: Loaded, then unloaded |--__|
283 HIGH(GPIO_SSC_DOUT);
284 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_HALF_PERIOD);
285 LOW(GPIO_SSC_DOUT);
286 while(AT91C_BASE_TC0->TC_CV < T0*HITAG_T_TAG_FULL_PERIOD);
287 }
288 LED_A_OFF();
289 }
290
291 static void hitag_send_frame(const byte_t* frame, size_t frame_len)
292 {
293 // Send start of frame
294 for(size_t i=0; i<5; i++) {
295 hitag_send_bit(1);
296 }
297
298 // Send the content of the frame
299 for(size_t i=0; i<frame_len; i++) {
300 hitag_send_bit((frame[i/8] >> (7-(i%8)))&1);
301 }
302
303 // Drop the modulation
304 LOW(GPIO_SSC_DOUT);
305 }
306
307 void hitag2_handle_reader_command(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen)
308 {
309 byte_t rx_air[HITAG_FRAME_LEN];
310
311 // Copy the (original) received frame how it is send over the air
312 memcpy(rx_air,rx,nbytes(rxlen));
313
314 if(tag.crypto_active) {
315 hitag2_cipher_transcrypt(&(tag.cs),rx,rxlen/8,rxlen%8);
316 }
317
318 // Reset the transmission frame length
319 *txlen = 0;
320
321 // Try to find out which command was send by selecting on length (in bits)
322 switch (rxlen) {
323 // Received 11000 from the reader, request for UID, send UID
324 case 05: {
325 // Always send over the air in the clear plaintext mode
326 if(rx_air[0] != 0xC0) {
327 // Unknown frame ?
328 return;
329 }
330 *txlen = 32;
331 memcpy(tx,tag.sectors[0],4);
332 tag.crypto_active = 0;
333 }
334 break;
335
336 // Read/Write command: ..xx x..y yy with yyy == ~xxx, xxx is sector number
337 case 10: {
338 unsigned int sector = (~( ((rx[0]<<2)&0x04) | ((rx[1]>>6)&0x03) ) & 0x07);
339 // Verify complement of sector index
340 if(sector != ((rx[0]>>3)&0x07)) {
341 //DbpString("Transmission error (read/write)");
342 return;
343 }
344
345 switch (rx[0] & 0xC6) {
346 // Read command: 11xx x00y
347 case 0xC0:
348 memcpy(tx,tag.sectors[sector],4);
349 *txlen = 32;
350 break;
351
352 // Inverted Read command: 01xx x10y
353 case 0x44:
354 for (size_t i=0; i<4; i++) {
355 tx[i] = tag.sectors[sector][i] ^ 0xff;
356 }
357 *txlen = 32;
358 break;
359
360 // Write command: 10xx x01y
361 case 0x82:
362 // Prepare write, acknowledge by repeating command
363 memcpy(tx,rx,nbytes(rxlen));
364 *txlen = rxlen;
365 tag.active_sector = sector;
366 tag.state=TAG_STATE_WRITING;
367 break;
368
369 // Unknown command
370 default:
371 Dbprintf("Uknown command: %02x %02x",rx[0],rx[1]);
372 return;
373 break;
374 }
375 }
376 break;
377
378 // Writing data or Reader password
379 case 32: {
380 if(tag.state == TAG_STATE_WRITING) {
381 // These are the sector contents to be written. We don't have to do anything else.
382 memcpy(tag.sectors[tag.active_sector],rx,nbytes(rxlen));
383 tag.state=TAG_STATE_RESET;
384 return;
385 } else {
386 // Received RWD password, respond with configuration and our password
387 if(memcmp(rx,tag.sectors[1],4) != 0) {
388 DbpString("Reader password is wrong");
389 return;
390 }
391 *txlen = 32;
392 memcpy(tx,tag.sectors[3],4);
393 }
394 }
395 break;
396
397 // Received RWD authentication challenge and respnse
398 case 64: {
399 // Store the authentication attempt
400 if (auth_table_len < (AUTH_TABLE_LENGTH-8)) {
401 memcpy(auth_table+auth_table_len,rx,8);
402 auth_table_len += 8;
403 }
404
405 // Reset the cipher state
406 hitag2_cipher_reset(&tag,rx);
407 // Check if the authentication was correct
408 if(!hitag2_cipher_authenticate(&(tag.cs),rx+4)) {
409 // The reader failed to authenticate, do nothing
410 Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]);
411 return;
412 }
413 // Succesful, but commented out reporting back to the Host, this may delay to much.
