]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
Merge branch 'master' of https://github.com/Proxmark/proxmark3
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "../include/proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "../common/iso14443crc.h"
49 #include "../common/iso15693tools.h"
50 //#include "iso15693tools.h"
51
52
53 static int timeout = 4096;
54
55
56 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
57
58 //-----------------------------------------------------------------------------
59 // The software UART that receives commands from the reader, and its state
60 // variables.
61 //-----------------------------------------------------------------------------
62 static struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_START_OF_COMMUNICATION,
66 STATE_RECEIVING
67 } state;
68 uint16_t shiftReg;
69 int bitCnt;
70 int byteCnt;
71 int byteCntMax;
72 int posCnt;
73 int nOutOfCnt;
74 int OutOfCnt;
75 int syncBit;
76 int samples;
77 int highCnt;
78 int swapper;
79 int counter;
80 int bitBuffer;
81 int dropPosition;
82 uint8_t *output;
83 } Uart;
84
85 static RAMFUNC int OutOfNDecoding(int bit)
86 {
87 //int error = 0;
88 int bitright;
89
90 if(!Uart.bitBuffer) {
91 Uart.bitBuffer = bit ^ 0xFF0;
92 return FALSE;
93 }
94 else {
95 Uart.bitBuffer <<= 4;
96 Uart.bitBuffer ^= bit;
97 }
98
99 /*if(Uart.swapper) {
100 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
101 Uart.byteCnt++;
102 Uart.swapper = 0;
103 if(Uart.byteCnt > 15) { return TRUE; }
104 }
105 else {
106 Uart.swapper = 1;
107 }*/
108
109 if(Uart.state != STATE_UNSYNCD) {
110 Uart.posCnt++;
111
112 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
113 bit = 0x00;
114 }
115 else {
116 bit = 0x01;
117 }
118 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
119 bitright = 0x00;
120 }
121 else {
122 bitright = 0x01;
123 }
124 if(bit != bitright) { bit = bitright; }
125
126
127 // So, now we only have to deal with *bit*, lets see...
128 if(Uart.posCnt == 1) {
129 // measurement first half bitperiod
130 if(!bit) {
131 // Drop in first half means that we are either seeing
132 // an SOF or an EOF.
133
134 if(Uart.nOutOfCnt == 1) {
135 // End of Communication
136 Uart.state = STATE_UNSYNCD;
137 Uart.highCnt = 0;
138 if(Uart.byteCnt == 0) {
139 // Its not straightforward to show single EOFs
140 // So just leave it and do not return TRUE
141 Uart.output[0] = 0xf0;
142 Uart.byteCnt++;
143 }
144 else {
145 return TRUE;
146 }
147 }
148 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
149 // When not part of SOF or EOF, it is an error
150 Uart.state = STATE_UNSYNCD;
151 Uart.highCnt = 0;
152 //error = 4;
153 }
154 }
155 }
156 else {
157 // measurement second half bitperiod
158 // Count the bitslot we are in... (ISO 15693)
159 Uart.nOutOfCnt++;
160
161 if(!bit) {
162 if(Uart.dropPosition) {
163 if(Uart.state == STATE_START_OF_COMMUNICATION) {
164 //error = 1;
165 }
166 else {
167 //error = 7;
168 }
169 // It is an error if we already have seen a drop in current frame
170 Uart.state = STATE_UNSYNCD;
171 Uart.highCnt = 0;
172 }
173 else {
174 Uart.dropPosition = Uart.nOutOfCnt;
175 }
176 }
177
178 Uart.posCnt = 0;
179
180
181 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
182 Uart.nOutOfCnt = 0;
183
184 if(Uart.state == STATE_START_OF_COMMUNICATION) {
185 if(Uart.dropPosition == 4) {
186 Uart.state = STATE_RECEIVING;
187 Uart.OutOfCnt = 256;
188 }
189 else if(Uart.dropPosition == 3) {
190 Uart.state = STATE_RECEIVING;
191 Uart.OutOfCnt = 4;
192 //Uart.output[Uart.byteCnt] = 0xdd;
193 //Uart.byteCnt++;
194 }
195 else {
196 Uart.state = STATE_UNSYNCD;
197 Uart.highCnt = 0;
198 }
199 Uart.dropPosition = 0;
200 }
201 else {
202 // RECEIVING DATA
203 // 1 out of 4
204 if(!Uart.dropPosition) {
205 Uart.state = STATE_UNSYNCD;
206 Uart.highCnt = 0;
207 //error = 9;
208 }
209 else {
210 Uart.shiftReg >>= 2;
211
212 // Swap bit order
213 Uart.dropPosition--;
214 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
215 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
216
217 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
218 Uart.bitCnt += 2;
219 Uart.dropPosition = 0;
220
221 if(Uart.bitCnt == 8) {
222 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
223 Uart.byteCnt++;
224 Uart.bitCnt = 0;
225 Uart.shiftReg = 0;
226 }
227 }
228 }
229 }
230 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
231 // RECEIVING DATA
232 // 1 out of 256
233 if(!Uart.dropPosition) {
234 Uart.state = STATE_UNSYNCD;
235 Uart.highCnt = 0;
236 //error = 3;
237 }
238 else {
239 Uart.dropPosition--;
240 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
241 Uart.byteCnt++;
242 Uart.bitCnt = 0;
243 Uart.shiftReg = 0;
244 Uart.nOutOfCnt = 0;
245 Uart.dropPosition = 0;
246 }
247 }
248
249 /*if(error) {
250 Uart.output[Uart.byteCnt] = 0xAA;
251 Uart.byteCnt++;
252 Uart.output[Uart.byteCnt] = error & 0xFF;
253 Uart.byteCnt++;
254 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.byteCnt++;
256 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
257 Uart.byteCnt++;
258 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
259 Uart.byteCnt++;
260 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = 0xAA;
263 Uart.byteCnt++;
264 return TRUE;
265 }*/
266 }
267
268 }
269 else {
270 bit = Uart.bitBuffer & 0xf0;
271 bit >>= 4;
272 bit ^= 0x0F; // drops become 1s ;-)
273 if(bit) {
274 // should have been high or at least (4 * 128) / fc
275 // according to ISO this should be at least (9 * 128 + 20) / fc
276 if(Uart.highCnt == 8) {
277 // we went low, so this could be start of communication
278 // it turns out to be safer to choose a less significant
279 // syncbit... so we check whether the neighbour also represents the drop
280 Uart.posCnt = 1; // apparently we are busy with our first half bit period
281 Uart.syncBit = bit & 8;
282 Uart.samples = 3;
283 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
284 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
285 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
286 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
287 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
