]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Minor documentation on 'hf list'
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = BigBuf_get_addr();
29 int n = BigBuf_max_traceLen();
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89 }
90 /**
91 * Initializes the FPGA, and acquires the samples.
92 **/
93 void AcquireRawAdcSamples125k(int divisor)
94 {
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
98 }
99 /**
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
101 **/
102
103 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104 {
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
107 }
108
109 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
110 {
111
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
116
117
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
120
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
123
124
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
129
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
132
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
135
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
142
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
154
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
156
157 // now do the read
158 DoAcquisition125k(-1);
159 }
160
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
164 0011010010100001
165 01111111
166 101010101010101[0]000...
167
168 [5555fe852c5555555555555555fe0000]
169 */
170 void ReadTItag(void)
171 {
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
179
180 signed char *dest = (signed char *)BigBuf_get_addr();
181 uint16_t n = BigBuf_max_traceLen();
182 // 128 bit shift register [shift3:shift2:shift1:shift0]
183 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
184
185 int i, cycles=0, samples=0;
186 // how many sample points fit in 16 cycles of each frequency
187 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
188 // when to tell if we're close enough to one freq or another
189 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
190
191 // TI tags charge at 134.2Khz
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
194
195 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
196 // connects to SSP_DIN and the SSP_DOUT logic level controls
197 // whether we're modulating the antenna (high)
198 // or listening to the antenna (low)
199 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
200
201 // get TI tag data into the buffer
202 AcquireTiType();
203
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
205
206 for (i=0; i<n-1; i++) {
207 // count cycles by looking for lo to hi zero crossings
208 if ( (dest[i]<0) && (dest[i+1]>0) ) {
209 cycles++;
210 // after 16 cycles, measure the frequency
211 if (cycles>15) {
212 cycles=0;
213 samples=i-samples; // number of samples in these 16 cycles
214
215 // TI bits are coming to us lsb first so shift them
216 // right through our 128 bit right shift register
217 shift0 = (shift0>>1) | (shift1 << 31);
218 shift1 = (shift1>>1) | (shift2 << 31);
219 shift2 = (shift2>>1) | (shift3 << 31);
220 shift3 >>= 1;
221
222 // check if the cycles fall close to the number
223 // expected for either the low or high frequency
224 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
225 // low frequency represents a 1
226 shift3 |= (1<<31);
227 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
228 // high frequency represents a 0
229 } else {
230 // probably detected a gay waveform or noise
231 // use this as gaydar or discard shift register and start again
232 shift3 = shift2 = shift1 = shift0 = 0;
233 }
234 samples = i;
235
236 // for each bit we receive, test if we've detected a valid tag
237
238 // if we see 17 zeroes followed by 6 ones, we might have a tag
239 // remember the bits are backwards
240 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
241 // if start and end bytes match, we have a tag so break out of the loop
242 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
243 cycles = 0xF0B; //use this as a flag (ugly but whatever)
244 break;
245 }
246 }
247 }
248 }
249 }
250
251 // if flag is set we have a tag
252 if (cycles!=0xF0B) {
253 DbpString("Info: No valid tag detected.");
254 } else {
255 // put 64 bit data into shift1 and shift0
256 shift0 = (shift0>>24) | (shift1 << 8);
257 shift1 = (shift1>>24) | (shift2 << 8);
258
259 // align 16 bit crc into lower half of shift2
260 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
