1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 void AcquireRawAdcSamples125k(int at134khz
)
21 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
23 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
25 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
27 // Connect the A/D to the peak-detected low-frequency path.
28 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
30 // Give it a bit of time for the resonant antenna to settle.
33 // Now set up the SSC to get the ADC samples that are now streaming at us.
36 // Now call the acquisition routine
40 // split into two routines so we can avoid timing issues after sending commands //
41 void DoAcquisition125k(void)
43 uint8_t *dest
= (uint8_t *)BigBuf
;
44 int n
= sizeof(BigBuf
);
50 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
51 AT91C_BASE_SSC
->SSC_THR
= 0x43;
54 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
55 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
61 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
62 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
65 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
69 /* Make sure the tag is reset */
70 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
73 // see if 'h' was specified
74 if (command
[strlen((char *) command
) - 1] == 'h')
80 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
82 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
84 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
86 // Give it a bit of time for the resonant antenna to settle.
88 // And a little more time for the tag to fully power up
91 // Now set up the SSC to get the ADC samples that are now streaming at us.
94 // now modulate the reader field
95 while(*command
!= '\0' && *command
!= ' ') {
96 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
98 SpinDelayUs(delay_off
);
100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
102 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
104 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
106 if(*(command
++) == '0')
107 SpinDelayUs(period_0
);
109 SpinDelayUs(period_1
);
111 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
113 SpinDelayUs(delay_off
);
115 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
125 /* blank r/w tag data stream
126 ...0000000000000000 01111111
127 1010101010101010101010101010101010101010101010101010101010101010
130 101010101010101[0]000...
132 [5555fe852c5555555555555555fe0000]
136 // some hardcoded initial params
137 // when we read a TI tag we sample the zerocross line at 2Mhz
138 // TI tags modulate a 1 as 16 cycles of 123.2Khz
139 // TI tags modulate a 0 as 16 cycles of 134.2Khz
140 #define FSAMPLE 2000000
141 #define FREQLO 123200
142 #define FREQHI 134200
144 signed char *dest
= (signed char *)BigBuf
;
145 int n
= sizeof(BigBuf
);
146 // int *dest = GraphBuffer;
147 // int n = GraphTraceLen;
149 // 128 bit shift register [shift3:shift2:shift1:shift0]
150 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
152 int i
, cycles
=0, samples
=0;
153 // how many sample points fit in 16 cycles of each frequency
154 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
155 // when to tell if we're close enough to one freq or another
156 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
158 // TI tags charge at 134.2Khz
159 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
161 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
162 // connects to SSP_DIN and the SSP_DOUT logic level controls
163 // whether we're modulating the antenna (high)
164 // or listening to the antenna (low)
165 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
167 // get TI tag data into the buffer
170 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
172 for (i
=0; i
<n
-1; i
++) {
173 // count cycles by looking for lo to hi zero crossings
174 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
176 // after 16 cycles, measure the frequency
179 samples
=i
-samples
; // number of samples in these 16 cycles
181 // TI bits are coming to us lsb first so shift them
182 // right through our 128 bit right shift register
183 shift0
= (shift0
>>1) | (shift1
<< 31);
184 shift1
= (shift1
>>1) | (shift2
<< 31);
185 shift2
= (shift2
>>1) | (shift3
<< 31);
188 // check if the cycles fall close to the number
189 // expected for either the low or high frequency
190 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
191 // low frequency represents a 1
193 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
194 // high frequency represents a 0
196 // probably detected a gay waveform or noise
197 // use this as gaydar or discard shift register and start again
198 shift3
= shift2
= shift1
= shift0
= 0;
202 // for each bit we receive, test if we've detected a valid tag
204 // if we see 17 zeroes followed by 6 ones, we might have a tag
205 // remember the bits are backwards
206 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
207 // if start and end bytes match, we have a tag so break out of the loop
208 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
209 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
217 // if flag is set we have a tag
219 DbpString("Info: No valid tag detected.");
221 // put 64 bit data into shift1 and shift0
222 shift0
= (shift0
>>24) | (shift1
<< 8);
223 shift1
= (shift1
>>24) | (shift2
<< 8);
225 // align 16 bit crc into lower half of shift2
226 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
228 // if r/w tag, check ident match
229 if ( shift3
&(1<<15) ) {
230 DbpString("Info: TI tag is rewriteable");
231 // only 15 bits compare, last bit of ident is not valid
232 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
233 DbpString("Error: Ident mismatch!");
235 DbpString("Info: TI tag ident is valid");
238 DbpString("Info: TI tag is readonly");
241 // WARNING the order of the bytes in which we calc crc below needs checking
242 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
243 // bytes in reverse or something
247 crc
= update_crc16(crc
, (shift0
)&0xff);
248 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
249 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
250 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
251 crc
= update_crc16(crc
, (shift1
)&0xff);
252 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
253 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
254 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
256 Dbprintf("Info: Tag data: %x%08x, crc=%x",
257 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
258 if (crc
!= (shift2
&0xffff)) {
259 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
261 DbpString("Info: CRC is good");
266 void WriteTIbyte(uint8_t b
)
270 // modulate 8 bits out to the antenna
274 // stop modulating antenna
281 // stop modulating antenna
291 void AcquireTiType(void)
294 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
295 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
296 #define TIBUFLEN 1250
299 memset(BigBuf
,0,sizeof(BigBuf
));
301 // Set up the synchronous serial port
302 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
303 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
305 // steal this pin from the SSP and use it to control the modulation
306 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
307 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
309 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
310 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
312 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
313 // 48/2 = 24 MHz clock must be divided by 12
314 AT91C_BASE_SSC
->SSC_CMR
= 12;
316 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
317 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
318 AT91C_BASE_SSC
->SSC_TCMR
= 0;
319 AT91C_BASE_SSC
->SSC_TFMR
= 0;
326 // Charge TI tag for 50ms.