288 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
289 Uart.syncBit = 8;
290
291 // the first half bit period is expected in next sample
292 Uart.posCnt = 0;
293 Uart.samples = 3;
294 }
295 }
296 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
297
298 Uart.syncBit <<= 4;
299 Uart.state = STATE_START_OF_COMMUNICATION;
300 Uart.bitCnt = 0;
301 Uart.byteCnt = 0;
302 Uart.nOutOfCnt = 0;
303 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
304 Uart.dropPosition = 0;
305 Uart.shiftReg = 0;
306 //error = 0;
307 }
308 else {
309 Uart.highCnt = 0;
310 }
311 }
312 else {
313 if(Uart.highCnt < 8) {
314 Uart.highCnt++;
315 }
316 }
317 }
318
319 return FALSE;
320 }
321
322 //=============================================================================
323 // Manchester
324 //=============================================================================
325
326 static struct {
327 enum {
328 DEMOD_UNSYNCD,
329 DEMOD_START_OF_COMMUNICATION,
330 DEMOD_START_OF_COMMUNICATION2,
331 DEMOD_START_OF_COMMUNICATION3,
332 DEMOD_SOF_COMPLETE,
333 DEMOD_MANCHESTER_D,
334 DEMOD_MANCHESTER_E,
335 DEMOD_END_OF_COMMUNICATION,
336 DEMOD_END_OF_COMMUNICATION2,
337 DEMOD_MANCHESTER_F,
338 DEMOD_ERROR_WAIT
339 } state;
340 int bitCount;
341 int posCount;
342 int syncBit;
343 uint16_t shiftReg;
344 int buffer;
345 int buffer2;
346 int buffer3;
347 int buff;
348 int samples;
349 int len;
350 enum {
351 SUB_NONE,
352 SUB_FIRST_HALF,
353 SUB_SECOND_HALF,
354 SUB_BOTH
355 } sub;
356 uint8_t *output;
357 } Demod;
358
359 static RAMFUNC int ManchesterDecoding(int v)
360 {
361 int bit;
362 int modulation;
363 int error = 0;
364
365 bit = Demod.buffer;
366 Demod.buffer = Demod.buffer2;
367 Demod.buffer2 = Demod.buffer3;
368 Demod.buffer3 = v;
369
370 if(Demod.buff < 3) {
371 Demod.buff++;
372 return FALSE;
373 }
374
375 if(Demod.state==DEMOD_UNSYNCD) {
376 Demod.output[Demod.len] = 0xfa;
377 Demod.syncBit = 0;
378 //Demod.samples = 0;
379 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
380
381 if(bit & 0x08) {
382 Demod.syncBit = 0x08;
383 }
384
385 if(bit & 0x04) {
386 if(Demod.syncBit) {
387 bit <<= 4;
388 }
389 Demod.syncBit = 0x04;
390 }
391
392 if(bit & 0x02) {
393 if(Demod.syncBit) {
394 bit <<= 2;
395 }
396 Demod.syncBit = 0x02;
397 }
398
399 if(bit & 0x01 && Demod.syncBit) {
400 Demod.syncBit = 0x01;
401 }
402
403 if(Demod.syncBit) {
404 Demod.len = 0;
405 Demod.state = DEMOD_START_OF_COMMUNICATION;
406 Demod.sub = SUB_FIRST_HALF;
407 Demod.bitCount = 0;
408 Demod.shiftReg = 0;
409 Demod.samples = 0;
410 if(Demod.posCount) {
411 //if(trigger) LED_A_OFF(); // Not useful in this case...
412 switch(Demod.syncBit) {
413 case 0x08: Demod.samples = 3; break;
414 case 0x04: Demod.samples = 2; break;
415 case 0x02: Demod.samples = 1; break;
416 case 0x01: Demod.samples = 0; break;
417 }
418 // SOF must be long burst... otherwise stay unsynced!!!
419 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
420 Demod.state = DEMOD_UNSYNCD;
421 }
422 }
423 else {
424 // SOF must be long burst... otherwise stay unsynced!!!
425 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
426 Demod.state = DEMOD_UNSYNCD;
427 error = 0x88;
428 }
429
430 }
431 error = 0;
432
433 }
434 }
435 else {
436 modulation = bit & Demod.syncBit;
437 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
438
439 Demod.samples += 4;
440
441 if(Demod.posCount==0) {
442 Demod.posCount = 1;
443 if(modulation) {
444 Demod.sub = SUB_FIRST_HALF;
445 }
446 else {
447 Demod.sub = SUB_NONE;
448 }
449 }
450 else {
451 Demod.posCount = 0;
452 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
453 if(Demod.state!=DEMOD_ERROR_WAIT) {
454 Demod.state = DEMOD_ERROR_WAIT;
455 Demod.output[Demod.len] = 0xaa;
456 error = 0x01;
457 }
458 }*/
459 //else if(modulation) {
460 if(modulation) {
461 if(Demod.sub == SUB_FIRST_HALF) {
462 Demod.sub = SUB_BOTH;
463 }
464 else {
465 Demod.sub = SUB_SECOND_HALF;
466 }
467 }
468 else if(Demod.sub == SUB_NONE) {
469 if(Demod.state == DEMOD_SOF_COMPLETE) {
470 Demod.output[Demod.len] = 0x0f;
471 Demod.len++;
472 Demod.state = DEMOD_UNSYNCD;
473 // error = 0x0f;
474 return TRUE;
475 }
476 else {
477 Demod.state = DEMOD_ERROR_WAIT;
478 error = 0x33;
479 }
480 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
481 Demod.state = DEMOD_ERROR_WAIT;
482 Demod.output[Demod.len] = 0xaa;
483 error = 0x01;
484 }*/
485 }
486
487 switch(Demod.state) {
488 case DEMOD_START_OF_COMMUNICATION:
489 if(Demod.sub == SUB_BOTH) {
490 //Demod.state = DEMOD_MANCHESTER_D;
491 Demod.state = DEMOD_START_OF_COMMUNICATION2;
492 Demod.posCount = 1;
493 Demod.sub = SUB_NONE;
494 }
495 else {
496 Demod.output[Demod.len] = 0xab;
497 Demod.state = DEMOD_ERROR_WAIT;
498 error = 0xd2;
499 }
500 break;
501 case DEMOD_START_OF_COMMUNICATION2:
502 if(Demod.sub == SUB_SECOND_HALF) {
503 Demod.state = DEMOD_START_OF_COMMUNICATION3;
504 }
505 else {
506 Demod.output[Demod.len] = 0xab;
507 Demod.state = DEMOD_ERROR_WAIT;
508 error = 0xd3;
509 }
510 break;
511 case DEMOD_START_OF_COMMUNICATION3:
512 if(Demod.sub == SUB_SECOND_HALF) {
513 // Demod.state = DEMOD_MANCHESTER_D;
514 Demod.state = DEMOD_SOF_COMPLETE;
515 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
516 //Demod.len++;
517 }
518 else {
519 Demod.output[Demod.len] = 0xab;
520 Demod.state = DEMOD_ERROR_WAIT;
521 error = 0xd4;
522 }
523 break;
524 case DEMOD_SOF_COMPLETE:
525 case DEMOD_MANCHESTER_D:
526 case DEMOD_MANCHESTER_E:
527 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
528 // 00001111 = 1 (0 in 14443)
529 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
530 Demod.bitCount++;
531 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
532 Demod.state = DEMOD_MANCHESTER_D;
533 }
534 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
535 Demod.bitCount++;
536 Demod.shiftReg >>= 1;
537 Demod.state = DEMOD_MANCHESTER_E;
538 }
539 else if(Demod.sub == SUB_BOTH) {
540 Demod.state = DEMOD_MANCHESTER_F;
541 }
542 else {
543 Demod.state = DEMOD_ERROR_WAIT;
544 error = 0x55;
545 }
546 break;
547
548 case DEMOD_MANCHESTER_F:
549 // Tag response does not need to be a complete byte!
