]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso15693.c
Small lf bug fixes and threshold adjustments
[proxmark3-svn] / armsrc / iso15693.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 15693. This includes both the reader software and
11 // the `fake tag' modes, but at the moment I've implemented only the reader
12 // stuff, and that barely.
13 // Modified to perform modulation onboard in arm rather than on PC
14 // Also added additional reader commands (SELECT, READ etc.)
15 //-----------------------------------------------------------------------------
16 // The ISO 15693 describes two transmission modes from reader to tag, and 4
17 // transmission modes from tag to reader. As of Mar 2010 this code only
18 // supports one of each: "1of4" mode from reader to tag, and the highspeed
19 // variant with one subcarrier from card to reader.
20 // As long, as the card fully support ISO 15693 this is no problem, since the
21 // reader chooses both data rates, but some non-standard tags do not. Further for
22 // the simulation to work, we will need to support all data rates.
23 //
24 // VCD (reader) -> VICC (tag)
25 // 1 out of 256:
26 // data rate: 1,66 kbit/s (fc/8192)
27 // used for long range
28 // 1 out of 4:
29 // data rate: 26,48 kbit/s (fc/512)
30 // used for short range, high speed
31 //
32 // VICC (tag) -> VCD (reader)
33 // Modulation:
34 // ASK / one subcarrier (423,75 khz)
35 // FSK / two subcarriers (423,75 khz && 484,28 khz)
36 // Data Rates / Modes:
37 // low ASK: 6,62 kbit/s
38 // low FSK: 6.67 kbit/s
39 // high ASK: 26,48 kbit/s
40 // high FSK: 26,69 kbit/s
41 //-----------------------------------------------------------------------------
42 // added "1 out of 256" mode (for VCD->PICC) - atrox 20100911
43
44
45 // Random Remarks:
46 // *) UID is always used "transmission order" (LSB), which is reverse to display order
47
48 // TODO / BUGS / ISSUES:
49 // *) writing to tags takes longer: we miss the answer from the tag in most cases
50 // -> tweak the read-timeout times
51 // *) signal decoding from the card is still a bit shaky.
52 // *) signal decoding is unable to detect collissions.
53 // *) add anti-collission support for inventory-commands
54 // *) read security status of a block
55 // *) sniffing and simulation do only support one transmission mode. need to support
56 // all 8 transmission combinations
57 // *) remove or refactor code under "depricated"
58 // *) document all the functions
59
60
61 #include "proxmark3.h"
62 #include "util.h"
63 #include "apps.h"
64 #include "string.h"
65 #include "iso15693tools.h"
66 #include "cmd.h"
67
68 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
69
70 ///////////////////////////////////////////////////////////////////////
71 // ISO 15693 Part 2 - Air Interface
72 // This section basicly contains transmission and receiving of bits
73 ///////////////////////////////////////////////////////////////////////
74
75 #define FrameSOF Iso15693FrameSOF
76 #define Logic0 Iso15693Logic0
77 #define Logic1 Iso15693Logic1
78 #define FrameEOF Iso15693FrameEOF
79
80 #define Crc(data,datalen) Iso15693Crc(data,datalen)
81 #define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
82 #define sprintUID(target,uid) Iso15693sprintUID(target,uid)
83
84 int DEBUG=0;
85
86
87 // ---------------------------
88 // Signal Processing
89 // ---------------------------
90
91 // prepare data using "1 out of 4" code for later transmission
92 // resulting data rate is 26,48 kbit/s (fc/512)
93 // cmd ... data
94 // n ... length of data
95 static void CodeIso15693AsReader(uint8_t *cmd, int n)
96 {
97 int i, j;
98
99 ToSendReset();
100
101 // Give it a bit of slack at the beginning
102 for(i = 0; i < 24; i++) {
103 ToSendStuffBit(1);
104 }
105
106 // SOF for 1of4
107 ToSendStuffBit(0);
108 ToSendStuffBit(1);
109 ToSendStuffBit(1);
110 ToSendStuffBit(1);
111 ToSendStuffBit(1);
112 ToSendStuffBit(0);
113 ToSendStuffBit(1);
114 ToSendStuffBit(1);
115 for(i = 0; i < n; i++) {
116 for(j = 0; j < 8; j += 2) {
117 int these = (cmd[i] >> j) & 3;
118 switch(these) {
119 case 0:
120 ToSendStuffBit(1);
121 ToSendStuffBit(0);
122 ToSendStuffBit(1);
123 ToSendStuffBit(1);
124 ToSendStuffBit(1);
125 ToSendStuffBit(1);
126 ToSendStuffBit(1);
127 ToSendStuffBit(1);
128 break;
129 case 1:
130 ToSendStuffBit(1);
131 ToSendStuffBit(1);
132 ToSendStuffBit(1);
133 ToSendStuffBit(0);
134 ToSendStuffBit(1);
135 ToSendStuffBit(1);
136 ToSendStuffBit(1);
137 ToSendStuffBit(1);
138 break;
139 case 2:
140 ToSendStuffBit(1);
141 ToSendStuffBit(1);
142 ToSendStuffBit(1);
143 ToSendStuffBit(1);
144 ToSendStuffBit(1);
145 ToSendStuffBit(0);
146 ToSendStuffBit(1);
147 ToSendStuffBit(1);
148 break;
149 case 3:
150 ToSendStuffBit(1);
151 ToSendStuffBit(1);
152 ToSendStuffBit(1);
153 ToSendStuffBit(1);
154 ToSendStuffBit(1);
155 ToSendStuffBit(1);
156 ToSendStuffBit(1);
157 ToSendStuffBit(0);
158 break;
159 }
160 }
161 }
162 // EOF
163 ToSendStuffBit(1);
164 ToSendStuffBit(1);
165 ToSendStuffBit(0);
166 ToSendStuffBit(1);
167
168 // And slack at the end, too.