329 // stop modulating antenna and listen
336 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
337 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
338 i
++; if(i
>= TIBUFLEN
) break;
343 // return stolen pin to SSP
344 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
345 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
347 char *dest
= (char *)BigBuf
;
350 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
351 for (j
=0; j
<32; j
++) {
352 if(BigBuf
[i
] & (1 << j
)) {
361 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
362 // if crc provided, it will be written with the data verbatim (even if bogus)
363 // if not provided a valid crc will be computed from the data and written.
364 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
367 crc
= update_crc16(crc
, (idlo
)&0xff);
368 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
369 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
370 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
371 crc
= update_crc16(crc
, (idhi
)&0xff);
372 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
373 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
374 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
376 Dbprintf("Writing to tag: %x%08x, crc=%x",
377 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
379 // TI tags charge at 134.2Khz
380 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
381 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
382 // connects to SSP_DIN and the SSP_DOUT logic level controls
383 // whether we're modulating the antenna (high)
384 // or listening to the antenna (low)
385 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
388 // steal this pin from the SSP and use it to control the modulation
389 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
390 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
392 // writing algorithm:
393 // a high bit consists of a field off for 1ms and field on for 1ms
394 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
395 // initiate a charge time of 50ms (field on) then immediately start writing bits
396 // start by writing 0xBB (keyword) and 0xEB (password)
397 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
398 // finally end with 0x0300 (write frame)
399 // all data is sent lsb firts
400 // finish with 15ms programming time
404 SpinDelay(50); // charge time
406 WriteTIbyte(0xbb); // keyword
407 WriteTIbyte(0xeb); // password
408 WriteTIbyte( (idlo
)&0xff );
409 WriteTIbyte( (idlo
>>8 )&0xff );
410 WriteTIbyte( (idlo
>>16)&0xff );
411 WriteTIbyte( (idlo
>>24)&0xff );
412 WriteTIbyte( (idhi
)&0xff );
413 WriteTIbyte( (idhi
>>8 )&0xff );
414 WriteTIbyte( (idhi
>>16)&0xff );
415 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
416 WriteTIbyte( (crc
)&0xff ); // crc lo
417 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
418 WriteTIbyte(0x00); // write frame lo
419 WriteTIbyte(0x03); // write frame hi
421 SpinDelay(50); // programming time
425 // get TI tag data into the buffer
428 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
429 DbpString("Now use tiread to check");
432 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
435 uint8_t *tab
= (uint8_t *)BigBuf
;
437 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
439 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
441 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
442 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
444 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
445 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
449 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
451 DbpString("Stopped");
468 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
470 DbpString("Stopped");
487 /* Provides a framework for bidirectional LF tag communication
488 * Encoding is currently Hitag2, but the general idea can probably
489 * be transferred to other encodings.
491 * The new FPGA code will, for the LF simulator mode, give on SSC_FRAME
492 * (PA15) a thresholded version of the signal from the ADC. Setting the
493 * ADC path to the low frequency peak detection signal, will enable a
494 * somewhat reasonable receiver for modulation on the carrier signal
495 * that is generated by the reader. The signal is low when the reader
496 * field is switched off, and high when the reader field is active. Due
497 * to the way that the signal looks like, mostly only the rising edge is
498 * useful, your mileage may vary.