550 if(Demod.len > 0 || Demod.bitCount > 0) {
551 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
552 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
553 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
554 Demod.len++;
555 }
556
557 Demod.state = DEMOD_UNSYNCD;
558 return TRUE;
559 }
560 else {
561 Demod.output[Demod.len] = 0xad;
562 Demod.state = DEMOD_ERROR_WAIT;
563 error = 0x03;
564 }
565 break;
566
567 case DEMOD_ERROR_WAIT:
568 Demod.state = DEMOD_UNSYNCD;
569 break;
570
571 default:
572 Demod.output[Demod.len] = 0xdd;
573 Demod.state = DEMOD_UNSYNCD;
574 break;
575 }
576
577 /*if(Demod.bitCount>=9) {
578 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
579 Demod.len++;
580
581 Demod.parityBits <<= 1;
582 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
583
584 Demod.bitCount = 0;
585 Demod.shiftReg = 0;
586 }*/
587 if(Demod.bitCount>=8) {
588 Demod.shiftReg >>= 1;
589 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
590 Demod.len++;
591 Demod.bitCount = 0;
592 Demod.shiftReg = 0;
593 }
594
595 if(error) {
596 Demod.output[Demod.len] = 0xBB;
597 Demod.len++;
598 Demod.output[Demod.len] = error & 0xFF;
599 Demod.len++;
600 Demod.output[Demod.len] = 0xBB;
601 Demod.len++;
602 Demod.output[Demod.len] = bit & 0xFF;
603 Demod.len++;
604 Demod.output[Demod.len] = Demod.buffer & 0xFF;
605 Demod.len++;
606 // Look harder ;-)
607 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
608 Demod.len++;
609 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
610 Demod.len++;
611 Demod.output[Demod.len] = 0xBB;
612 Demod.len++;
613 return TRUE;
614 }
615
616 }
617
618 } // end (state != UNSYNCED)
619
620 return FALSE;
621 }
622
623 //=============================================================================
624 // Finally, a `sniffer' for iClass communication
625 // Both sides of communication!
626 //=============================================================================
627
628 //-----------------------------------------------------------------------------
629 // Record the sequence of commands sent by the reader to the tag, with
630 // triggering so that we start recording at the point that the tag is moved
631 // near the reader.
632 //-----------------------------------------------------------------------------
633 void RAMFUNC SnoopIClass(void)
634 {
635
636
637 // We won't start recording the frames that we acquire until we trigger;
638 // a good trigger condition to get started is probably when we see a
639 // response from the tag.
640 //int triggered = FALSE; // FALSE to wait first for card
641
642 // The command (reader -> tag) that we're receiving.
643 // The length of a received command will in most cases be no more than 18 bytes.
644 // So 32 should be enough!
645 #define ICLASS_BUFFER_SIZE 32
646 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
647 // The response (tag -> reader) that we're receiving.
648 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
649
650 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
651
652 // free all BigBuf memory
653 BigBuf_free();
654 // The DMA buffer, used to stream samples from the FPGA
655 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
656
657 // reset traceLen to 0
658 iso14a_set_tracing(TRUE);
659 iso14a_clear_trace();
660 iso14a_set_trigger(FALSE);
661
662 int lastRxCounter;
663 uint8_t *upTo;
664 int smpl;
665 int maxBehindBy = 0;
666
667 // Count of samples received so far, so that we can include timing
668 // information in the trace buffer.
669 int samples = 0;
670 rsamples = 0;
671
672 // Set up the demodulator for tag -> reader responses.
673 Demod.output = tagToReaderResponse;
674 Demod.len = 0;
675 Demod.state = DEMOD_UNSYNCD;
676
677 // Setup for the DMA.
678 FpgaSetupSsc();
679 upTo = dmaBuf;
680 lastRxCounter = DMA_BUFFER_SIZE;
681 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
682
683 // And the reader -> tag commands
684 memset(&Uart, 0, sizeof(Uart));
685 Uart.output = readerToTagCmd;
686 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
687 Uart.state = STATE_UNSYNCD;
688
689 // And put the FPGA in the appropriate mode
690 // Signal field is off with the appropriate LED
691 LED_D_OFF();
692 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
693 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
694
695 uint32_t time_0 = GetCountSspClk();
696 uint32_t time_start = 0;
697 uint32_t time_stop = 0;
698
699 int div = 0;
700 //int div2 = 0;
701 int decbyte = 0;
702 int decbyter = 0;
703
704 // And now we loop, receiving samples.
705 for(;;) {
706 LED_A_ON();
707 WDT_HIT();
708 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
709 (DMA_BUFFER_SIZE-1);
710 if(behindBy > maxBehindBy) {
711 maxBehindBy = behindBy;
712 if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
713 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
714 goto done;
715 }
716 }
717 if(behindBy < 1) continue;
718
719 LED_A_OFF();
720 smpl = upTo[0];
721 upTo++;
722 lastRxCounter -= 1;
723 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
724 upTo -= DMA_BUFFER_SIZE;
725 lastRxCounter += DMA_BUFFER_SIZE;
726 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
727 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
728 }
729
730 //samples += 4;
731 samples += 1;
732
733 if(smpl & 0xF) {
734 decbyte ^= (1 << (3 - div));
735 }
736
737 // FOR READER SIDE COMMUMICATION...