169 for(i = 0; i < 24; i++) {
170 ToSendStuffBit(1);
171 }
172 }
173
174 // encode data using "1 out of 256" sheme
175 // data rate is 1,66 kbit/s (fc/8192)
176 // is designed for more robust communication over longer distances
177 static void CodeIso15693AsReader256(uint8_t *cmd, int n)
178 {
179 int i, j;
180
181 ToSendReset();
182
183 // Give it a bit of slack at the beginning
184 for(i = 0; i < 24; i++) {
185 ToSendStuffBit(1);
186 }
187
188 // SOF for 1of256
189 ToSendStuffBit(0);
190 ToSendStuffBit(1);
191 ToSendStuffBit(1);
192 ToSendStuffBit(1);
193 ToSendStuffBit(1);
194 ToSendStuffBit(1);
195 ToSendStuffBit(1);
196 ToSendStuffBit(0);
197
198 for(i = 0; i < n; i++) {
199 for (j = 0; j<=255; j++) {
200 if (cmd[i]==j) {
201 ToSendStuffBit(1);
202 ToSendStuffBit(0);
203 } else {
204 ToSendStuffBit(1);
205 ToSendStuffBit(1);
206 }
207 }
208 }
209 // EOF
210 ToSendStuffBit(1);
211 ToSendStuffBit(1);
212 ToSendStuffBit(0);
213 ToSendStuffBit(1);
214
215 // And slack at the end, too.
216 for(i = 0; i < 24; i++) {
217 ToSendStuffBit(1);
218 }
219 }
220
221
222 // Transmit the command (to the tag) that was placed in ToSend[].
223 static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait)
224 {
225 int c;
226
227 // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
229 if(*wait < 10) { *wait = 10; }
230
231 // for(c = 0; c < *wait;) {
232 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
233 // AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
234 // c++;
235 // }
236 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
237 // volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
238 // (void)r;
239 // }
240 // WDT_HIT();
241 // }
242
243 c = 0;
244 for(;;) {
245 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
246 AT91C_BASE_SSC->SSC_THR = cmd[c];
247 c++;
248 if(c >= len) {
249 break;
250 }
251 }
252 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
253 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
254 (void)r;
255 }
256 WDT_HIT();
257 }
258 *samples = (c + *wait) << 3;
259 }
260
261 //-----------------------------------------------------------------------------
262 // Transmit the command (to the reader) that was placed in ToSend[].
263 //-----------------------------------------------------------------------------
264 static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait)
265 {
266 int c = 0;
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
268 if(*wait < 10) { *wait = 10; }
269
270 for(;;) {
271 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
272 AT91C_BASE_SSC->SSC_THR = cmd[c];
273 c++;
274 if(c >= len) {
275 break;
276 }
277 }
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
279 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
280 (void)r;
281 }
282 WDT_HIT();
283 }
284 *samples = (c + *wait) << 3;
285 }
286
287
288 // Read from Tag
289 // Parameters:
290 // receivedResponse
291 // maxLen
292 // samples
293 // elapsed
294 // returns:
295 // number of decoded bytes
296 static int GetIso15693AnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
297 {
298 int c = 0;
299 uint8_t *dest = (uint8_t *)BigBuf;
300 int getNext = 0;
301
302 int8_t prev = 0;
303
304 // NOW READ RESPONSE
305 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
306 //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
307 c = 0;
308 getNext = FALSE;
309 for(;;) {
310 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
311 AT91C_BASE_SSC->SSC_THR = 0x43;
312 }
313 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
314 int8_t b;
315 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
316
317 // The samples are correlations against I and Q versions of the
318 // tone that the tag AM-modulates, so every other sample is I,
319 // every other is Q. We just want power, so abs(I) + abs(Q) is
320 // close to what we want.