414 // Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK!",rx[0],rx[1],rx[2],rx[3],rx[4],rx[5],rx[6],rx[7]);
415
416 // Activate encryption algorithm for all further communication
417 tag.crypto_active = 1;
418
419 // Use the tag password as response
420 memcpy(tx,tag.sectors[3],4);
421 *txlen = 32;
422 }
423 break;
424 }
425
426 // LogTraceHitag(rx,rxlen,0,0,false);
427 // LogTraceHitag(tx,*txlen,0,0,true);
428
429 if(tag.crypto_active) {
430 hitag2_cipher_transcrypt(&(tag.cs), tx, *txlen/8, *txlen%8);
431 }
432 }
433
434 static void hitag_reader_send_bit(int bit) {
435 LED_A_ON();
436 // Reset clock for the next bit
437 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
438
439 // Binary puls length modulation (BPLM) is used to encode the data stream
440 // This means that a transmission of a one takes longer than that of a zero
441
442 // Enable modulation, which means, drop the the field
443 HIGH(GPIO_SSC_DOUT);
444
445 // Wait for 4-10 times the carrier period
446 while(AT91C_BASE_TC0->TC_CV < T0*6);
447 // SpinDelayUs(8*8);
448
449 // Disable modulation, just activates the field again
450 LOW(GPIO_SSC_DOUT);
451
452 if(bit == 0) {
453 // Zero bit: |_-|
454 while(AT91C_BASE_TC0->TC_CV < T0*22);
455 // SpinDelayUs(16*8);
456 } else {
457 // One bit: |_--|
458 while(AT91C_BASE_TC0->TC_CV < T0*28);
459 // SpinDelayUs(22*8);
460 }
461 LED_A_OFF();
462 }
463
464 static void hitag_reader_send_frame(const byte_t* frame, size_t frame_len)
465 {
466 // Send the content of the frame
467 for(size_t i=0; i<frame_len; i++) {
468 hitag_reader_send_bit((frame[i/8] >> (7-(i%8)))&1);
469 }
470 // Send EOF
471 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
472 // Enable modulation, which means, drop the the field
473 HIGH(GPIO_SSC_DOUT);
474 // Wait for 4-10 times the carrier period
475 while(AT91C_BASE_TC0->TC_CV < T0*6);
476 // Disable modulation, just activates the field again
477 LOW(GPIO_SSC_DOUT);
478 }
479
480 size_t blocknr;
481
482 bool hitag2_password(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
483 // Reset the transmission frame length
484 *txlen = 0;
485
486 // Try to find out which command was send by selecting on length (in bits)
487 switch (rxlen) {
488 // No answer, try to resurrect
489 case 0: {
490 // Stop if there is no answer (after sending password)
491 if (bPwd) {
492 DbpString("Password failed!");
493 return false;
494 }
495 *txlen = 5;
496 memcpy(tx,"\xc0",nbytes(*txlen));
497 } break;
498
499 // Received UID, tag password
500 case 32: {
501 if (!bPwd) {
502 *txlen = 32;
503 memcpy(tx,password,4);
504 bPwd = true;
505 memcpy(tag.sectors[blocknr],rx,4);
506 blocknr++;
507 } else {
508
509 if(blocknr == 1){
510 //store password in block1, the TAG answers with Block3, but we need the password in memory
511 memcpy(tag.sectors[blocknr],tx,4);
512 }else{
513 memcpy(tag.sectors[blocknr],rx,4);
514 }
515
516 blocknr++;
517 if (blocknr > 7) {
518 DbpString("Read succesful!");
519 bSuccessful = true;
520 return false;
521 }
522 *txlen = 10;
523 tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
524 tx[1] = ((blocknr^7) << 6);
525 }
526 } break;
527
528 // Unexpected response
529 default: {
530 Dbprintf("Uknown frame length: %d",rxlen);
531 return false;
532 } break;
533 }
534 return true;
535 }
536
537 bool hitag2_crypto(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
538 // Reset the transmission frame length
539 *txlen = 0;
540
541 if(bCrypto) {
542 hitag2_cipher_transcrypt(&cipher_state,rx,rxlen/8,rxlen%8);
543 }
544
545 // Try to find out which command was send by selecting on length (in bits)
546 switch (rxlen) {
547 // No answer, try to resurrect
548 case 0: {
549 // Stop if there is no answer while we are in crypto mode (after sending NrAr)
550 if (bCrypto) {
551 // Failed during authentication
552 if (bAuthenticating) {
553 DbpString("Authentication failed!");
554 return false;
555 } else {
556 // Failed reading a block, could be (read/write) locked, skip block and re-authenticate
557 if (blocknr == 1) {
558 // Write the low part of the key in memory
559 memcpy(tag.sectors[1],key+2,4);
560 } else if (blocknr == 2) {
561 // Write the high part of the key in memory