261
262 // if r/w tag, check ident match
263 if (shift3 & (1<<15) ) {
264 DbpString("Info: TI tag is rewriteable");
265 // only 15 bits compare, last bit of ident is not valid
266 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
267 DbpString("Error: Ident mismatch!");
268 } else {
269 DbpString("Info: TI tag ident is valid");
270 }
271 } else {
272 DbpString("Info: TI tag is readonly");
273 }
274
275 // WARNING the order of the bytes in which we calc crc below needs checking
276 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
277 // bytes in reverse or something
278 // calculate CRC
279 uint32_t crc=0;
280
281 crc = update_crc16(crc, (shift0)&0xff);
282 crc = update_crc16(crc, (shift0>>8)&0xff);
283 crc = update_crc16(crc, (shift0>>16)&0xff);
284 crc = update_crc16(crc, (shift0>>24)&0xff);
285 crc = update_crc16(crc, (shift1)&0xff);
286 crc = update_crc16(crc, (shift1>>8)&0xff);
287 crc = update_crc16(crc, (shift1>>16)&0xff);
288 crc = update_crc16(crc, (shift1>>24)&0xff);
289
290 Dbprintf("Info: Tag data: %x%08x, crc=%x",
291 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
292 if (crc != (shift2&0xffff)) {
293 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
294 } else {
295 DbpString("Info: CRC is good");
296 }
297 }
298 }
299
300 void WriteTIbyte(uint8_t b)
301 {
302 int i = 0;
303
304 // modulate 8 bits out to the antenna
305 for (i=0; i<8; i++)
306 {
307 if (b&(1<<i)) {
308 // stop modulating antenna
309 LOW(GPIO_SSC_DOUT);
310 SpinDelayUs(1000);
311 // modulate antenna
312 HIGH(GPIO_SSC_DOUT);
313 SpinDelayUs(1000);
314 } else {
315 // stop modulating antenna
316 LOW(GPIO_SSC_DOUT);
317 SpinDelayUs(300);
318 // modulate antenna
319 HIGH(GPIO_SSC_DOUT);
320 SpinDelayUs(1700);
321 }
322 }
323 }
324
325 void AcquireTiType(void)
326 {
327 int i, j, n;
328 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
329 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
330 #define TIBUFLEN 1250
331
332 // clear buffer
333 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
334 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
335
336 // Set up the synchronous serial port
337 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
338 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
345 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
346
347 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
348 // 48/2 = 24 MHz clock must be divided by 12
349 AT91C_BASE_SSC->SSC_CMR = 12;
350
351 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
352 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
353 AT91C_BASE_SSC->SSC_TCMR = 0;
354 AT91C_BASE_SSC->SSC_TFMR = 0;
355
356 LED_D_ON();
357
358 // modulate antenna
359 HIGH(GPIO_SSC_DOUT);
360
361 // Charge TI tag for 50ms.
362 SpinDelay(50);
363
364 // stop modulating antenna and listen
365 LOW(GPIO_SSC_DOUT);
366
367 LED_D_OFF();
368
369 i = 0;
370 for(;;) {
371 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
372 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
373 i++; if(i >= TIBUFLEN) break;
374 }
375 WDT_HIT();
376 }
377
378 // return stolen pin to SSP
379 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
380 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
381
382 char *dest = (char *)BigBuf_get_addr();
383 n = TIBUFLEN*32;
384 // unpack buffer
385 for (i=TIBUFLEN-1; i>=0; i--) {
386 for (j=0; j<32; j++) {
387 if(BigBuf[i] & (1 << j)) {
388 dest[--n] = 1;
389 } else {
390 dest[--n] = -1;
391 }
392 }
393 }
394 }
395
396 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
397 // if crc provided, it will be written with the data verbatim (even if bogus)
398 // if not provided a valid crc will be computed from the data and written.
399 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
400 {
401 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
402 if(crc == 0) {
403 crc = update_crc16(crc, (idlo)&0xff);
404 crc = update_crc16(crc, (idlo>>8)&0xff);
405 crc = update_crc16(crc, (idlo>>16)&0xff);
406 crc = update_crc16(crc, (idlo>>24)&0xff);
407 crc = update_crc16(crc, (idhi)&0xff);
408 crc = update_crc16(crc, (idhi>>8)&0xff);
409 crc = update_crc16(crc, (idhi>>16)&0xff);
410 crc = update_crc16(crc, (idhi>>24)&0xff);
411 }
412 Dbprintf("Writing to tag: %x%08x, crc=%x",
413 (unsigned int) idhi, (unsigned int) idlo, crc);
414
415 // TI tags charge at 134.2Khz
416 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