321 if(getNext) {
322 int8_t r;
323
324 if(b < 0) {
325 r = -b;
326 } else {
327 r = b;
328 }
329 if(prev < 0) {
330 r -= prev;
331 } else {
332 r += prev;
333 }
334
335 dest[c++] = (uint8_t)r;
336
337 if(c >= 2000) {
338 break;
339 }
340 } else {
341 prev = b;
342 }
343
344 getNext = !getNext;
345 }
346 }
347
348 //////////////////////////////////////////
349 /////////// DEMODULATE ///////////////////
350 //////////////////////////////////////////
351
352 int i, j;
353 int max = 0, maxPos=0;
354
355 int skip = 4;
356
357 // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
358
359 // First, correlate for SOF
360 for(i = 0; i < 100; i++) {
361 int corr = 0;
362 for(j = 0; j < arraylen(FrameSOF); j += skip) {
363 corr += FrameSOF[j]*dest[i+(j/skip)];
364 }
365 if(corr > max) {
366 max = corr;
367 maxPos = i;
368 }
369 }
370 // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
371
372 int k = 0; // this will be our return value
373
374 // greg - If correlation is less than 1 then there's little point in continuing
375 if ((max/(arraylen(FrameSOF)/skip)) >= 1)
376 {
377
378 i = maxPos + arraylen(FrameSOF)/skip;
379
380 uint8_t outBuf[20];
381 memset(outBuf, 0, sizeof(outBuf));
382 uint8_t mask = 0x01;
383 for(;;) {
384 int corr0 = 0, corr1 = 0, corrEOF = 0;
385 for(j = 0; j < arraylen(Logic0); j += skip) {
386 corr0 += Logic0[j]*dest[i+(j/skip)];
387 }
388 for(j = 0; j < arraylen(Logic1); j += skip) {
389 corr1 += Logic1[j]*dest[i+(j/skip)];
390 }
391 for(j = 0; j < arraylen(FrameEOF); j += skip) {
392 corrEOF += FrameEOF[j]*dest[i+(j/skip)];
393 }
394 // Even things out by the length of the target waveform.
395 corr0 *= 4;
396 corr1 *= 4;
397
398 if(corrEOF > corr1 && corrEOF > corr0) {
399 // DbpString("EOF at %d", i);
400 break;
401 } else if(corr1 > corr0) {
402 i += arraylen(Logic1)/skip;
403 outBuf[k] |= mask;
404 } else {
405 i += arraylen(Logic0)/skip;
406 }
407 mask <<= 1;
408 if(mask == 0) {
409 k++;
410 mask = 0x01;
411 }
412 if((i+(int)arraylen(FrameEOF)) >= 2000) {
413 DbpString("ran off end!");
414 break;
415 }
416 }
417 if(mask != 0x01) { // this happens, when we miss the EOF
418 // TODO: for some reason this happens quite often
419 if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask=%02x", mask);
420 if (mask<0x08) k--; // discard the last uneven octet;
421 // 0x08 is an assumption - but works quite often
422 }
423 // uint8_t str1 [8];
424 // itoa(k,str1);
425 // strncat(str1," octets read",8);
426
427 // DbpString( str1); // DbpString("%d octets", k);
428
429 // for(i = 0; i < k; i+=3) {
430 // //DbpString("# %2d: %02x ", i, outBuf[i]);
431 // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
432 // }
433
434 for(i = 0; i < k; i++) {
435 receivedResponse[i] = outBuf[i];
436 }
437 } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
438 return k; // return the number of bytes demodulated
439
440 /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
441
442 }
443
444
445 // Now the GetISO15693 message from sniffing command
446 static int GetIso15693AnswerFromSniff(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
447 {
448 int c = 0;
449 uint8_t *dest = (uint8_t *)BigBuf;
450 int getNext = 0;
451
452 int8_t prev = 0;
453
454 // NOW READ RESPONSE
455 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
456 //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads
457 c = 0;
458 getNext = FALSE;
459 for(;;) {
460 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
461 AT91C_BASE_SSC->SSC_THR = 0x43;
462 }
463 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
464 int8_t b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
465
466 // The samples are correlations against I and Q versions of the
467 // tone that the tag AM-modulates, so every other sample is I,
468 // every other is Q. We just want power, so abs(I) + abs(Q) is
469 // close to what we want.
470 if(getNext) {
471 int8_t r;
472
473 if(b < 0) {
474 r = -b;
475 } else {
476 r = b;
477 }
478 if(prev < 0) {
479 r -= prev;
480 } else {
481 r += prev;
482 }
483
484 dest[c++] = (uint8_t)r;
485
486 if(c >= 20000) {
487 break;
488 }
489 } else {
490 prev = b;
491 }
492
493 getNext = !getNext;
494 }
495 }
496
497 //////////////////////////////////////////
498 /////////// DEMODULATE ///////////////////
499 //////////////////////////////////////////
500
501 int i, j;
502 int max = 0, maxPos=0;
503
504 int skip = 4;
505
506 // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
507
508 // First, correlate for SOF
509 for(i = 0; i < 19000; i++) {
510 int corr = 0;
511 for(j = 0; j < arraylen(FrameSOF); j += skip) {
512 corr += FrameSOF[j]*dest[i+(j/skip)];
513 }
514 if(corr > max) {
515 max = corr;
516 maxPos = i;
517 }
518 }
519 // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
520
521 int k = 0; // this will be our return value
522
523 // greg - If correlation is less than 1 then there's little point in continuing
524 if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1
525 {
526
527 i = maxPos + arraylen(FrameSOF)/skip;
528
529 uint8_t outBuf[20];
530 memset(outBuf, 0, sizeof(outBuf));
531 uint8_t mask = 0x01;
532 for(;;) {
533 int corr0 = 0, corr1 = 0, corrEOF = 0;
534 for(j = 0; j < arraylen(Logic0); j += skip) {
535 corr0 += Logic0[j]*dest[i+(j/skip)];
536 }
537 for(j = 0; j < arraylen(Logic1); j += skip) {
538 corr1 += Logic1[j]*dest[i+(j/skip)];
539 }
540 for(j = 0; j < arraylen(FrameEOF); j += skip) {
541 corrEOF += FrameEOF[j]*dest[i+(j/skip)];
542 }
543 // Even things out by the length of the target waveform.