562 tag.sectors[2][0] = 0x00;
563 tag.sectors[2][1] = 0x00;
564 tag.sectors[2][2] = key[0];
565 tag.sectors[2][3] = key[1];
566 } else {
567 // Just put zero's in the memory (of the unreadable block)
568 memset(tag.sectors[blocknr],0x00,4);
569 }
570 blocknr++;
571 bCrypto = false;
572 }
573 } else {
574 *txlen = 5;
575 memcpy(tx,"\xc0",nbytes(*txlen));
576 }
577 } break;
578
579 // Received UID, crypto tag answer
580 case 32: {
581 if (!bCrypto) {
582 uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
583 uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
584 cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
585 memset(tx,0x00,4);
586 memset(tx+4,0xff,4);
587 hitag2_cipher_transcrypt(&cipher_state,tx+4,4,0);
588 *txlen = 64;
589 bCrypto = true;
590 bAuthenticating = true;
591 } else {
592 // Check if we received answer tag (at)
593 if (bAuthenticating) {
594 bAuthenticating = false;
595 } else {
596 // Store the received block
597 memcpy(tag.sectors[blocknr],rx,4);
598 blocknr++;
599 }
600 if (blocknr > 7) {
601 DbpString("Read succesful!");
602 bSuccessful = true;
603 return false;
604 }
605 *txlen = 10;
606 tx[0] = 0xc0 | (blocknr << 3) | ((blocknr^7) >> 2);
607 tx[1] = ((blocknr^7) << 6);
608 }
609 } break;
610
611 // Unexpected response
612 default: {
613 Dbprintf("Uknown frame length: %d",rxlen);
614 return false;
615 } break;
616 }
617
618
619 if(bCrypto) {
620 // We have to return now to avoid double encryption
621 if (!bAuthenticating) {
622 hitag2_cipher_transcrypt(&cipher_state,tx,*txlen/8,*txlen%8);
623 }
624 }
625
626 return true;
627 }
628
629
630 bool hitag2_authenticate(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
631 // Reset the transmission frame length
632 *txlen = 0;
633
634 // Try to find out which command was send by selecting on length (in bits)
635 switch (rxlen) {
636 // No answer, try to resurrect
637 case 0: {
638 // Stop if there is no answer while we are in crypto mode (after sending NrAr)
639 if (bCrypto) {
640 DbpString("Authentication failed!");
641 return false;
642 }
643 *txlen = 5;
644 memcpy(tx,"\xc0",nbytes(*txlen));
645 } break;
646
647 // Received UID, crypto tag answer
648 case 32: {
649 if (!bCrypto) {
650 *txlen = 64;
651 memcpy(tx,NrAr,8);
652 bCrypto = true;
653 } else {
654 DbpString("Authentication succesful!");
655 // We are done... for now
656 return false;
657 }
658 } break;
659
660 // Unexpected response
661 default: {
662 Dbprintf("Uknown frame length: %d",rxlen);
663 return false;
664 } break;
665 }
666
667 return true;
668 }
669
670 bool hitag2_test_auth_attempts(byte_t* rx, const size_t rxlen, byte_t* tx, size_t* txlen) {
671 // Reset the transmission frame length
672 *txlen = 0;
673
674 // Try to find out which command was send by selecting on length (in bits)
675 switch (rxlen) {
676 // No answer, try to resurrect
677 case 0: {
678 // Stop if there is no answer while we are in crypto mode (after sending NrAr)
679 if (bCrypto) {
680 Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x Failed!",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]);
681 bCrypto = false;
682 if ((auth_table_pos+8) == auth_table_len) {
683 return false;
684 }
685 auth_table_pos += 8;
686 memcpy(NrAr,auth_table+auth_table_pos,8);
687 }
688 *txlen = 5;
689 memcpy(tx,"\xc0",nbytes(*txlen));
690 } break;
691
692 // Received UID, crypto tag answer, or read block response
693 case 32: {
694 if (!bCrypto) {
695 *txlen = 64;
696 memcpy(tx,NrAr,8);
697 bCrypto = true;
698 } else {
699 Dbprintf("auth: %02x%02x%02x%02x%02x%02x%02x%02x OK",NrAr[0],NrAr[1],NrAr[2],NrAr[3],NrAr[4],NrAr[5],NrAr[6],NrAr[7]);
700 bCrypto = false;
701 if ((auth_table_pos+8) == auth_table_len) {
702 return false;
703 }
704 auth_table_pos += 8;
705 memcpy(NrAr,auth_table+auth_table_pos,8);
706 }
707 } break;
708
709 default: {
710 Dbprintf("Uknown frame length: %d",rxlen);
711 return false;
712 } break;
713 }
714
715 return true;
716 }
717
718 void SnoopHitag(uint32_t type) {
719 int frame_count;
720 int response;
721 int overflow;
722 bool rising_edge;
723 bool reader_frame;
724 int lastbit;
725 bool bSkip;
726 int tag_sof;
727 byte_t rx[HITAG_FRAME_LEN];
728 size_t rxlen=0;