500 * Neat perk: PA15 can not only be used as a bit-banging GPIO, but is also
501 * TIOA1, which can be used as the capture input for timer 1. This should
502 * make it possible to measure the exact edge-to-edge time, without processor
505 * Arguments: divisor is the divisor to be sent to the FPGA (e.g. 95 for 125kHz)
506 * t0 is the carrier frequency cycle duration in terms of MCK (384 for 125kHz)
508 * The following defines are in carrier periods:
510 #define HITAG_T_0_MIN 15 /* T[0] should be 18..22 */
511 #define HITAG_T_1_MIN 24 /* T[1] should be 26..30 */
512 #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
513 #define HITAG_T_WRESP 208 /* T_wresp should be 204..212 */
515 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
);
516 //#define DEBUG_RA_VALUES 1
517 #define DEBUG_FRAME_CONTENTS 1
518 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
520 #if DEBUG_RA_VALUES || DEBUG_FRAME_CONTENTS
526 DbpString("Starting Hitag2 emulator, press button to end");
529 /* Set up simulator mode, frequency divisor which will drive the FPGA
530 * and analog mux selection.
532 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
533 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
534 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
538 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
539 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
540 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
543 AT91C_BASE_PMC
->PMC_PCER
= (1 << AT91C_ID_TC1
);
544 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_SSC_FRAME
;
545 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKDIS
;
546 AT91C_BASE_TC1
->TC_CMR
= AT91C_TC_CLKS_TIMER_DIV1_CLOCK
|
547 AT91C_TC_ETRGEDG_RISING
|
549 AT91C_TC_LDRA_RISING
|
550 AT91C_TC_LDRB_RISING
;
551 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_CLKEN
|
554 /* calculate the new value for the carrier period in terms of TC1 values */
558 while(!BUTTON_PRESS()) {
560 if(AT91C_BASE_TC1
->TC_SR
& AT91C_TC_LDRAS
) {
561 int ra
= AT91C_BASE_TC1
->TC_RA
;
562 if((ra
> t0
*HITAG_T_EOF
) | overflow
) ra
= t0
*HITAG_T_EOF
+1;
564 if(ra
> 255 || overflow
) ra
= 255;
565 ((char*)BigBuf
)[i
] = ra
;
569 if(overflow
|| (ra
> t0
*HITAG_T_EOF
) || (ra
< t0
*HITAG_T_0_MIN
)) {
571 } else if(ra
>= t0
*HITAG_T_1_MIN
) {
573 if(frame_pos
< 8*sizeof(frame
)) {
574 frame
[frame_pos
/ 8] |= 1<<( 7-(frame_pos
%8) );
577 } else if(ra
>= t0
*HITAG_T_0_MIN
) {
579 if(frame_pos
< 8*sizeof(frame
)) {
580 frame
[frame_pos
/ 8] |= 0<<( 7-(frame_pos
%8) );
588 if(AT91C_BASE_TC1
->TC_CV
> t0
*HITAG_T_EOF
) {
589 /* Minor nuisance: In Capture mode, the timer can not be
590 * stopped by a Compare C. There's no way to stop the clock
591 * in software, so we'll just have to note the fact that an
592 * overflow happened and the next loaded timer value might
593 * have wrapped. Also, this marks the end of frame, and the
594 * still running counter can be used to determine the correct
595 * time for the start of the reply.
600 /* Have a frame, do something with it */
601 #if DEBUG_FRAME_CONTENTS
602 ((char*)BigBuf
)[i
++] = frame_pos
;
603 memcpy( ((char*)BigBuf
)+i
, frame
, 7);
605 i
= i
% sizeof(BigBuf
);
607 hitag_handle_frame(t0
, frame_pos
, frame
);
608 memset(frame
, 0, sizeof(frame
));
616 DbpString("All done");
619 static void hitag_send_bit(int t0
, int bit
) {
621 /* Manchester: Loaded, then unloaded */
624 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
626 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
628 } else if(bit
== 0) {
629 /* Manchester: Unloaded, then loaded */
632 while(AT91C_BASE_TC1
->TC_CV
< t0
*15);
634 while(AT91C_BASE_TC1
->TC_CV
< t0
*31);
637 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset clock for the next bit */
640 static void hitag_send_frame(int t0
, int frame_len
, const char const * frame
, int fdt
)
643 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
645 /* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
646 * not that since the clock counts since the rising edge, but T_wresp is
647 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
648 * periods. The gap time T_g varies (4..10).