544 corr0 *= 4;
545 corr1 *= 4;
546
547 if(corrEOF > corr1 && corrEOF > corr0) {
548 // DbpString("EOF at %d", i);
549 break;
550 } else if(corr1 > corr0) {
551 i += arraylen(Logic1)/skip;
552 outBuf[k] |= mask;
553 } else {
554 i += arraylen(Logic0)/skip;
555 }
556 mask <<= 1;
557 if(mask == 0) {
558 k++;
559 mask = 0x01;
560 }
561 if((i+(int)arraylen(FrameEOF)) >= 2000) {
562 DbpString("ran off end!");
563 break;
564 }
565 }
566 if(mask != 0x01) {
567 DbpString("sniff: error, uneven octet! (discard extra bits!)");
568 /// DbpString(" mask=%02x", mask);
569 }
570 // uint8_t str1 [8];
571 // itoa(k,str1);
572 // strncat(str1," octets read",8);
573
574 // DbpString( str1); // DbpString("%d octets", k);
575
576 // for(i = 0; i < k; i+=3) {
577 // //DbpString("# %2d: %02x ", i, outBuf[i]);
578 // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
579 // }
580
581 for(i = 0; i < k; i++) {
582 receivedResponse[i] = outBuf[i];
583 }
584 } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
585 return k; // return the number of bytes demodulated
586
587 /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
588 }
589
590
591 static void BuildIdentifyRequest(void);
592 //-----------------------------------------------------------------------------
593 // Start to read an ISO 15693 tag. We send an identify request, then wait
594 // for the response. The response is not demodulated, just left in the buffer
595 // so that it can be downloaded to a PC and processed there.
596 //-----------------------------------------------------------------------------
597 void AcquireRawAdcSamplesIso15693(void)
598 {
599 uint8_t *dest = (uint8_t *)BigBuf;
600
601 int c = 0;
602 int getNext = 0;
603 int8_t prev = 0;
604
605 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
606 BuildIdentifyRequest();
607
608 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
609
610 // Give the tags time to energize
611 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
612 SpinDelay(100);
613
614 // Now send the command
615 FpgaSetupSsc();
616 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
617
618 c = 0;
619 for(;;) {
620 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
621 AT91C_BASE_SSC->SSC_THR = ToSend[c];
622 c++;
623 if(c == ToSendMax+3) {
624 break;
625 }
626 }
627 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
628 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
629 (void)r;
630 }
631 WDT_HIT();
632 }
633
634 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
635
636 c = 0;
637 getNext = FALSE;
638 for(;;) {
639 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
640 AT91C_BASE_SSC->SSC_THR = 0x43;
641 }
642 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
643 int8_t b;
644 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
645
646 // The samples are correlations against I and Q versions of the
647 // tone that the tag AM-modulates, so every other sample is I,
648 // every other is Q. We just want power, so abs(I) + abs(Q) is
649 // close to what we want.
650 if(getNext) {
651 int8_t r;
652
653 if(b < 0) {
654 r = -b;
655 } else {
656 r = b;
657 }
658 if(prev < 0) {
659 r -= prev;
660 } else {
661 r += prev;
662 }
663
664 dest[c++] = (uint8_t)r;
665
666 if(c >= 2000) {
667 break;
668 }
669 } else {
670 prev = b;
671 }
672
673 getNext = !getNext;
674 }
675 }
676 }
677
678
679 void RecordRawAdcSamplesIso15693(void)
680 {
681 uint8_t *dest = (uint8_t *)BigBuf;
682
683 int c = 0;
684 int getNext = 0;
685 int8_t prev = 0;
686
687 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
688 // Setup SSC
689 FpgaSetupSsc();
690
691 // Start from off (no field generated)
692 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
693 SpinDelay(200);
694
695 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
696
697 SpinDelay(100);
698
699 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
700
701 c = 0;
702 getNext = FALSE;
703 for(;;) {
704 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
705 AT91C_BASE_SSC->SSC_THR = 0x43;
706 }
707 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
708 int8_t b;
709 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
710
711 // The samples are correlations against I and Q versions of the
712 // tone that the tag AM-modulates, so every other sample is I,
713 // every other is Q. We just want power, so abs(I) + abs(Q) is
714 // close to what we want.