729
730 // Clean up trace and prepare it for storing frames
731 iso14a_set_tracing(TRUE);
732 iso14a_clear_trace();
733
734 auth_table_len = 0;
735 auth_table_pos = 0;
736 memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
737
738 DbpString("Starting Hitag2 snoop");
739 LED_D_ON();
740
741 // Set up eavesdropping mode, frequency divisor which will drive the FPGA
742 // and analog mux selection.
743 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
744 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
745 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
746 RELAY_OFF();
747
748 // Configure output pin that is connected to the FPGA (for modulating)
749 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
750 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
751
752 // Disable modulation, we are going to eavesdrop, not modulate ;)
753 LOW(GPIO_SSC_DOUT);
754
755 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
756 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
757 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
758
759 // Disable timer during configuration
760 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
761
762 // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
763 // external trigger rising edge, load RA on rising edge of TIOA.
764 uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
765 AT91C_BASE_TC1->TC_CMR = t1_channel_mode;
766
767 // Enable and reset counter
768 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
769
770 // Reset the received frame, frame count and timing info
771 memset(rx,0x00,sizeof(rx));
772 frame_count = 0;
773 response = 0;
774 overflow = 0;
775 reader_frame = false;
776 lastbit = 1;
777 bSkip = true;
778 tag_sof = 4;
779
780 while(!BUTTON_PRESS()) {
781 // Watchdog hit
782 WDT_HIT();
783
784 // Receive frame, watch for at most T0*EOF periods
785 while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
786 // Check if rising edge in modulation is detected
787 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
788 // Retrieve the new timing values
789 int ra = (AT91C_BASE_TC1->TC_RA/T0);
790
791 // Find out if we are dealing with a rising or falling edge
792 rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
793
794 // Shorter periods will only happen with reader frames
795 if (!reader_frame && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) {
796 // Switch from tag to reader capture
797 LED_C_OFF();
798 reader_frame = true;
799 memset(rx,0x00,sizeof(rx));
800 rxlen = 0;
801 }
802
803 // Only handle if reader frame and rising edge, or tag frame and falling edge
804 if (reader_frame != rising_edge) {
805 overflow += ra;
806 continue;
807 }
808
809 // Add the buffered timing values of earlier captured edges which were skipped
810 ra += overflow;
811 overflow = 0;
812
813 if (reader_frame) {
814 LED_B_ON();
815 // Capture reader frame
816 if(ra >= HITAG_T_STOP) {
817 if (rxlen != 0) {
818 //DbpString("wierd0?");
819 }
820 // Capture the T0 periods that have passed since last communication or field drop (reset)
821 response = (ra - HITAG_T_LOW);
822 } else if(ra >= HITAG_T_1_MIN ) {
823 // '1' bit
824 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
825 rxlen++;
826 } else if(ra >= HITAG_T_0_MIN) {
827 // '0' bit
828 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
829 rxlen++;
830 } else {
831 // Ignore wierd value, is to small to mean anything
832 }
833 } else {
834 LED_C_ON();
835 // Capture tag frame (manchester decoding using only falling edges)
836 if(ra >= HITAG_T_EOF) {
837 if (rxlen != 0) {
838 //DbpString("wierd1?");
839 }
840 // Capture the T0 periods that have passed since last communication or field drop (reset)
841 // We always recieve a 'one' first, which has the falling edge after a half period |-_|
842 response = ra-HITAG_T_TAG_HALF_PERIOD;
843 } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
844 // Manchester coding example |-_|_-|-_| (101)
845 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
846 rxlen++;
847 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
848 rxlen++;
849 } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
850 // Manchester coding example |_-|...|_-|-_| (0...01)