738
739 decbyter <<= 2;
740 decbyter ^= (smpl & 0x30);
741
742 div++;
743
744 if((div + 1) % 2 == 0) {
745 smpl = decbyter;
746 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
747 rsamples = samples - Uart.samples;
748 time_stop = (GetCountSspClk()-time_0) << 4;
749 LED_C_ON();
750
751 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
752 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
753 if(tracing) {
754 uint8_t parity[MAX_PARITY_SIZE];
755 GetParity(Uart.output, Uart.byteCnt, parity);
756 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE);
757 }
758
759
760 /* And ready to receive another command. */
761 Uart.state = STATE_UNSYNCD;
762 /* And also reset the demod code, which might have been */
763 /* false-triggered by the commands from the reader. */
764 Demod.state = DEMOD_UNSYNCD;
765 LED_B_OFF();
766 Uart.byteCnt = 0;
767 }else{
768 time_start = (GetCountSspClk()-time_0) << 4;
769 }
770 decbyter = 0;
771 }
772
773 if(div > 3) {
774 smpl = decbyte;
775 if(ManchesterDecoding(smpl & 0x0F)) {
776 time_stop = (GetCountSspClk()-time_0) << 4;
777
778 rsamples = samples - Demod.samples;
779 LED_B_ON();
780
781 if(tracing) {
782 uint8_t parity[MAX_PARITY_SIZE];
783 GetParity(Demod.output, Demod.len, parity);
784 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE);
785 }
786
787 // And ready to receive another response.
788 memset(&Demod, 0, sizeof(Demod));
789 Demod.output = tagToReaderResponse;
790 Demod.state = DEMOD_UNSYNCD;
791 LED_C_OFF();
792 }else{
793 time_start = (GetCountSspClk()-time_0) << 4;
794 }
795
796 div = 0;
797 decbyte = 0x00;
798 }
799 //}
800
801 if(BUTTON_PRESS()) {
802 DbpString("cancelled_a");
803 goto done;
804 }
805 }
806
807 DbpString("COMMAND FINISHED");
808
809 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
810 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
811
812 done:
813 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
814 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
815 Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
816 LED_A_OFF();
817 LED_B_OFF();
818 LED_C_OFF();
819 LED_D_OFF();
820 }
821
822 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
823 int i;
824 for(i = 0; i < 8; i++) {
825 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
826 }
827 }
828
829 //-----------------------------------------------------------------------------
830 // Wait for commands from reader
831 // Stop when button is pressed
832 // Or return TRUE when command is captured
833 //-----------------------------------------------------------------------------
834 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
835 {
836 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
837 // only, since we are receiving, not transmitting).
838 // Signal field is off with the appropriate LED
839 LED_D_OFF();
840 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
841
842 // Now run a `software UART' on the stream of incoming samples.
843 Uart.output = received;
844 Uart.byteCntMax = maxLen;
845 Uart.state = STATE_UNSYNCD;
846
847 for(;;) {
848 WDT_HIT();
849
850 if(BUTTON_PRESS()) return FALSE;
851
852 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
853 AT91C_BASE_SSC->SSC_THR = 0x00;
854 }
855 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
856 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
857
858 if(OutOfNDecoding(b & 0x0f)) {
859 *len = Uart.byteCnt;
860 return TRUE;
861 }
862 }
863 }
864 }
865
866 static uint8_t encode4Bits(const uint8_t b)
867 {
868 uint8_t c = b & 0xF;
869 // OTA, the least significant bits first
870 // The columns are
871 // 1 - Bit value to send
872 // 2 - Reversed (big-endian)
873 // 3 - Encoded
874 // 4 - Hex values
875
876 switch(c){
877 // 1 2 3 4
878 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
879 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
880 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
881 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
882 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
883 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
884 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
885 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
886 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
887 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
888 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
889 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
890 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
891 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
892 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
893 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
894
895 }
896 }
897
898 //-----------------------------------------------------------------------------
899 // Prepare tag messages
900 //-----------------------------------------------------------------------------
901 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
902 {
903
904 /*
905 * SOF comprises 3 parts;
906 * * An unmodulated time of 56.64 us
907 * * 24 pulses of 423.75 KHz (fc/32)
908 * * A logic 1, which starts with an unmodulated time of 18.88us
909 * followed by 8 pulses of 423.75kHz (fc/32)
910 *
911 *
912 * EOF comprises 3 parts:
913 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
914 * time of 18.88us.
915 * - 24 pulses of fc/32
916 * - An unmodulated time of 56.64 us
917 *
918 *
919 * A logic 0 starts with 8 pulses of fc/32
920 * followed by an unmodulated time of 256/fc (~18,88us).
921 *
922 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
923 * 8 pulses of fc/32 (also 18.88us)
924 *
925 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
926 * works like this.
927 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
928 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
929 *
930 * In this mode the SOF can be written as 00011101 = 0x1D
931 * The EOF can be written as 10111000 = 0xb8
932 * A logic 1 is 01
933 * A logic 0 is 10
934 *
935 * */
936
937 int i;
938
939 ToSendReset();
940
941 // Send SOF
942 ToSend[++ToSendMax] = 0x1D;
943
944 for(i = 0; i < len; i++) {
945 uint8_t b = cmd[i];
946 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
947 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
948 }
949
950 // Send EOF
951 ToSend[++ToSendMax] = 0xB8;
952 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
953 // Convert from last byte pos to length
954 ToSendMax++;
955 }
956
957 // Only SOF
958 static void CodeIClassTagSOF()
959 {
960 //So far a dummy implementation, not used
961 //int lastProxToAirDuration =0;
962
963 ToSendReset();
964 // Send SOF
965 ToSend[++ToSendMax] = 0x1D;
966 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
967
968 // Convert from last byte pos to length
969 ToSendMax++;
970 }
971
972 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf);
973 /**
974 * @brief SimulateIClass simulates an iClass card.