715 if(getNext) {
716 int8_t r;
717
718 if(b < 0) {
719 r = -b;
720 } else {
721 r = b;
722 }
723 if(prev < 0) {
724 r -= prev;
725 } else {
726 r += prev;
727 }
728
729 dest[c++] = (uint8_t)r;
730
731 if(c >= 7000) {
732 break;
733 }
734 } else {
735 prev = b;
736 }
737
738 getNext = !getNext;
739 WDT_HIT();
740 }
741 }
742 Dbprintf("fin record");
743 }
744
745
746 // Initialize the proxmark as iso15k reader
747 // (this might produces glitches that confuse some tags
748 void Iso15693InitReader() {
749 LED_A_ON();
750 LED_B_ON();
751 LED_C_OFF();
752 LED_D_OFF();
753
754 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
755 // Setup SSC
756 // FpgaSetupSsc();
757
758 // Start from off (no field generated)
759 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
760 SpinDelay(10);
761
762 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
763 FpgaSetupSsc();
764
765 // Give the tags time to energize
766 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
767 SpinDelay(250);
768
769 LED_A_ON();
770 LED_B_OFF();
771 LED_C_OFF();
772 LED_D_OFF();
773 }
774
775 ///////////////////////////////////////////////////////////////////////
776 // ISO 15693 Part 3 - Air Interface
777 // This section basicly contains transmission and receiving of bits
778 ///////////////////////////////////////////////////////////////////////
779
780 // Encode (into the ToSend buffers) an identify request, which is the first
781 // thing that you must send to a tag to get a response.
782 static void BuildIdentifyRequest(void)
783 {
784 uint8_t cmd[5];
785
786 uint16_t crc;
787 // one sub-carrier, inventory, 1 slot, fast rate
788 // AFI is at bit 5 (1<<4) when doing an INVENTORY
789 cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
790 // inventory command code
791 cmd[1] = 0x01;
792 // no mask
793 cmd[2] = 0x00;
794 //Now the CRC
795 crc = Crc(cmd, 3);
796 cmd[3] = crc & 0xff;
797 cmd[4] = crc >> 8;
798
799 CodeIso15693AsReader(cmd, sizeof(cmd));
800 }
801
802 // uid is in transmission order (which is reverse of display order)
803 static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
804 {
805 uint8_t cmd[13];
806
807 uint16_t crc;
808 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
809 // followed by teh block data
810 // one sub-carrier, inventory, 1 slot, fast rate
811 cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
812 // READ BLOCK command code
813 cmd[1] = 0x20;
814 // UID may be optionally specified here
815 // 64-bit UID
816 cmd[2] = uid[0];
817 cmd[3] = uid[1];
818 cmd[4] = uid[2];
819 cmd[5] = uid[3];
820 cmd[6] = uid[4];
821 cmd[7] = uid[5];
822 cmd[8] = uid[6];
823 cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
824 // Block number to read
825 cmd[10] = blockNumber;//0x00;
826 //Now the CRC
827 crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes
828 cmd[11] = crc & 0xff;
829 cmd[12] = crc >> 8;
830
831 CodeIso15693AsReader(cmd, sizeof(cmd));
832 }
833
834 // Now the VICC>VCD responses when we are simulating a tag
835 static void BuildInventoryResponse( uint8_t *uid)
836 {
837 uint8_t cmd[12];
838
839 uint16_t crc;
840 // one sub-carrier, inventory, 1 slot, fast rate
841 // AFI is at bit 5 (1<<4) when doing an INVENTORY
842 //(1 << 2) | (1 << 5) | (1 << 1);
843 cmd[0] = 0; //
844 cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
845 // 64-bit UID
846 cmd[2] = uid[7]; //0x32;
847 cmd[3] = uid[6]; //0x4b;
848 cmd[4] = uid[5]; //0x03;
849 cmd[5] = uid[4]; //0x01;
850 cmd[6] = uid[3]; //0x00;
851 cmd[7] = uid[2]; //0x10;
852 cmd[8] = uid[1]; //0x05;
853 cmd[9] = uid[0]; //0xe0;
854 //Now the CRC
855 crc = Crc(cmd, 10);
856 cmd[10] = crc & 0xff;
857 cmd[11] = crc >> 8;
858
859 CodeIso15693AsReader(cmd, sizeof(cmd));
860 }
861
862 // Universal Method for sending to and recv bytes from a tag
863 // init ... should we initialize the reader?