851 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
852 rxlen++;
853 // We have to skip this half period at start and add the 'one' the second time
854 if (!bSkip) {
855 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
856 rxlen++;
857 }
858 lastbit = !lastbit;
859 bSkip = !bSkip;
860 } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
861 // Manchester coding example |_-|_-| (00) or |-_|-_| (11)
862 if (tag_sof) {
863 // Ignore bits that are transmitted during SOF
864 tag_sof--;
865 } else {
866 // bit is same as last bit
867 rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
868 rxlen++;
869 }
870 } else {
871 // Ignore wierd value, is to small to mean anything
872 }
873 }
874 }
875 }
876
877 // Check if frame was captured
878 if(rxlen > 0) {
879 frame_count++;
880 if (!LogTraceHitag(rx,rxlen,response,0,reader_frame)) {
881 DbpString("Trace full");
882 break;
883 }
884
885 // Check if we recognize a valid authentication attempt
886 if (nbytes(rxlen) == 8) {
887 // Store the authentication attempt
888 if (auth_table_len < (AUTH_TABLE_LENGTH-8)) {
889 memcpy(auth_table+auth_table_len,rx,8);
890 auth_table_len += 8;
891 }
892 }
893
894 // Reset the received frame and response timing info
895 memset(rx,0x00,sizeof(rx));
896 response = 0;
897 reader_frame = false;
898 lastbit = 1;
899 bSkip = true;
900 tag_sof = 4;
901 overflow = 0;
902
903 LED_B_OFF();
904 LED_C_OFF();
905 } else {
906 // Save the timer overflow, will be 0 when frame was received
907 overflow += (AT91C_BASE_TC1->TC_CV/T0);
908 }
909 // Reset the frame length
910 rxlen = 0;
911 // Reset the timer to restart while-loop that receives frames
912 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
913 }
914 LED_A_ON();
915 LED_B_OFF();
916 LED_C_OFF();
917 LED_D_OFF();
918 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
919 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
920 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
921 LED_A_OFF();
922
923 // Dbprintf("frame received: %d",frame_count);
924 // Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
925 // DbpString("All done");
926 }
927
928 void SimulateHitagTag(bool tag_mem_supplied, byte_t* data) {
929 int frame_count;
930 int response;
931 int overflow;
932 byte_t rx[HITAG_FRAME_LEN];
933 size_t rxlen=0;
934 byte_t tx[HITAG_FRAME_LEN];
935 size_t txlen=0;
936 bool bQuitTraceFull = false;
937 bQuiet = false;
938
939 // Clean up trace and prepare it for storing frames
940 iso14a_set_tracing(TRUE);
941 iso14a_clear_trace();
942 auth_table_len = 0;
943 auth_table_pos = 0;
944 memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
945
946 DbpString("Starting Hitag2 simulation");
947 LED_D_ON();
948 hitag2_init();
949
950 if (tag_mem_supplied) {
951 DbpString("Loading hitag2 memory...");
952 memcpy((byte_t*)tag.sectors,data,48);
953 }
954
955 uint32_t block = 0;
956 for (size_t i=0; i<12; i++) {
957 for (size_t j=0; j<4; j++) {
958 block <<= 8;
959 block |= tag.sectors[i][j];
960 }
961 Dbprintf("| %d | %08x |",i,block);
962 }
963
964 // Set up simulator mode, frequency divisor which will drive the FPGA
965 // and analog mux selection.
966 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
967 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
968 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
969 RELAY_OFF();
970
971 // Configure output pin that is connected to the FPGA (for modulating)
972 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
973 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
974
975 // Disable modulation at default, which means release resistance
976 LOW(GPIO_SSC_DOUT);
977
978 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
979 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
980
981 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
982 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
983 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
984
985 // Disable timer during configuration
986 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
987
988 // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
989 // external trigger rising edge, load RA on rising edge of TIOA.