975 * @param arg0 type of simulation
976 * - 0 uses the first 8 bytes in usb data as CSN
977 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
978 * in the usb data. This mode collects MAC from the reader, in order to do an offline
979 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
980 * - Other : Uses the default CSN (031fec8af7ff12e0)
981 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
982 * @param arg2
983 * @param datain
984 */
985 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
986 {
987 uint32_t simType = arg0;
988 uint32_t numberOfCSNS = arg1;
989 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
990
991 // Enable and clear the trace
992 iso14a_set_tracing(TRUE);
993 iso14a_clear_trace();
994
995 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
996 if(simType == 0) {
997 // Use the CSN from commandline
998 memcpy(csn_crc, datain, 8);
999 doIClassSimulation(csn_crc,0,NULL);
1000 }else if(simType == 1)
1001 {
1002 doIClassSimulation(csn_crc,0,NULL);
1003 }
1004 else if(simType == 2)
1005 {
1006
1007 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1008 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1009 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1010 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1011 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1012 int i = 0;
1013 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1014 {
1015 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1016
1017 memcpy(csn_crc, datain+(i*8), 8);
1018 if(doIClassSimulation(csn_crc,1,mac_responses+i*8))
1019 {
1020 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1021 return; // Button pressed
1022 }
1023 }
1024 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1025
1026 }
1027 else{
1028 // We may want a mode here where we hardcode the csns to use (from proxclone).
1029 // That will speed things up a little, but not required just yet.
1030 Dbprintf("The mode is not implemented, reserved for future use");
1031 }
1032 Dbprintf("Done...");
1033
1034 }
1035 /**
1036 * @brief Does the actual simulation
1037 * @param csn - csn to use
1038 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1039 */
1040 int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf)
1041 {
1042
1043 // CSN followed by two CRC bytes
1044 uint8_t response1[] = { 0x0F} ;
1045 uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1046 uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0};
1047 memcpy(response3,csn,sizeof(response3));
1048 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1049 // e-Purse
1050 uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1051
1052 // Construct anticollision-CSN
1053 rotateCSN(response3,response2);
1054
1055 // Compute CRC on both CSNs
1056 ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]);
1057 ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]);
1058
1059 int exitLoop = 0;
1060 // Reader 0a
1061 // Tag 0f
1062 // Reader 0c
1063 // Tag anticoll. CSN
1064 // Reader 81 anticoll. CSN
1065 // Tag CSN
1066
1067 uint8_t *modulated_response;
1068 int modulated_response_size;
1069 uint8_t* trace_data = NULL;
1070 int trace_data_size = 0;
1071 //uint8_t sof = 0x0f;
1072
1073 // free eventually allocated BigBuf memory
1074 BigBuf_free();
1075 // Respond SOF -- takes 1 bytes
1076 uint8_t *resp1 = BigBuf_malloc(2);
1077 int resp1Len;
1078
1079 // Anticollision CSN (rotated CSN)
1080 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1081 uint8_t *resp2 = BigBuf_malloc(28);
1082 int resp2Len;
1083
1084 // CSN
1085 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1086 uint8_t *resp3 = BigBuf_malloc(30);
1087 int resp3Len;
1088
1089 // e-Purse
1090 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1091 uint8_t *resp4 = BigBuf_malloc(20);
1092 int resp4Len;
1093
1094 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1095 memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
1096 int len;
1097
1098 // Prepare card messages
1099 ToSendMax = 0;
1100
1101 // First card answer: SOF
1102 CodeIClassTagSOF();
1103 memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
1104
1105 // Anticollision CSN
1106 CodeIClassTagAnswer(response2, sizeof(response2));
1107 memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
1108
1109 // CSN
1110 CodeIClassTagAnswer(response3, sizeof(response3));
1111 memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
1112
1113 // e-Purse
1114 CodeIClassTagAnswer(response4, sizeof(response4));
1115 memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
1116
1117
1118 // Start from off (no field generated)
1119 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1120 //SpinDelay(200);
1121 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1122 SpinDelay(100);
1123 StartCountSspClk();
1124 // We need to listen to the high-frequency, peak-detected path.
1125 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1126 FpgaSetupSsc();
1127
1128 // To control where we are in the protocol
1129 int cmdsRecvd = 0;
1130 uint32_t time_0 = GetCountSspClk();
1131 uint32_t t2r_time =0;
1132 uint32_t r2t_time =0;
1133
1134 LED_A_ON();
1135 bool buttonPressed = false;
1136
1137 while(!exitLoop) {
1138
1139 LED_B_OFF();
1140 //Signal tracer
1141 // Can be used to get a trigger for an oscilloscope..
1142 LED_C_OFF();
1143
1144 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1145 buttonPressed = true;
1146 break;
1147 }
1148 r2t_time = GetCountSspClk();
1149 //Signal tracer
1150 LED_C_ON();
1151
1152 // Okay, look at the command now.
1153 if(receivedCmd[0] == 0x0a ) {
1154 // Reader in anticollission phase
1155 modulated_response = resp1; modulated_response_size = resp1Len; //order = 1;
1156 trace_data = response1;
1157 trace_data_size = sizeof(response1);
1158 } else if(receivedCmd[0] == 0x0c) {
1159 // Reader asks for anticollission CSN
1160 modulated_response = resp2; modulated_response_size = resp2Len; //order = 2;
1161 trace_data = response2;
1162 trace_data_size = sizeof(response2);
1163 //DbpString("Reader requests anticollission CSN:");
1164 } else if(receivedCmd[0] == 0x81) {
1165 // Reader selects anticollission CSN.
1166 // Tag sends the corresponding real CSN
1167 modulated_response = resp3; modulated_response_size = resp3Len; //order = 3;
1168 trace_data = response3;
1169 trace_data_size = sizeof(response3);
1170 //DbpString("Reader selects anticollission CSN:");
1171 } else if(receivedCmd[0] == 0x88) {
1172 // Read e-purse (88 02)
1173 modulated_response = resp4; modulated_response_size = resp4Len; //order = 4;
1174 trace_data = response4;
1175 trace_data_size = sizeof(response4);
1176 LED_B_ON();
1177 } else if(receivedCmd[0] == 0x05) {
1178 // Reader random and reader MAC!!!
1179 // Do not respond
1180 // We do not know what to answer, so lets keep quiet
1181 modulated_response = resp1; modulated_response_size = 0; //order = 5;
1182 trace_data = NULL;
1183 trace_data_size = 0;
1184 if (breakAfterMacReceived){
1185 // dbprintf:ing ...