864 // speed ... 0 low speed, 1 hi speed
865 // **recv will return you a pointer to the received data
866 // If you do not need the answer use NULL for *recv[]
867 // return: lenght of received data
868 int SendDataTag(uint8_t *send, int sendlen, int init, int speed, uint8_t **recv) {
869
870 int samples = 0;
871 int tsamples = 0;
872 int wait = 0;
873 int elapsed = 0;
874
875 LED_A_ON();
876 LED_B_ON();
877 LED_C_OFF();
878 LED_D_OFF();
879
880 int answerLen=0;
881 uint8_t *answer = (((uint8_t *)BigBuf) + 3660);
882 if (recv!=NULL) memset(BigBuf + 3660, 0, 100);
883
884 if (init) Iso15693InitReader();
885
886 if (!speed) {
887 // low speed (1 out of 256)
888 CodeIso15693AsReader256(send, sendlen);
889 } else {
890 // high speed (1 out of 4)
891 CodeIso15693AsReader(send, sendlen);
892 }
893
894 LED_A_ON();
895 LED_B_OFF();
896
897 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
898 // Now wait for a response
899 if (recv!=NULL) {
900 LED_A_OFF();
901 LED_B_ON();
902 answerLen = GetIso15693AnswerFromTag(answer, 100, &samples, &elapsed) ;
903 *recv=answer;
904 }
905
906 LED_A_OFF();
907 LED_B_OFF();
908 LED_C_OFF();
909 LED_D_OFF();
910
911 return answerLen;
912 }
913
914
915 // --------------------------------------------------------------------
916 // Debug Functions
917 // --------------------------------------------------------------------
918
919 // Decodes a message from a tag and displays its metadata and content
920 #define DBD15STATLEN 48
921 void DbdecodeIso15693Answer(int len, uint8_t *d) {
922 char status[DBD15STATLEN+1]={0};
923 uint16_t crc;
924
925 if (len>3) {
926 if (d[0]&(1<<3))
927 strncat(status,"ProtExt ",DBD15STATLEN);
928 if (d[0]&1) {
929 // error
930 strncat(status,"Error ",DBD15STATLEN);
931 switch (d[1]) {
932 case 0x01:
933 strncat(status,"01:notSupp",DBD15STATLEN);
934 break;
935 case 0x02:
936 strncat(status,"02:notRecog",DBD15STATLEN);
937 break;
938 case 0x03:
939 strncat(status,"03:optNotSupp",DBD15STATLEN);
940 break;
941 case 0x0f:
942 strncat(status,"0f:noInfo",DBD15STATLEN);
943 break;
944 case 0x10:
945 strncat(status,"10:dontExist",DBD15STATLEN);
946 break;
947 case 0x11:
948 strncat(status,"11:lockAgain",DBD15STATLEN);
949 break;
950 case 0x12:
951 strncat(status,"12:locked",DBD15STATLEN);
952 break;
953 case 0x13:
954 strncat(status,"13:progErr",DBD15STATLEN);
955 break;
956 case 0x14:
957 strncat(status,"14:lockErr",DBD15STATLEN);
958 break;
959 default:
960 strncat(status,"unknownErr",DBD15STATLEN);
961 }
962 strncat(status," ",DBD15STATLEN);
963 } else {
964 strncat(status,"NoErr ",DBD15STATLEN);
965 }
966
967 crc=Crc(d,len-2);
968 if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
969 strncat(status,"CrcOK",DBD15STATLEN);
970 else
971 strncat(status,"CrcFail!",DBD15STATLEN);
972
973 Dbprintf("%s",status);
974 }
975 }
976
977
978
979 ///////////////////////////////////////////////////////////////////////
980 // Functions called via USB/Client
981 ///////////////////////////////////////////////////////////////////////
982
983 void SetDebugIso15693(uint32_t debug) {
984 DEBUG=debug;
985 Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
986 return;
987 }
988
989
990
991 //-----------------------------------------------------------------------------
992 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
993 // all demodulation performed in arm rather than host. - greg
994 //-----------------------------------------------------------------------------
995 void ReaderIso15693(uint32_t parameter)
996 {
997 LED_A_ON();
998 LED_B_ON();
999 LED_C_OFF();
1000 LED_D_OFF();
1001
1002 uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); //
1003 uint8_t *answer2 = (((uint8_t *)BigBuf) + 3760);
1004 uint8_t *answer3 = (((uint8_t *)BigBuf) + 3860);
1005
1006 int answerLen1 = 0;
1007 int answerLen2 = 0;
1008 int answerLen3 = 0;
1009 int i = 0;
1010 int samples = 0;
1011 int tsamples = 0;
1012 int wait = 0;
1013 int elapsed = 0;
1014 uint8_t TagUID[8] = {0x00};
1015
1016
1017 // Blank arrays
1018 memset(BigBuf + 3660, 0x00, 300);
1019
1020 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1021
1022 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1023 // Setup SSC
1024 FpgaSetupSsc();
1025
1026 // Start from off (no field generated)
1027 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1028 SpinDelay(200);
1029
1030 // Give the tags time to energize
1031 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
1032 SpinDelay(200);
1033
1034 LED_A_ON();
1035 LED_B_OFF();
1036 LED_C_OFF();
1037 LED_D_OFF();
1038
1039 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1040 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1041
1042 // Now send the IDENTIFY command
1043 BuildIdentifyRequest();
1044
1045 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
1046
1047 // Now wait for a response