650 while(AT91C_BASE_TC1
->TC_CV
< t0
*(fdt
-8));
652 int saved_cmr
= AT91C_BASE_TC1
->TC_CMR
;
653 AT91C_BASE_TC1
->TC_CMR
&= ~AT91C_TC_ETRGEDG
; /* Disable external trigger for the clock */
654 AT91C_BASE_TC1
->TC_CCR
= AT91C_TC_SWTRG
; /* Reset the clock and use it for response timing */
658 hitag_send_bit(t0
, 1); /* Start of frame */
660 for(i
=0; i
<frame_len
; i
++) {
661 hitag_send_bit(t0
, !!(frame
[i
/ 8] & (1<<( 7-(i
%8) ))) );
665 AT91C_BASE_TC1
->TC_CMR
= saved_cmr
;
668 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
669 static int hitag_cb(const char* response_data
, const int response_length
, const int fdt
, void *cb_cookie
)
671 hitag_send_frame(*(int*)cb_cookie
, response_length
, response_data
, fdt
);
674 /* Frame length in bits, frame contents in MSBit first format */
675 static void hitag_handle_frame(int t0
, int frame_len
, char *frame
)
677 hitag2_handle_command(frame
, frame_len
, hitag_cb
, &t0
);
680 // compose fc/8 fc/10 waveform
681 static void fc(int c
, int *n
) {
682 uint8_t *dest
= (uint8_t *)BigBuf
;
685 // for when we want an fc8 pattern every 4 logical bits
696 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
698 for (idx
=0; idx
<6; idx
++) {
710 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
712 for (idx
=0; idx
<5; idx
++) {
727 // prepare a waveform pattern in the buffer based on the ID given then
728 // simulate a HID tag until the button is pressed
729 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
733 HID tag bitstream format
734 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
735 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
736 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
737 A fc8 is inserted before every 4 bits
738 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
739 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
743 DbpString("Tags can only have 44 bits.");
747 // special start of frame marker containing invalid bit sequences
748 fc(8, &n
); fc(8, &n
); // invalid
749 fc(8, &n
); fc(10, &n
); // logical 0
750 fc(10, &n
); fc(10, &n
); // invalid
751 fc(8, &n
); fc(10, &n
); // logical 0
754 // manchester encode bits 43 to 32
755 for (i
=11; i
>=0; i
--) {
756 if ((i
%4)==3) fc(0,&n
);
758 fc(10, &n
); fc(8, &n
); // low-high transition
760 fc(8, &n
); fc(10, &n
); // high-low transition
765 // manchester encode bits 31 to 0
766 for (i
=31; i
>=0; i
--) {
767 if ((i
%4)==3) fc(0,&n
);
769 fc(10, &n
); fc(8, &n
); // low-high transition
771 fc(8, &n
); fc(10, &n
); // high-low transition
777 SimulateTagLowFrequency(n
, 0, ledcontrol
);
784 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
785 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
787 uint8_t *dest
= (uint8_t *)BigBuf
;
788 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
791 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
792 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
794 // Connect the A/D to the peak-detected low-frequency path.
795 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
797 // Give it a bit of time for the resonant antenna to settle.
800 // Now set up the SSC to get the ADC samples that are now streaming at us.
808 DbpString("Stopped");
818 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
819 AT91C_BASE_SSC
->SSC_THR
= 0x43;
823 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
824 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
825 // we don't care about actual value, only if it's more or less than a
826 // threshold essentially we capture zero crossings for later analysis
827 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
839 // sync to first lo-hi transition
840 for( idx
=1; idx
<m
; idx
++) {
841 if (dest
[idx
-1]<dest
[idx
])
847 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
848 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
849 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
850 for( i
=0; idx
<m
; idx
++) {
851 if (dest
[idx
-1]<dest
[idx
]) {
866 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
871 for( idx
=0; idx
<m
; idx
++) {
872 if (dest
[idx
]==lastval
) {
875 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
876 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
877 // swallowed up by rounding
878 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
879 // special start of frame markers use invalid manchester states (no transitions) by using sequences
882 n
=(n
+1)/6; // fc/8 in sets of 6
884 n
=(n
+1)/5; // fc/10 in sets of 5
886 switch (n
) { // stuff appropriate bits in buffer
889 dest
[i
++]=dest
[idx
-1];
892 dest
[i
++]=dest
[idx
-1];
893 dest
[i
++]=dest
[idx
-1];
895 case 3: // 3 bit start of frame markers
896 dest
[i
++]=dest
[idx
-1];
897 dest
[i
++]=dest
[idx
-1];
898 dest
[i
++]=dest
[idx
-1];
900 // When a logic 0 is immediately followed by the start of the next transmisson
901 // (special pattern) a pattern of 4 bit duration lengths is created.
903 dest
[i
++]=dest
[idx
-1];
904 dest
[i
++]=dest
[idx
-1];
905 dest
[i
++]=dest
[idx
-1];
906 dest
[i
++]=dest
[idx
-1];
908 default: // this shouldn't happen, don't stuff any bits
918 // final loop, go over previously decoded manchester data and decode into usable tag ID
919 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
920 for( idx
=0; idx
<m
-6; idx
++) {
921 // search for a start of frame marker
922 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
926 if (found
&& (hi
|lo
)) {
927 Dbprintf("TAG ID: %x%08x (%d)",
928 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
929 /* if we're only looking for one tag */
942 if (dest
[idx
] && (!dest
[idx
+1]) ) {
945 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
955 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
959 if (found
&& (hi
|lo
)) {
960 Dbprintf("TAG ID: %x%08x (%d)",
961 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
962 /* if we're only looking for one tag */