1186 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1187 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1188 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1189 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1190 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1191 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1192 if (reader_mac_buf != NULL)
1193 {
1194 memcpy(reader_mac_buf,receivedCmd+1,8);
1195 }
1196 exitLoop = true;
1197 }
1198 } else if(receivedCmd[0] == 0x00 && len == 1) {
1199 // Reader ends the session
1200 modulated_response = resp1; modulated_response_size = 0; //order = 0;
1201 trace_data = NULL;
1202 trace_data_size = 0;
1203 } else {
1204 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1205 // Never seen this command before
1206 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1207 len,
1208 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1209 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1210 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1211 // Do not respond
1212 modulated_response = resp1; modulated_response_size = 0; //order = 0;
1213 trace_data = NULL;
1214 trace_data_size = 0;
1215 }
1216
1217 if(cmdsRecvd > 100) {
1218 //DbpString("100 commands later...");
1219 //break;
1220 }
1221 else {
1222 cmdsRecvd++;
1223 }
1224 /**
1225 A legit tag has about 380us delay between reader EOT and tag SOF.
1226 **/
1227 if(modulated_response_size > 0) {
1228 SendIClassAnswer(modulated_response, modulated_response_size, 1);
1229 t2r_time = GetCountSspClk();
1230 }
1231
1232 if (tracing) {
1233 uint8_t parity[MAX_PARITY_SIZE];
1234 GetParity(receivedCmd, len, parity);
1235 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE);
1236
1237 if (trace_data != NULL) {
1238 GetParity(trace_data, trace_data_size, parity);
1239 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE);
1240 }
1241 if(!tracing) {
1242 DbpString("Trace full");
1243 //break;
1244 }
1245
1246 }
1247 memset(receivedCmd, 0x44, MAX_FRAME_SIZE);
1248 }
1249
1250 //Dbprintf("%x", cmdsRecvd);
1251 LED_A_OFF();
1252 LED_B_OFF();
1253 LED_C_OFF();
1254
1255 if(buttonPressed)
1256 {
1257 DbpString("Button pressed");
1258 }
1259 return buttonPressed;
1260 }
1261
1262 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1263 {
1264 int i = 0, d=0;//, u = 0, d = 0;
1265 uint8_t b = 0;
1266
1267 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1269
1270 AT91C_BASE_SSC->SSC_THR = 0x00;
1271 FpgaSetupSsc();
1272 while(!BUTTON_PRESS()) {
1273 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1274 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1275 }
1276 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1277 b = 0x00;
1278 if(d < delay) {
1279 d++;
1280 }
1281 else {
1282 if( i < respLen){
1283 b = resp[i];
1284 //Hack
1285 //b = 0xAC;
1286 }
1287 i++;
1288 }
1289 AT91C_BASE_SSC->SSC_THR = b;
1290 }
1291
1292 // if (i > respLen +4) break;
1293 if (i > respLen +1) break;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /// THE READER CODE
1300
1301 //-----------------------------------------------------------------------------
1302 // Transmit the command (to the tag) that was placed in ToSend[].
1303 //-----------------------------------------------------------------------------
1304 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1305 {
1306 int c;
1307 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1308 AT91C_BASE_SSC->SSC_THR = 0x00;
1309 FpgaSetupSsc();
1310
1311 if (wait)
1312 {
1313 if(*wait < 10) *wait = 10;
1314
1315 for(c = 0; c < *wait;) {
1316 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1317 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1318 c++;
1319 }
1320 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1321 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1322 (void)r;
1323 }
1324 WDT_HIT();
1325 }
1326
1327 }
1328
1329
1330 uint8_t sendbyte;
1331 bool firstpart = TRUE;
1332 c = 0;
1333 for(;;) {
1334 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1335
1336 // DOUBLE THE SAMPLES!
1337 if(firstpart) {
1338 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1339 }
1340 else {
1341 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1342 c++;
1343 }
1344 if(sendbyte == 0xff) {
1345 sendbyte = 0xfe;
1346 }
1347 AT91C_BASE_SSC->SSC_THR = sendbyte;
1348 firstpart = !firstpart;
1349
1350 if(c >= len) {
1351 break;
1352 }
1353 }
1354 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1355 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1356 (void)r;
1357 }
1358 WDT_HIT();
1359 }
1360 if (samples) *samples = (c + *wait) << 3;
1361 }
1362
1363
1364 //-----------------------------------------------------------------------------
1365 // Prepare iClass reader command to send to FPGA
1366 //-----------------------------------------------------------------------------
1367 void CodeIClassCommand(const uint8_t * cmd, int len)
1368 {
1369 int i, j, k;
1370 uint8_t b;
1371
1372 ToSendReset();
1373
1374 // Start of Communication: 1 out of 4
1375 ToSend[++ToSendMax] = 0xf0;
1376 ToSend[++ToSendMax] = 0x00;
1377 ToSend[++ToSendMax] = 0x0f;
1378 ToSend[++ToSendMax] = 0x00;
1379
1380 // Modulate the bytes
1381 for (i = 0; i < len; i++) {
1382 b = cmd[i];
1383 for(j = 0; j < 4; j++) {
1384 for(k = 0; k < 4; k++) {
1385 if(k == (b & 3)) {
1386 ToSend[++ToSendMax] = 0x0f;
1387 }
1388 else {
1389 ToSend[++ToSendMax] = 0x00;
1390 }
1391 }
1392 b >>= 2;
1393 }
1394 }
1395
1396 // End of Communication
1397 ToSend[++ToSendMax] = 0x00;
1398 ToSend[++ToSendMax] = 0x00;
1399 ToSend[++ToSendMax] = 0xf0;
1400 ToSend[++ToSendMax] = 0x00;
1401
1402 // Convert from last character reference to length
1403 ToSendMax++;
1404 }
1405
1406 void ReaderTransmitIClass(uint8_t* frame, int len)
1407 {
1408 int wait = 0;
1409 int samples = 0;
1410
1411 // This is tied to other size changes
1412 CodeIClassCommand(frame,len);
1413
1414 // Select the card
1415 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1416 if(trigger)
1417 LED_A_ON();
1418
1419 // Store reader command in buffer
1420 if (tracing) {
1421 uint8_t par[MAX_PARITY_SIZE];
1422 GetParity(frame, len, par);
1423 LogTrace(frame, len, rsamples, rsamples, par, TRUE);
1424 }
1425 }
1426
1427 //-----------------------------------------------------------------------------
1428 // Wait a certain time for tag response
1429 // If a response is captured return TRUE
1430 // If it takes too long return FALSE
1431 //-----------------------------------------------------------------------------
1432 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1433 {
1434 // buffer needs to be 512 bytes
1435 int c;
1436
1437 // Set FPGA mode to "reader listen mode", no modulation (listen
1438 // only, since we are receiving, not transmitting).