417 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
418 // connects to SSP_DIN and the SSP_DOUT logic level controls
419 // whether we're modulating the antenna (high)
420 // or listening to the antenna (low)
421 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
422 LED_A_ON();
423
424 // steal this pin from the SSP and use it to control the modulation
425 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
426 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
427
428 // writing algorithm:
429 // a high bit consists of a field off for 1ms and field on for 1ms
430 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
431 // initiate a charge time of 50ms (field on) then immediately start writing bits
432 // start by writing 0xBB (keyword) and 0xEB (password)
433 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
434 // finally end with 0x0300 (write frame)
435 // all data is sent lsb firts
436 // finish with 15ms programming time
437
438 // modulate antenna
439 HIGH(GPIO_SSC_DOUT);
440 SpinDelay(50); // charge time
441
442 WriteTIbyte(0xbb); // keyword
443 WriteTIbyte(0xeb); // password
444 WriteTIbyte( (idlo )&0xff );
445 WriteTIbyte( (idlo>>8 )&0xff );
446 WriteTIbyte( (idlo>>16)&0xff );
447 WriteTIbyte( (idlo>>24)&0xff );
448 WriteTIbyte( (idhi )&0xff );
449 WriteTIbyte( (idhi>>8 )&0xff );
450 WriteTIbyte( (idhi>>16)&0xff );
451 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
452 WriteTIbyte( (crc )&0xff ); // crc lo
453 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
454 WriteTIbyte(0x00); // write frame lo
455 WriteTIbyte(0x03); // write frame hi
456 HIGH(GPIO_SSC_DOUT);
457 SpinDelay(50); // programming time
458
459 LED_A_OFF();
460
461 // get TI tag data into the buffer
462 AcquireTiType();
463
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 DbpString("Now use tiread to check");
466 }
467
468 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
469 {
470 int i;
471 uint8_t *tab = BigBuf_get_addr();
472
473 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
474 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
475
476 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
477
478 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
479 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
480
481 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
482 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
483
484 i = 0;
485 for(;;) {
486 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
487 if(BUTTON_PRESS()) {
488 DbpString("Stopped");
489 return;
490 }
491 WDT_HIT();
492 }
493
494 if (ledcontrol)
495 LED_D_ON();
496
497 if(tab[i])
498 OPEN_COIL();
499 else
500 SHORT_COIL();
501
502 if (ledcontrol)
503 LED_D_OFF();
504
505 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
506 if(BUTTON_PRESS()) {
507 DbpString("Stopped");
508 return;
509 }
510 WDT_HIT();
511 }
512
513 i++;
514 if(i == period) {
515 i = 0;
516 if (gap) {
517 SHORT_COIL();
518 SpinDelayUs(gap);
519 }
520 }
521 }
522 }
523
524 #define DEBUG_FRAME_CONTENTS 1
525 void SimulateTagLowFrequencyBidir(int divisor, int t0)
526 {
527 }
528
529 // compose fc/8 fc/10 waveform
530 static void fc(int c, int *n) {
531 uint8_t *dest = BigBuf_get_addr();
532 int idx;
533
534 // for when we want an fc8 pattern every 4 logical bits
535 if(c==0) {
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 }
545 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
546 if(c==8) {
547 for (idx=0; idx<6; idx++) {
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 }
557 }
558
559 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
560 if(c==10) {
561 for (idx=0; idx<5; idx++) {
562 dest[((*n)++)]=1;
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=0;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 }
573 }
574 }
575
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a HID tag until the button is pressed
578 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
579 {
580 int n=0, i=0;
581 /*
582 HID tag bitstream format
583 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
584 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
585 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
586 A fc8 is inserted before every 4 bits
587 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
588 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
589 */
590
591 if (hi>0xFFF) {
592 DbpString("Tags can only have 44 bits.");