990 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
991
992 // Enable and reset counter
993 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
994
995 // Reset the received frame, frame count and timing info
996 memset(rx,0x00,sizeof(rx));
997 frame_count = 0;
998 response = 0;
999 overflow = 0;
1000
1001 while(!BUTTON_PRESS()) {
1002 // Watchdog hit
1003 WDT_HIT();
1004
1005 // Receive frame, watch for at most T0*EOF periods
1006 while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_EOF) {
1007 // Check if rising edge in modulation is detected
1008 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
1009 // Retrieve the new timing values
1010 int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow;
1011 overflow = 0;
1012
1013 // Reset timer every frame, we have to capture the last edge for timing
1014 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1015
1016 LED_B_ON();
1017
1018 // Capture reader frame
1019 if(ra >= HITAG_T_STOP) {
1020 if (rxlen != 0) {
1021 //DbpString("wierd0?");
1022 }
1023 // Capture the T0 periods that have passed since last communication or field drop (reset)
1024 response = (ra - HITAG_T_LOW);
1025 } else if(ra >= HITAG_T_1_MIN ) {
1026 // '1' bit
1027 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
1028 rxlen++;
1029 } else if(ra >= HITAG_T_0_MIN) {
1030 // '0' bit
1031 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
1032 rxlen++;
1033 } else {
1034 // Ignore wierd value, is to small to mean anything
1035 }
1036 }
1037 }
1038
1039 // Check if frame was captured
1040 if(rxlen > 4) {
1041 frame_count++;
1042 if (!bQuiet) {
1043 if (!LogTraceHitag(rx,rxlen,response,0,true)) {
1044 DbpString("Trace full");
1045 if (bQuitTraceFull) {
1046 break;
1047 } else {
1048 bQuiet = true;
1049 }
1050 }
1051 }
1052
1053 // Disable timer 1 with external trigger to avoid triggers during our own modulation
1054 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1055
1056 // Process the incoming frame (rx) and prepare the outgoing frame (tx)
1057 hitag2_handle_reader_command(rx,rxlen,tx,&txlen);
1058
1059 // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit,
1060 // not that since the clock counts since the rising edge, but T_Wait1 is
1061 // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low)
1062 // periods. The gap time T_Low varies (4..10). All timer values are in
1063 // terms of T0 units
1064 while(AT91C_BASE_TC0->TC_CV < T0*(HITAG_T_WAIT_1-HITAG_T_LOW));
1065
1066 // Send and store the tag answer (if there is any)
1067 if (txlen) {
1068 // Transmit the tag frame
1069 hitag_send_frame(tx,txlen);
1070 // Store the frame in the trace
1071 if (!bQuiet) {
1072 if (!LogTraceHitag(tx,txlen,0,0,false)) {
1073 DbpString("Trace full");
1074 if (bQuitTraceFull) {
1075 break;
1076 } else {
1077 bQuiet = true;
1078 }
1079 }
1080 }
1081 }
1082
1083 // Reset the received frame and response timing info
1084 memset(rx,0x00,sizeof(rx));
1085 response = 0;
1086
1087 // Enable and reset external trigger in timer for capturing future frames
1088 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1089 LED_B_OFF();
1090 }
1091 // Reset the frame length
1092 rxlen = 0;
1093 // Save the timer overflow, will be 0 when frame was received
1094 overflow += (AT91C_BASE_TC1->TC_CV/T0);
1095 // Reset the timer to restart while-loop that receives frames
1096 AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
1097 }
1098 LED_B_OFF();
1099 LED_D_OFF();
1100 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1101 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
1102 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1103 // Dbprintf("frame received: %d",frame_count);
1104 // Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
1105 // DbpString("All done");
1106 }
1107
1108 void ReaderHitag(hitag_function htf, hitag_data* htd) {
1109 int frame_count;
1110 int response;
1111 byte_t rx[HITAG_FRAME_LEN];
1112 size_t rxlen=0;
1113 byte_t txbuf[HITAG_FRAME_LEN];
1114 byte_t* tx = txbuf;
1115 size_t txlen=0;
1116 int lastbit;
1117 bool bSkip;
1118 int reset_sof;
1119 int tag_sof;
1120 int t_wait = HITAG_T_WAIT_MAX;
1121 bool bStop;
1122 bool bQuitTraceFull = false;
1123
1124 // Reset the return status
1125 bSuccessful = false;