1439 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1440
1441 // Now get the answer from the card
1442 Demod.output = receivedResponse;
1443 Demod.len = 0;
1444 Demod.state = DEMOD_UNSYNCD;
1445
1446 uint8_t b;
1447 if (elapsed) *elapsed = 0;
1448
1449 bool skip = FALSE;
1450
1451 c = 0;
1452 for(;;) {
1453 WDT_HIT();
1454
1455 if(BUTTON_PRESS()) return FALSE;
1456
1457 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1458 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1459 if (elapsed) (*elapsed)++;
1460 }
1461 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1462 if(c < timeout) { c++; } else { return FALSE; }
1463 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1464 skip = !skip;
1465 if(skip) continue;
1466
1467 if(ManchesterDecoding(b & 0x0f)) {
1468 *samples = c << 3;
1469 return TRUE;
1470 }
1471 }
1472 }
1473 }
1474
1475 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1476 {
1477 int samples = 0;
1478 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE;
1479 rsamples += samples;
1480 if (tracing) {
1481 uint8_t parity[MAX_PARITY_SIZE];
1482 GetParity(receivedAnswer, Demod.len, parity);
1483 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE);
1484 }
1485 if(samples == 0) return FALSE;
1486 return Demod.len;
1487 }
1488
1489 void setupIclassReader()
1490 {
1491 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1492 // Reset trace buffer
1493 iso14a_set_tracing(TRUE);
1494 iso14a_clear_trace();
1495
1496 // Setup SSC
1497 FpgaSetupSsc();
1498 // Start from off (no field generated)
1499 // Signal field is off with the appropriate LED
1500 LED_D_OFF();
1501 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1502 SpinDelay(200);
1503
1504 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1505
1506 // Now give it time to spin up.
1507 // Signal field is on with the appropriate LED
1508 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1509 SpinDelay(200);
1510 LED_A_ON();
1511
1512 }
1513
1514 size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1515 {
1516 while(retries-- > 0)
1517 {
1518 ReaderTransmitIClass(command, cmdsize);
1519 if(expected_size == ReaderReceiveIClass(resp)){
1520 return 0;
1521 }
1522 }
1523 return 1;//Error
1524 }
1525
1526 /**
1527 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1528 * @param card_data where the CSN and CC are stored for return
1529 * @return 0 = fail
1530 * 1 = Got CSN
1531 * 2 = Got CSN and CC
1532 */
1533 uint8_t handshakeIclassTag(uint8_t *card_data)
1534 {
1535 static uint8_t act_all[] = { 0x0a };
1536 static uint8_t identify[] = { 0x0c };
1537 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1538 static uint8_t readcheck_cc[]= { 0x88, 0x02 };
1539 uint8_t resp[ICLASS_BUFFER_SIZE];
1540
1541 uint8_t read_status = 0;
1542
1543 // Send act_all
1544 ReaderTransmitIClass(act_all, 1);
1545 // Card present?
1546 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1547 //Send Identify
1548 ReaderTransmitIClass(identify, 1);
1549 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1550 uint8_t len = ReaderReceiveIClass(resp);
1551 if(len != 10) return read_status;//Fail
1552
1553 //Copy the Anti-collision CSN to our select-packet
1554 memcpy(&select[1],resp,8);
1555 //Select the card
1556 ReaderTransmitIClass(select, sizeof(select));
1557 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1558 len = ReaderReceiveIClass(resp);
1559 if(len != 10) return read_status;//Fail
1560
1561 //Success - level 1, we got CSN
1562 //Save CSN in response data
1563 memcpy(card_data,resp,8);
1564
1565 //Flag that we got to at least stage 1, read CSN
1566 read_status = 1;
1567
1568 // Card selected, now read e-purse (cc)
1569 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1570 if(ReaderReceiveIClass(resp) == 8) {
1571 //Save CC (e-purse) in response data
1572 memcpy(card_data+8,resp,8);
1573
1574 //Got both
1575 read_status = 2;
1576 }
1577
1578 return read_status;
1579 }
1580
1581 // Reader iClass Anticollission
1582 void ReaderIClass(uint8_t arg0) {
1583
1584 uint8_t card_data[24]={0};
1585 uint8_t last_csn[8]={0};
1586
1587 int read_status= 0;
1588 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1589 bool get_cc = arg0 & FLAG_ICLASS_READER_GET_CC;
1590
1591 setupIclassReader();
1592
1593 size_t datasize = 0;
1594 while(!BUTTON_PRESS())
1595 {
1596
1597 if(traceLen > BigBuf_max_traceLen()) {
1598 DbpString("Trace full");
1599 break;
1600 }
1601 WDT_HIT();
1602
1603 read_status = handshakeIclassTag(card_data);
1604
1605 if(read_status == 0) continue;
1606 if(read_status == 1) datasize = 8;
1607 if(read_status == 2) datasize = 16;
1608
1609 LED_B_ON();
1610 //Send back to client, but don't bother if we already sent this
1611 if(memcmp(last_csn, card_data, 8) != 0)
1612 {
1613
1614 if(!get_cc || (get_cc && read_status == 2))
1615 {
1616 cmd_send(CMD_ACK,read_status,0,0,card_data,datasize);
1617 if(abort_after_read) {
1618 LED_A_OFF();
1619 return;
1620 }
1621 //Save that we already sent this....
1622 memcpy(last_csn, card_data, 8);
1623 }
1624 //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying...
1625 }
1626 LED_B_OFF();
1627 }
1628 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1629 LED_A_OFF();
1630 }
1631
1632 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1633
1634 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1635 uint16_t block_crc_LUT[255] = {0};
1636
1637 {//Generate a lookup table for block crc
1638 for(int block = 0; block < 255; block++){
1639 char bl = block;
1640 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1641 }
1642 }
1643 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1644
1645 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1646 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1647
1648 uint16_t crc = 0;
1649 uint8_t cardsize=0;
1650 uint8_t mem=0;
1651
1652 static struct memory_t{
1653 int k16;
1654 int book;
1655 int k2;
1656 int lockauth;
1657 int keyaccess;
1658 } memory;
1659
1660 uint8_t resp[ICLASS_BUFFER_SIZE];
1661
1662 setupIclassReader();
1663
1664
1665 while(!BUTTON_PRESS()) {
1666
1667 WDT_HIT();
1668
1669 if(traceLen > BigBuf_max_traceLen()) {
1670 DbpString("Trace full");
1671 break;
1672 }
1673
1674 uint8_t read_status = handshakeIclassTag(card_data);
1675 if(read_status < 2) continue;
1676
1677 //for now replay captured auth (as cc not updated)
1678 memcpy(check+5,MAC,4);
1679
1680 if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1681 {
1682 Dbprintf("Error: Authentication Fail!");
1683 continue;
1684 }
1685
1686 //first get configuration block (block 1)
1687 crc = block_crc_LUT[1];
1688 read[1]=1;
1689 read[2] = crc >> 8;
1690 read[3] = crc & 0xff;
1691
1692 if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1693 {
1694 Dbprintf("Dump config (block 1) failed");
1695 continue;
1696 }
1697
1698 mem=resp[5];
1699 memory.k16= (mem & 0x80);
1700 memory.book= (mem & 0x20);
1701 memory.k2= (mem & 0x8);
1702 memory.lockauth= (mem & 0x2);
1703 memory.keyaccess= (mem & 0x1);
1704
1705 cardsize = memory.k16 ? 255 : 32;
1706 WDT_HIT();
1707 //Set card_data to all zeroes, we'll fill it with data
1708 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1709 uint8_t failedRead =0;
1710 uint8_t stored_data_length =0;
1711 //then loop around remaining blocks
1712 for(int block=0; block < cardsize; block++){
1713
1714 read[1]= block;
1715 crc = block_crc_LUT[block];
1716 read[2] = crc >> 8;
1717 read[3] = crc & 0xff;
1718
1719 if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1720 {
1721 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1722 block, resp[0], resp[1], resp[2],
1723 resp[3], resp[4], resp[5],
1724 resp[6], resp[7]);
1725
1726 //Fill up the buffer
1727 memcpy(card_data+stored_data_length,resp,8);
1728 stored_data_length += 8;
1729
1730 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1731 {//Time to send this off and start afresh
1732 cmd_send(CMD_ACK,
1733 stored_data_length,//data length
1734 failedRead,//Failed blocks?