593 return;
594 }
595 fc(0,&n);
596 // special start of frame marker containing invalid bit sequences
597 fc(8, &n); fc(8, &n); // invalid
598 fc(8, &n); fc(10, &n); // logical 0
599 fc(10, &n); fc(10, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601
602 WDT_HIT();
603 // manchester encode bits 43 to 32
604 for (i=11; i>=0; i--) {
605 if ((i%4)==3) fc(0,&n);
606 if ((hi>>i)&1) {
607 fc(10, &n); fc(8, &n); // low-high transition
608 } else {
609 fc(8, &n); fc(10, &n); // high-low transition
610 }
611 }
612
613 WDT_HIT();
614 // manchester encode bits 31 to 0
615 for (i=31; i>=0; i--) {
616 if ((i%4)==3) fc(0,&n);
617 if ((lo>>i)&1) {
618 fc(10, &n); fc(8, &n); // low-high transition
619 } else {
620 fc(8, &n); fc(10, &n); // high-low transition
621 }
622 }
623
624 if (ledcontrol)
625 LED_A_ON();
626 SimulateTagLowFrequency(n, 0, ledcontrol);
627
628 if (ledcontrol)
629 LED_A_OFF();
630 }
631
632 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
633 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
634 {
635 uint8_t *dest = BigBuf_get_addr();
636 const size_t sizeOfBigBuff = BigBuf_max_traceLen();
637 size_t size = 0;
638 uint32_t hi2=0, hi=0, lo=0;
639 int idx=0;
640 // Configure to go in 125Khz listen mode
641 LFSetupFPGAForADC(95, true);
642
643 while(!BUTTON_PRESS()) {
644
645 WDT_HIT();
646 if (ledcontrol) LED_A_ON();
647
648 DoAcquisition125k_internal(-1,true);
649 // FSK demodulator
650 size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
651 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
652
653 if (idx>0 && lo>0){
654 // final loop, go over previously decoded manchester data and decode into usable tag ID
655 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
656 if (hi2 != 0){ //extra large HID tags
657 Dbprintf("TAG ID: %x%08x%08x (%d)",
658 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
659 }else { //standard HID tags <38 bits
660 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
661 uint8_t bitlen = 0;
662 uint32_t fc = 0;
663 uint32_t cardnum = 0;
664 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
665 uint32_t lo2=0;
666 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
667 uint8_t idx3 = 1;
668 while(lo2 > 1){ //find last bit set to 1 (format len bit)
669 lo2=lo2 >> 1;
670 idx3++;
671 }
672 bitlen = idx3+19;
673 fc =0;
674 cardnum=0;
675 if(bitlen == 26){
676 cardnum = (lo>>1)&0xFFFF;
677 fc = (lo>>17)&0xFF;
678 }
679 if(bitlen == 37){
680 cardnum = (lo>>1)&0x7FFFF;
681 fc = ((hi&0xF)<<12)|(lo>>20);
682 }
683 if(bitlen == 34){
684 cardnum = (lo>>1)&0xFFFF;
685 fc= ((hi&1)<<15)|(lo>>17);
686 }
687 if(bitlen == 35){
688 cardnum = (lo>>1)&0xFFFFF;
689 fc = ((hi&1)<<11)|(lo>>21);
690 }
691 }
692 else { //if bit 38 is not set then 37 bit format is used
693 bitlen= 37;
694 fc =0;
695 cardnum=0;
696 if(bitlen==37){
697 cardnum = (lo>>1)&0x7FFFF;
698 fc = ((hi&0xF)<<12)|(lo>>20);
699 }
700 }
701 //Dbprintf("TAG ID: %x%08x (%d)",
702 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
703 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
704 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
705 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
706 }
707 if (findone){
708 if (ledcontrol) LED_A_OFF();
709 *high = hi;
710 *low = lo;
711 return;
712 }
713 // reset
714 hi2 = hi = lo = 0;
715 }
716 WDT_HIT();
717 }
718 DbpString("Stopped");
719 if (ledcontrol) LED_A_OFF();
720 }
721
722 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
723 {
724 uint8_t *dest = BigBuf_get_addr();
725
726 size_t size=0, idx=0;
727 int clk=0, invert=0, errCnt=0;
728 uint64_t lo=0;
729 // Configure to go in 125Khz listen mode
730 LFSetupFPGAForADC(95, true);
731
732 while(!BUTTON_PRESS()) {
733
734 WDT_HIT();
735 if (ledcontrol) LED_A_ON();
736
737 DoAcquisition125k_internal(-1,true);
738 size = BigBuf_max_traceLen();
739 //Dbprintf("DEBUG: Buffer got");
740 //askdemod and manchester decode
741 errCnt = askmandemod(dest, &size, &clk, &invert);
742 //Dbprintf("DEBUG: ASK Got");
743 WDT_HIT();
744
745 if (errCnt>=0){
746 lo = Em410xDecode(dest, &size, &idx);
747 //Dbprintf("DEBUG: EM GOT");
748 if (lo>0){
749 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
750 (uint32_t)(lo>>32),
751 (uint32_t)lo,
752 (uint32_t)(lo&0xFFFF),
753 (uint32_t)((lo>>16LL) & 0xFF),
754 (uint32_t)(lo & 0xFFFFFF));
755 }
756 if (findone){
757 if (ledcontrol) LED_A_OFF();
758 *high=lo>>32;
759 *low=lo & 0xFFFFFFFF;