1126
1127 // Clean up trace and prepare it for storing frames
1128 iso14a_set_tracing(TRUE);
1129 iso14a_clear_trace();
1130 DbpString("Starting Hitag reader family");
1131
1132 // Check configuration
1133 switch(htf) {
1134 case RHT2F_PASSWORD: {
1135 Dbprintf("List identifier in password mode");
1136 memcpy(password,htd->pwd.password,4);
1137 blocknr = 0;
1138 bQuitTraceFull = false;
1139 bQuiet = false;
1140 bPwd = false;
1141 } break;
1142
1143 case RHT2F_AUTHENTICATE: {
1144 DbpString("Authenticating using nr,ar pair:");
1145 memcpy(NrAr,htd->auth.NrAr,8);
1146 Dbhexdump(8,NrAr,false);
1147 bQuiet = false;
1148 bCrypto = false;
1149 bAuthenticating = false;
1150 bQuitTraceFull = true;
1151 } break;
1152
1153 case RHT2F_CRYPTO: {
1154 DbpString("Authenticating using key:");
1155 memcpy(key,htd->crypto.key,6);
1156 Dbhexdump(6,key,false);
1157 blocknr = 0;
1158 bQuiet = false;
1159 bCrypto = false;
1160 bAuthenticating = false;
1161 bQuitTraceFull = true;
1162 } break;
1163
1164 case RHT2F_TEST_AUTH_ATTEMPTS: {
1165 Dbprintf("Testing %d authentication attempts",(auth_table_len/8));
1166 auth_table_pos = 0;
1167 memcpy(NrAr,auth_table,8);
1168 bQuitTraceFull = false;
1169 bQuiet = false;
1170 bCrypto = false;
1171 } break;
1172
1173 default: {
1174 Dbprintf("Error, unknown function: %d",htf);
1175 return;
1176 } break;
1177 }
1178
1179 LED_D_ON();
1180 hitag2_init();
1181
1182 // Configure output and enable pin that is connected to the FPGA (for modulating)
1183 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
1184 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
1185
1186 // Set fpga in edge detect with reader field, we can modulate as reader now
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
1188
1189 // Set Frequency divisor which will drive the FPGA and analog mux selection
1190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1191 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1192 RELAY_OFF();
1193
1194 // Disable modulation at default, which means enable the field
1195 LOW(GPIO_SSC_DOUT);
1196
1197 // Give it a bit of time for the resonant antenna to settle.
1198 SpinDelay(30);
1199
1200 // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
1201 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
1202
1203 // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
1204 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
1205 AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
1206
1207 // Disable timer during configuration
1208 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1209
1210 // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
1211 // external trigger rising edge, load RA on falling edge of TIOA.
1212 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
1213
1214 // Enable and reset counters
1215 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1216 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1217
1218 // Reset the received frame, frame count and timing info
1219 frame_count = 0;
1220 response = 0;
1221 lastbit = 1;
1222 bStop = false;
1223
1224 // Tag specific configuration settings (sof, timings, etc.)
1225 if (htf < 10){
1226 // hitagS settings
1227 reset_sof = 1;
1228 t_wait = 200;
1229 DbpString("Configured for hitagS reader");
1230 } else if (htf < 20) {
1231 // hitag1 settings
1232 reset_sof = 1;
1233 t_wait = 200;
1234 DbpString("Configured for hitag1 reader");
1235 } else if (htf < 30) {
1236 // hitag2 settings
1237 reset_sof = 4;
1238 t_wait = HITAG_T_WAIT_2;
1239 DbpString("Configured for hitag2 reader");
1240 } else {
1241 Dbprintf("Error, unknown hitag reader type: %d",htf);
1242 return;
1243 }
1244
1245 while(!bStop && !BUTTON_PRESS()) {
1246 // Watchdog hit
1247 WDT_HIT();
1248
1249 // Check if frame was captured and store it
1250 if(rxlen > 0) {
1251 frame_count++;
1252 if (!bQuiet) {
1253 if (!LogTraceHitag(rx,rxlen,response,0,false)) {
1254 DbpString("Trace full");
1255 if (bQuitTraceFull) {
1256 break;
1257 } else {
1258 bQuiet = true;
1259 }
1260 }
1261 }
1262 }
1263
1264 // By default reset the transmission buffer
1265 tx = txbuf;
1266 switch(htf) {
1267 case RHT2F_PASSWORD: {
1268 bStop = !hitag2_password(rx,rxlen,tx,&txlen);
1269 } break;