1048 answerLen1 = GetIso15693AnswerFromTag(answer1, 100, &samples, &elapsed) ;
1049
1050 if (answerLen1 >=12) // we should do a better check than this
1051 {
1052 TagUID[0] = answer1[2];
1053 TagUID[1] = answer1[3];
1054 TagUID[2] = answer1[4];
1055 TagUID[3] = answer1[5];
1056 TagUID[4] = answer1[6];
1057 TagUID[5] = answer1[7];
1058 TagUID[6] = answer1[8]; // IC Manufacturer code
1059 TagUID[7] = answer1[9]; // always E0
1060
1061 }
1062
1063 Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
1064 DbdecodeIso15693Answer(answerLen1,answer1);
1065 Dbhexdump(answerLen1,answer1,true);
1066
1067 // UID is reverse
1068 if (answerLen1>=12)
1069 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1070 TagUID[7],TagUID[6],TagUID[5],TagUID[4],
1071 TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
1072
1073
1074 Dbprintf("%d octets read from SELECT request:", answerLen2);
1075 DbdecodeIso15693Answer(answerLen2,answer2);
1076 Dbhexdump(answerLen2,answer2,true);
1077
1078 Dbprintf("%d octets read from XXX request:", answerLen3);
1079 DbdecodeIso15693Answer(answerLen3,answer3);
1080 Dbhexdump(answerLen3,answer3,true);
1081
1082 // read all pages
1083 if (answerLen1>=12 && DEBUG) {
1084 i=0;
1085 while (i<32) { // sanity check, assume max 32 pages
1086 BuildReadBlockRequest(TagUID,i);
1087 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
1088 answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed);
1089 if (answerLen2>0) {
1090 Dbprintf("READ SINGLE BLOCK %d returned %d octets:",i,answerLen2);
1091 DbdecodeIso15693Answer(answerLen2,answer2);
1092 Dbhexdump(answerLen2,answer2,true);
1093 if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
1094 }
1095 i++;
1096 }
1097 }
1098
1099 LED_A_OFF();
1100 LED_B_OFF();
1101 LED_C_OFF();
1102 LED_D_OFF();
1103 }
1104
1105 // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands
1106 // all demodulation performed in arm rather than host. - greg
1107 void SimTagIso15693(uint32_t parameter, uint8_t *uid)
1108 {
1109 LED_A_ON();
1110 LED_B_ON();
1111 LED_C_OFF();
1112 LED_D_OFF();
1113
1114 uint8_t *buf = (((uint8_t *)BigBuf) + 3660); //
1115
1116 int answerLen1 = 0;
1117 int samples = 0;
1118 int tsamples = 0;
1119 int wait = 0;
1120 int elapsed = 0;
1121
1122 memset(buf, 0x00, 100);
1123
1124 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1125
1126 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1127
1128 FpgaSetupSsc();
1129
1130 // Start from off (no field generated)
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1132 SpinDelay(200);
1133
1134 LED_A_OFF();
1135 LED_B_OFF();
1136 LED_C_ON();
1137 LED_D_OFF();
1138
1139 // Listen to reader
1140 answerLen1 = GetIso15693AnswerFromSniff(buf, 100, &samples, &elapsed) ;
1141
1142 if (answerLen1 >=1) // we should do a better check than this
1143 {
1144 // Build a suitable reponse to the reader INVENTORY cocmmand
1145 // not so obsvious, but in the call to BuildInventoryResponse, the command is copied to the global ToSend buffer used below.
1146
1147 BuildInventoryResponse(uid);
1148
1149 TransmitTo15693Reader(ToSend,ToSendMax, &tsamples, &wait);
1150 }
1151
1152 Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x %x", answerLen1,
1153 buf[0], buf[1], buf[2], buf[3],
1154 buf[4], buf[5], buf[6], buf[7], buf[8]);
1155
1156 Dbprintf("Simulationg uid: %x %x %x %x %x %x %x %x",
1157 uid[0], uid[1], uid[2], uid[3],
1158 uid[4], uid[5], uid[6], uid[7]);
1159
1160 LED_A_OFF();
1161 LED_B_OFF();
1162 LED_C_OFF();
1163 LED_D_OFF();
1164 }
1165
1166
1167 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1168 // (some manufactures offer a way to read the AFI, though)
1169 void BruteforceIso15693Afi(uint32_t speed)
1170 {
1171 uint8_t data[20];
1172 uint8_t *recv=data;
1173 int datalen=0, recvlen=0;
1174
1175 Iso15693InitReader();
1176
1177 // first without AFI
1178 // Tags should respond wihtout AFI and with AFI=0 even when AFI is active
1179
1180 data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
1181 ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1;
1182 data[1]=ISO15_CMD_INVENTORY;
1183 data[2]=0; // mask length
1184 datalen=AddCrc(data,3);
1185 recvlen=SendDataTag(data,datalen,0,speed,&recv);
1186 WDT_HIT();
1187 if (recvlen>=12) {
1188 Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
1189 }
1190
1191 // now with AFI
1192
1193 data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
1194 ISO15_REQ_INVENTORY | ISO15_REQINV_AFI | ISO15_REQINV_SLOT1;
1195 data[1]=ISO15_CMD_INVENTORY;
1196 data[2]=0; // AFI
1197 data[3]=0; // mask length
1198
1199 for (int i=0;i<256;i++) {
1200 data[2]=i & 0xFF;
1201 datalen=AddCrc(data,4);
1202 recvlen=SendDataTag(data,datalen,0,speed,&recv);
1203 WDT_HIT();
1204 if (recvlen>=12) {
1205 Dbprintf("AFI=%i UID=%s",i,sprintUID(NULL,&recv[2]));
1206 }
1207 }
1208 Dbprintf("AFI Bruteforcing done.");