760 return;
761 }
762 } else{
763 //Dbprintf("DEBUG: No Tag");
764 }
765 WDT_HIT();
766 lo = 0;
767 clk=0;
768 invert=0;
769 errCnt=0;
770 size=0;
771 }
772 DbpString("Stopped");
773 if (ledcontrol) LED_A_OFF();
774 }
775
776 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
777 {
778 uint8_t *dest = BigBuf_get_addr();
779 int idx=0;
780 uint32_t code=0, code2=0;
781 uint8_t version=0;
782 uint8_t facilitycode=0;
783 uint16_t number=0;
784 // Configure to go in 125Khz listen mode
785 LFSetupFPGAForADC(95, true);
786
787 while(!BUTTON_PRESS()) {
788 WDT_HIT();
789 if (ledcontrol) LED_A_ON();
790 DoAcquisition125k_internal(-1,true);
791 //fskdemod and get start index
792 WDT_HIT();
793 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
794 if (idx>0){
795 //valid tag found
796
797 //Index map
798 //0 10 20 30 40 50 60
799 //| | | | | | |
800 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
801 //-----------------------------------------------------------------------------
802 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
803 //
804 //XSF(version)facility:codeone+codetwo
805 //Handle the data
806 if(findone){ //only print binary if we are doing one
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
809 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
810 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
811 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
812 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
813 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
814 }
815 code = bytebits_to_byte(dest+idx,32);
816 code2 = bytebits_to_byte(dest+idx+32,32);
817 version = bytebits_to_byte(dest+idx+27,8); //14,4
818 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
819 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
820
821 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
822 // if we're only looking for one tag
823 if (findone){
824 if (ledcontrol) LED_A_OFF();
825 //LED_A_OFF();
826 *high=code;
827 *low=code2;
828 return;
829 }
830 code=code2=0;
831 version=facilitycode=0;
832 number=0;
833 idx=0;
834 }
835 WDT_HIT();
836 }
837 DbpString("Stopped");
838 if (ledcontrol) LED_A_OFF();
839 }
840
841 /*------------------------------
842 * T5555/T5557/T5567 routines
843 *------------------------------
844 */
845
846 /* T55x7 configuration register definitions */
847 #define T55x7_POR_DELAY 0x00000001
848 #define T55x7_ST_TERMINATOR 0x00000008
849 #define T55x7_PWD 0x00000010
850 #define T55x7_MAXBLOCK_SHIFT 5
851 #define T55x7_AOR 0x00000200
852 #define T55x7_PSKCF_RF_2 0
853 #define T55x7_PSKCF_RF_4 0x00000400
854 #define T55x7_PSKCF_RF_8 0x00000800
855 #define T55x7_MODULATION_DIRECT 0
856 #define T55x7_MODULATION_PSK1 0x00001000
857 #define T55x7_MODULATION_PSK2 0x00002000
858 #define T55x7_MODULATION_PSK3 0x00003000
859 #define T55x7_MODULATION_FSK1 0x00004000
860 #define T55x7_MODULATION_FSK2 0x00005000
861 #define T55x7_MODULATION_FSK1a 0x00006000
862 #define T55x7_MODULATION_FSK2a 0x00007000
863 #define T55x7_MODULATION_MANCHESTER 0x00008000
864 #define T55x7_MODULATION_BIPHASE 0x00010000
865 #define T55x7_BITRATE_RF_8 0
866 #define T55x7_BITRATE_RF_16 0x00040000
867 #define T55x7_BITRATE_RF_32 0x00080000
868 #define T55x7_BITRATE_RF_40 0x000C0000
869 #define T55x7_BITRATE_RF_50 0x00100000
870 #define T55x7_BITRATE_RF_64 0x00140000
871 #define T55x7_BITRATE_RF_100 0x00180000
872 #define T55x7_BITRATE_RF_128 0x001C0000
873
874 /* T5555 (Q5) configuration register definitions */
875 #define T5555_ST_TERMINATOR 0x00000001
876 #define T5555_MAXBLOCK_SHIFT 0x00000001
877 #define T5555_MODULATION_MANCHESTER 0
878 #define T5555_MODULATION_PSK1 0x00000010
879 #define T5555_MODULATION_PSK2 0x00000020
880 #define T5555_MODULATION_PSK3 0x00000030
881 #define T5555_MODULATION_FSK1 0x00000040
882 #define T5555_MODULATION_FSK2 0x00000050
883 #define T5555_MODULATION_BIPHASE 0x00000060
884 #define T5555_MODULATION_DIRECT 0x00000070
885 #define T5555_INVERT_OUTPUT 0x00000080
886 #define T5555_PSK_RF_2 0
887 #define T5555_PSK_RF_4 0x00000100
888 #define T5555_PSK_RF_8 0x00000200
889 #define T5555_USE_PWD 0x00000400
890 #define T5555_USE_AOR 0x00000800
891 #define T5555_BITRATE_SHIFT 12
892 #define T5555_FAST_WRITE 0x00004000
893 #define T5555_PAGE_SELECT 0x00008000
894
895 /*
896 * Relevant times in microsecond
897 * To compensate antenna falling times shorten the write times
898 * and enlarge the gap ones.