1735 0,//Not used ATM
1736 card_data, stored_data_length);
1737 //reset
1738 stored_data_length = 0;
1739 failedRead = 0;
1740 }
1741
1742 }else{
1743 failedRead = 1;
1744 stored_data_length +=8;//Otherwise, data becomes misaligned
1745 Dbprintf("Failed to dump block %d", block);
1746 }
1747 }
1748 //Send off any remaining data
1749 if(stored_data_length > 0)
1750 {
1751 cmd_send(CMD_ACK,
1752 stored_data_length,//data length
1753 failedRead,//Failed blocks?
1754 0,//Not used ATM
1755 card_data, stored_data_length);
1756 }
1757 //If we got here, let's break
1758 break;
1759 }
1760 //Signal end of transmission
1761 cmd_send(CMD_ACK,
1762 0,//data length
1763 0,//Failed blocks?
1764 0,//Not used ATM
1765 card_data, 0);
1766
1767 LED_A_OFF();
1768 }
1769
1770 //2. Create Read method (cut-down from above) based off responses from 1.
1771 // Since we have the MAC could continue to use replay function.
1772 //3. Create Write method
1773 /*
1774 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1775 uint8_t act_all[] = { 0x0a };
1776 uint8_t identify[] = { 0x0c };
1777 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1778 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1779 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1780 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1781 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1782
1783 uint16_t crc = 0;
1784
1785 uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
1786
1787 // Reset trace buffer
1788 memset(trace, 0x44, RECV_CMD_OFFSET);
1789 traceLen = 0;
1790
1791 // Setup SSC
1792 FpgaSetupSsc();
1793 // Start from off (no field generated)
1794 // Signal field is off with the appropriate LED
1795 LED_D_OFF();
1796 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1797 SpinDelay(200);
1798
1799 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1800
1801 // Now give it time to spin up.
1802 // Signal field is on with the appropriate LED
1803 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1804 SpinDelay(200);
1805
1806 LED_A_ON();
1807
1808 for(int i=0;i<1;i++) {
1809
1810 if(traceLen > TRACE_SIZE) {
1811 DbpString("Trace full");
1812 break;
1813 }
1814
1815 if (BUTTON_PRESS()) break;
1816
1817 // Send act_all
1818 ReaderTransmitIClass(act_all, 1);
1819 // Card present?
1820 if(ReaderReceiveIClass(resp)) {
1821 ReaderTransmitIClass(identify, 1);
1822 if(ReaderReceiveIClass(resp) == 10) {
1823 // Select card
1824 memcpy(&select[1],resp,8);
1825 ReaderTransmitIClass(select, sizeof(select));
1826
1827 if(ReaderReceiveIClass(resp) == 10) {
1828 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1829 resp[0], resp[1], resp[2],
1830 resp[3], resp[4], resp[5],
1831 resp[6], resp[7]);
1832 }
1833 // Card selected
1834 Dbprintf("Readcheck on Sector 2");
1835 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1836 if(ReaderReceiveIClass(resp) == 8) {
1837 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1838 resp[0], resp[1], resp[2],
1839 resp[3], resp[4], resp[5],
1840 resp[6], resp[7]);
1841 }else return;
1842 Dbprintf("Authenticate");
1843 //for now replay captured auth (as cc not updated)
1844 memcpy(check+5,MAC,4);
1845 Dbprintf(" AA: %02x %02x %02x %02x",
1846 check[5], check[6], check[7],check[8]);
1847 ReaderTransmitIClass(check, sizeof(check));
1848 if(ReaderReceiveIClass(resp) == 4) {
1849 Dbprintf(" AR: %02x %02x %02x %02x",
1850 resp[0], resp[1], resp[2],resp[3]);
1851 }else {
1852 Dbprintf("Error: Authentication Fail!");
1853 return;
1854 }
1855 Dbprintf("Write Block");
1856
1857 //read configuration for max block number
1858 read_success=false;
1859 read[1]=1;
1860 uint8_t *blockno=&read[1];
1861 crc = iclass_crc16((char *)blockno,1);
1862 read[2] = crc >> 8;
1863 read[3] = crc & 0xff;
1864 while(!read_success){
1865 ReaderTransmitIClass(read, sizeof(read));
1866 if(ReaderReceiveIClass(resp) == 10) {
1867 read_success=true;
1868 mem=resp[5];
1869 memory.k16= (mem & 0x80);
1870 memory.book= (mem & 0x20);
1871 memory.k2= (mem & 0x8);
1872 memory.lockauth= (mem & 0x2);
1873 memory.keyaccess= (mem & 0x1);
1874
1875 }
1876 }
1877 if (memory.k16){
1878 cardsize=255;
1879 }else cardsize=32;
1880 //check card_size
1881
1882 memcpy(write+1,blockNo,1);
1883 memcpy(write+2,data,8);
1884 memcpy(write+10,mac,4);
1885 while(!send_success){
1886 ReaderTransmitIClass(write, sizeof(write));
1887 if(ReaderReceiveIClass(resp) == 10) {
1888 write_success=true;
1889 }
1890 }//
1891 }
1892 WDT_HIT();
1893 }
1894
1895 LED_A_OFF();
1896 }*/
Impressum, Datenschutz