1209
1210 }
1211
1212 // Allows to directly send commands to the tag via the client
1213 void DirectTag15693Command(uint32_t datalen,uint32_t speed, uint32_t recv, uint8_t data[]) {
1214
1215 int recvlen=0;
1216 uint8_t *recvbuf=(uint8_t *)BigBuf;
1217 // UsbCommand n;
1218
1219 if (DEBUG) {
1220 Dbprintf("SEND");
1221 Dbhexdump(datalen,data,true);
1222 }
1223
1224 recvlen=SendDataTag(data,datalen,1,speed,(recv?&recvbuf:NULL));
1225
1226 if (recv) {
1227 LED_B_ON();
1228 cmd_send(CMD_ACK,recvlen>48?48:recvlen,0,0,recvbuf,48);
1229 LED_B_OFF();
1230
1231 if (DEBUG) {
1232 Dbprintf("RECV");
1233 DbdecodeIso15693Answer(recvlen,recvbuf);
1234 Dbhexdump(recvlen,recvbuf,true);
1235 }
1236 }
1237
1238 }
1239
1240
1241
1242
1243 // --------------------------------------------------------------------
1244 // -- Misc & deprecated functions
1245 // --------------------------------------------------------------------
1246
1247 /*
1248
1249 // do not use; has a fix UID
1250 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1251 {
1252 uint8_t cmd[12];
1253
1254 uint16_t crc;
1255 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1256 // followed by teh block data
1257 // one sub-carrier, inventory, 1 slot, fast rate
1258 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1259 // System Information command code
1260 cmd[1] = 0x2B;
1261 // UID may be optionally specified here
1262 // 64-bit UID
1263 cmd[2] = 0x32;
1264 cmd[3]= 0x4b;
1265 cmd[4] = 0x03;
1266 cmd[5] = 0x01;
1267 cmd[6] = 0x00;
1268 cmd[7] = 0x10;
1269 cmd[8] = 0x05;
1270 cmd[9]= 0xe0; // always e0 (not exactly unique)
1271 //Now the CRC
1272 crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1273 cmd[10] = crc & 0xff;
1274 cmd[11] = crc >> 8;
1275
1276 CodeIso15693AsReader(cmd, sizeof(cmd));
1277 }
1278
1279
1280 // do not use; has a fix UID
1281 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1282 {
1283 uint8_t cmd[14];
1284
1285 uint16_t crc;
1286 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1287 // followed by teh block data
1288 // one sub-carrier, inventory, 1 slot, fast rate
1289 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1290 // READ Multi BLOCK command code
1291 cmd[1] = 0x23;
1292 // UID may be optionally specified here
1293 // 64-bit UID
1294 cmd[2] = 0x32;
1295 cmd[3]= 0x4b;
1296 cmd[4] = 0x03;
1297 cmd[5] = 0x01;
1298 cmd[6] = 0x00;
1299 cmd[7] = 0x10;
1300 cmd[8] = 0x05;
1301 cmd[9]= 0xe0; // always e0 (not exactly unique)
1302 // First Block number to read
1303 cmd[10] = 0x00;
1304 // Number of Blocks to read
1305 cmd[11] = 0x2f; // read quite a few
1306 //Now the CRC
1307 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1308 cmd[12] = crc & 0xff;
1309 cmd[13] = crc >> 8;
1310
1311 CodeIso15693AsReader(cmd, sizeof(cmd));
1312 }
1313
1314 // do not use; has a fix UID
1315 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1316 {
1317 uint8_t cmd[14];
1318
1319 uint16_t crc;
1320 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1321 // followed by teh block data
1322 // one sub-carrier, inventory, 1 slot, fast rate
1323 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1324 // READ BLOCK command code
1325 cmd[1] = CmdCode;
1326 // UID may be optionally specified here
1327 // 64-bit UID
1328 cmd[2] = 0x32;
1329 cmd[3]= 0x4b;
1330 cmd[4] = 0x03;
1331 cmd[5] = 0x01;
1332 cmd[6] = 0x00;
1333 cmd[7] = 0x10;
1334 cmd[8] = 0x05;
1335 cmd[9]= 0xe0; // always e0 (not exactly unique)
1336 // Parameter
1337 cmd[10] = 0x00;
1338 cmd[11] = 0x0a;
1339
1340 // cmd[12] = 0x00;
1341 // cmd[13] = 0x00; //Now the CRC
1342 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1343 cmd[12] = crc & 0xff;
1344 cmd[13] = crc >> 8;
1345
1346 CodeIso15693AsReader(cmd, sizeof(cmd));
1347 }
1348
1349 // do not use; has a fix UID
1350 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1351 {
1352 uint8_t cmd[14];
1353
1354 uint16_t crc;
1355 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1356 // followed by teh block data
1357 // one sub-carrier, inventory, 1 slot, fast rate
1358 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1359 // READ BLOCK command code
1360 cmd[1] = CmdCode;
1361 // UID may be optionally specified here
1362 // 64-bit UID
1363 cmd[2] = 0x32;
1364 cmd[3]= 0x4b;
1365 cmd[4] = 0x03;
1366 cmd[5] = 0x01;
1367 cmd[6] = 0x00;
1368 cmd[7] = 0x10;
1369 cmd[8] = 0x05;
1370 cmd[9]= 0xe0; // always e0 (not exactly unique)
1371 // Parameter
1372 cmd[10] = 0x05; // for custom codes this must be manufcturer code
1373 cmd[11] = 0x00;
1374
1375 // cmd[12] = 0x00;
1376 // cmd[13] = 0x00; //Now the CRC
1377 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1378 cmd[12] = crc & 0xff;
1379 cmd[13] = crc >> 8;
1380
1381 CodeIso15693AsReader(cmd, sizeof(cmd));
1382 }
1383
1384
1385
1386
1387 */
1388
1389
Impressum, Datenschutz