899 */
900 #define START_GAP 250
901 #define WRITE_GAP 160
902 #define WRITE_0 144 // 192
903 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
904
905 // Write one bit to card
906 void T55xxWriteBit(int bit)
907 {
908 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
909 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
910 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
911 if (bit == 0)
912 SpinDelayUs(WRITE_0);
913 else
914 SpinDelayUs(WRITE_1);
915 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
916 SpinDelayUs(WRITE_GAP);
917 }
918
919 // Write one card block in page 0, no lock
920 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
921 {
922 //unsigned int i; //enio adjustment 12/10/14
923 uint32_t i;
924
925 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
926 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
927 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
928
929 // Give it a bit of time for the resonant antenna to settle.
930 // And for the tag to fully power up
931 SpinDelay(150);
932
933 // Now start writting
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
935 SpinDelayUs(START_GAP);
936
937 // Opcode
938 T55xxWriteBit(1);
939 T55xxWriteBit(0); //Page 0
940 if (PwdMode == 1){
941 // Pwd
942 for (i = 0x80000000; i != 0; i >>= 1)
943 T55xxWriteBit(Pwd & i);
944 }
945 // Lock bit
946 T55xxWriteBit(0);
947
948 // Data
949 for (i = 0x80000000; i != 0; i >>= 1)
950 T55xxWriteBit(Data & i);
951
952 // Block
953 for (i = 0x04; i != 0; i >>= 1)
954 T55xxWriteBit(Block & i);
955
956 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
957 // so wait a little more)
958 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
959 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
960 SpinDelay(20);
961 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
962 }
963
964 // Read one card block in page 0
965 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
966 {
967 uint8_t *dest = BigBuf_get_addr();
968 //int m=0, i=0; //enio adjustment 12/10/14
969 uint32_t m=0, i=0;
970 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
971 m = BigBuf_max_traceLen();
972 // Clear destination buffer before sending the command
973 memset(dest, 128, m);
974 // Connect the A/D to the peak-detected low-frequency path.
975 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
976 // Now set up the SSC to get the ADC samples that are now streaming at us.
977 FpgaSetupSsc();
978
979 LED_D_ON();
980 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
982
983 // Give it a bit of time for the resonant antenna to settle.
984 // And for the tag to fully power up
985 SpinDelay(150);
986
987 // Now start writting
988 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
989 SpinDelayUs(START_GAP);
990
991 // Opcode
992 T55xxWriteBit(1);
993 T55xxWriteBit(0); //Page 0
994 if (PwdMode == 1){
995 // Pwd
996 for (i = 0x80000000; i != 0; i >>= 1)
997 T55xxWriteBit(Pwd & i);
998 }
999 // Lock bit
1000 T55xxWriteBit(0);
1001 // Block
1002 for (i = 0x04; i != 0; i >>= 1)
1003 T55xxWriteBit(Block & i);
1004
1005 // Turn field on to read the response
1006 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1007 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1008
1009 // Now do the acquisition
1010 i = 0;
1011 for(;;) {
1012 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1013 AT91C_BASE_SSC->SSC_THR = 0x43;
1014 }
1015 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1016 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1017 // we don't care about actual value, only if it's more or less than a
1018 // threshold essentially we capture zero crossings for later analysis
1019 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1020 i++;
1021 if (i >= m) break;
1022 }
1023 }
1024
1025 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1026 LED_D_OFF();
1027 DbpString("DONE!");
1028 }
1029
1030 // Read card traceability data (page 1)
1031 void T55xxReadTrace(void){
1032 uint8_t *dest = BigBuf_get_addr();
1033 int m=0, i=0;
1034
1035 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1036 m = BigBuf_max_traceLen();
1037 // Clear destination buffer before sending the command
1038 memset(dest, 128, m);
1039 // Connect the A/D to the peak-detected low-frequency path.