1270 case RHT2F_AUTHENTICATE: {
1271 bStop = !hitag2_authenticate(rx,rxlen,tx,&txlen);
1272 } break;
1273 case RHT2F_CRYPTO: {
1274 bStop = !hitag2_crypto(rx,rxlen,tx,&txlen);
1275 } break;
1276 case RHT2F_TEST_AUTH_ATTEMPTS: {
1277 bStop = !hitag2_test_auth_attempts(rx,rxlen,tx,&txlen);
1278 } break;
1279 default: {
1280 Dbprintf("Error, unknown function: %d",htf);
1281 return;
1282 } break;
1283 }
1284
1285 // Send and store the reader command
1286 // Disable timer 1 with external trigger to avoid triggers during our own modulation
1287 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1288
1289 // Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
1290 // Since the clock counts since the last falling edge, a 'one' means that the
1291 // falling edge occured halfway the period. with respect to this falling edge,
1292 // we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
1293 // All timer values are in terms of T0 units
1294 while(AT91C_BASE_TC0->TC_CV < T0*(t_wait+(HITAG_T_TAG_HALF_PERIOD*lastbit)));
1295
1296 // Transmit the reader frame
1297 hitag_reader_send_frame(tx,txlen);
1298
1299 // Enable and reset external trigger in timer for capturing future frames
1300 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
1301
1302 // Add transmitted frame to total count
1303 if(txlen > 0) {
1304 frame_count++;
1305 if (!bQuiet) {
1306 // Store the frame in the trace
1307 if (!LogTraceHitag(tx,txlen,HITAG_T_WAIT_2,0,true)) {
1308 if (bQuitTraceFull) {
1309 break;
1310 } else {
1311 bQuiet = true;
1312 }
1313 }
1314 }
1315 }
1316
1317 // Reset values for receiving frames
1318 memset(rx,0x00,sizeof(rx));
1319 rxlen = 0;
1320 lastbit = 1;
1321 bSkip = true;
1322 tag_sof = reset_sof;
1323 response = 0;
1324
1325 // Receive frame, watch for at most T0*EOF periods
1326 while (AT91C_BASE_TC1->TC_CV < T0*HITAG_T_WAIT_MAX) {
1327 // Check if falling edge in tag modulation is detected
1328 if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
1329 // Retrieve the new timing values
1330 int ra = (AT91C_BASE_TC1->TC_RA/T0);
1331
1332 // Reset timer every frame, we have to capture the last edge for timing
1333 AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
1334
1335 LED_B_ON();
1336
1337 // Capture tag frame (manchester decoding using only falling edges)
1338 if(ra >= HITAG_T_EOF) {
1339 if (rxlen != 0) {
1340 //DbpString("wierd1?");
1341 }
1342 // Capture the T0 periods that have passed since last communication or field drop (reset)
1343 // We always recieve a 'one' first, which has the falling edge after a half period |-_|
1344 response = ra-HITAG_T_TAG_HALF_PERIOD;
1345 } else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
1346 // Manchester coding example |-_|_-|-_| (101)
1347 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
1348 rxlen++;
1349 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
1350 rxlen++;
1351 } else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
1352 // Manchester coding example |_-|...|_-|-_| (0...01)
1353 rx[rxlen / 8] |= 0 << (7-(rxlen%8));
1354 rxlen++;
1355 // We have to skip this half period at start and add the 'one' the second time
1356 if (!bSkip) {
1357 rx[rxlen / 8] |= 1 << (7-(rxlen%8));
1358 rxlen++;
1359 }
1360 lastbit = !lastbit;
1361 bSkip = !bSkip;
1362 } else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
1363 // Manchester coding example |_-|_-| (00) or |-_|-_| (11)
1364 if (tag_sof) {
1365 // Ignore bits that are transmitted during SOF
1366 tag_sof--;
1367 } else {
1368 // bit is same as last bit
1369 rx[rxlen / 8] |= lastbit << (7-(rxlen%8));
1370 rxlen++;
1371 }
1372 } else {
1373 // Ignore wierd value, is to small to mean anything
1374 }
1375 }
1376
1377 // We can break this loop if we received the last bit from a frame
1378 if (AT91C_BASE_TC1->TC_CV > T0*HITAG_T_EOF) {
1379 if (rxlen>0) break;
1380 }
1381 }
1382 }
1383 LED_B_OFF();
1384 LED_D_OFF();
1385 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
1386 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
1387 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1388 Dbprintf("frame received: %d",frame_count);
1389 DbpString("All done");
1390 cmd_send(CMD_ACK,bSuccessful,0,0,(byte_t*)tag.sectors,48);
1391 }
Impressum, Datenschutz