1040 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1041 // Now set up the SSC to get the ADC samples that are now streaming at us.
1042 FpgaSetupSsc();
1043
1044 LED_D_ON();
1045 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1046 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1047
1048 // Give it a bit of time for the resonant antenna to settle.
1049 // And for the tag to fully power up
1050 SpinDelay(150);
1051
1052 // Now start writting
1053 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1054 SpinDelayUs(START_GAP);
1055
1056 // Opcode
1057 T55xxWriteBit(1);
1058 T55xxWriteBit(1); //Page 1
1059
1060 // Turn field on to read the response
1061 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1062 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1063
1064 // Now do the acquisition
1065 i = 0;
1066 for(;;) {
1067 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1068 AT91C_BASE_SSC->SSC_THR = 0x43;
1069 }
1070 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1071 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1072 i++;
1073 if (i >= m) break;
1074 }
1075 }
1076
1077 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1078 LED_D_OFF();
1079 DbpString("DONE!");
1080 }
1081
1082 /*-------------- Cloning routines -----------*/
1083 // Copy HID id to card and setup block 0 config
1084 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1085 {
1086 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1087 int last_block = 0;
1088
1089 if (longFMT){
1090 // Ensure no more than 84 bits supplied
1091 if (hi2>0xFFFFF) {
1092 DbpString("Tags can only have 84 bits.");
1093 return;
1094 }
1095 // Build the 6 data blocks for supplied 84bit ID
1096 last_block = 6;
1097 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1098 for (int i=0;i<4;i++) {
1099 if (hi2 & (1<<(19-i)))
1100 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1101 else
1102 data1 |= (1<<((3-i)*2)); // 0 -> 01
1103 }
1104
1105 data2 = 0;
1106 for (int i=0;i<16;i++) {
1107 if (hi2 & (1<<(15-i)))
1108 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1109 else
1110 data2 |= (1<<((15-i)*2)); // 0 -> 01
1111 }
1112
1113 data3 = 0;
1114 for (int i=0;i<16;i++) {
1115 if (hi & (1<<(31-i)))
1116 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1117 else
1118 data3 |= (1<<((15-i)*2)); // 0 -> 01
1119 }
1120
1121 data4 = 0;
1122 for (int i=0;i<16;i++) {
1123 if (hi & (1<<(15-i)))
1124 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1125 else
1126 data4 |= (1<<((15-i)*2)); // 0 -> 01
1127 }
1128
1129 data5 = 0;
1130 for (int i=0;i<16;i++) {
1131 if (lo & (1<<(31-i)))
1132 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1133 else
1134 data5 |= (1<<((15-i)*2)); // 0 -> 01
1135 }
1136
1137 data6 = 0;
1138 for (int i=0;i<16;i++) {
1139 if (lo & (1<<(15-i)))
1140 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1141 else
1142 data6 |= (1<<((15-i)*2)); // 0 -> 01
1143 }
1144 }
1145 else {
1146 // Ensure no more than 44 bits supplied
1147 if (hi>0xFFF) {
1148 DbpString("Tags can only have 44 bits.");
1149 return;
1150 }
1151
1152 // Build the 3 data blocks for supplied 44bit ID
1153 last_block = 3;
1154
1155 data1 = 0x1D000000; // load preamble
1156
1157 for (int i=0;i<12;i++) {
1158 if (hi & (1<<(11-i)))
1159 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1160 else
1161 data1 |= (1<<((11-i)*2)); // 0 -> 01
1162 }
1163
1164 data2 = 0;
1165 for (int i=0;i<16;i++) {
1166 if (lo & (1<<(31-i)))
1167 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1168 else
1169 data2 |= (1<<((15-i)*2)); // 0 -> 01
1170 }
1171
1172 data3 = 0;
1173 for (int i=0;i<16;i++) {
1174 if (lo & (1<<(15-i)))
1175 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1176 else
1177 data3 |= (1<<((15-i)*2)); // 0 -> 01
1178 }
1179 }
1180
1181 LED_D_ON();
1182 // Program the data blocks for supplied ID
1183 // and the block 0 for HID format
1184 T55xxWriteBlock(data1,1,0,0);
1185 T55xxWriteBlock(data2,2,0,0);
1186 T55xxWriteBlock(data3,3,0,0);
1187
1188 if (longFMT) { // if long format there are 6 blocks
1189 T55xxWriteBlock(data4,4,0,0);
1190 T55xxWriteBlock(data5,5,0,0);
1191 T55xxWriteBlock(data6,6,0,0);
1192 }
1193
1194 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1195 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1196 T55x7_MODULATION_FSK2a |
1197 last_block << T55x7_MAXBLOCK_SHIFT,
1198 0,0,0);
1199
1200 LED_D_OFF();
1201
1202 DbpString("DONE!");
1203 }
1204
1205 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1206 {
1207 int data1=0, data2=0; //up to six blocks for long format
1208
1209 data1 = hi; // load preamble
1210 data2 = lo;
1211
1212 LED_D_ON();
1213 // Program the data blocks for supplied ID
1214 // and the block 0 for HID format
1215 T55xxWriteBlock(data1,1,0,0);
1216 T55xxWriteBlock(data2,2,0,0);
1217
1218 //Config Block
1219 T55xxWriteBlock(0x00147040,0,0,0);
1220 LED_D_OFF();
1221
1222 DbpString("DONE!");
1223 }
1224
1225 // Define 9bit header for EM410x tags
1226 #define EM410X_HEADER 0x1FF
1227 #define EM410X_ID_LENGTH 40
1228
1229 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1230 {
1231 int i, id_bit;
1232 uint64_t id = EM410X_HEADER;
1233 uint64_t rev_id = 0; // reversed ID
1234 int c_parity[4]; // column parity
1235 int r_parity = 0; // row parity
1236 uint32_t clock = 0;
1237
1238 // Reverse ID bits given as parameter (for simpler operations)
1239 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1240 if (i < 32) {
1241 rev_id = (rev_id << 1) | (id_lo & 1);
1242 id_lo >>= 1;
1243 } else {
1244 rev_id = (rev_id << 1) | (id_hi & 1);
1245 id_hi >>= 1;
1246 }
1247 }
1248
1249 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1250 id_bit = rev_id & 1;
1251
1252 if (i % 4 == 0) {
1253 // Don't write row parity bit at start of parsing
1254 if (i)
1255 id = (id << 1) | r_parity;
1256 // Start counting parity for new row
1257 r_parity = id_bit;
1258 } else {
1259 // Count row parity
1260 r_parity ^= id_bit;
1261 }
1262
1263 // First elements in column?
1264 if (i < 4)
1265 // Fill out first elements
1266 c_parity[i] = id_bit;
1267 else
1268 // Count column parity
1269 c_parity[i % 4] ^= id_bit;
1270
1271 // Insert ID bit
1272 id = (id << 1) | id_bit;
1273 rev_id >>= 1;
1274 }
1275
1276 // Insert parity bit of last row
1277 id = (id << 1) | r_parity;
1278
1279 // Fill out column parity at the end of tag
1280 for (i = 0; i < 4; ++i)
1281 id = (id << 1) | c_parity[i];
1282
1283 // Add stop bit
1284 id <<= 1;
1285
1286 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1287 LED_D_ON();
1288
1289 // Write EM410x ID
1290 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1291 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1292
1293 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1294 if (card) {
1295 // Clock rate is stored in bits 8-15 of the card value
1296 clock = (card & 0xFF00) >> 8;
1297 Dbprintf("Clock rate: %d", clock);
1298 switch (clock)
1299 {
1300 case 32:
1301 clock = T55x7_BITRATE_RF_32;
1302 break;
1303 case 16:
1304 clock = T55x7_BITRATE_RF_16;
1305 break;
1306 case 0:
1307 // A value of 0 is assumed to be 64 for backwards-compatibility
1308 // Fall through...
1309 case 64:
1310 clock = T55x7_BITRATE_RF_64;
1311 break;
1312 default:
1313 Dbprintf("Invalid clock rate: %d", clock);
1314 return;
1315 }
1316
1317 // Writing configuration for T55x7 tag
1318 T55xxWriteBlock(clock |
1319 T55x7_MODULATION_MANCHESTER |
1320 2 << T55x7_MAXBLOCK_SHIFT,
1321 0, 0, 0);
1322 }
1323 else
1324 // Writing configuration for T5555(Q5) tag
1325 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1326 T5555_MODULATION_MANCHESTER |
1327 2 << T5555_MAXBLOCK_SHIFT,
1328 0, 0, 0);
1329
1330 LED_D_OFF();
1331 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1332 (uint32_t)(id >> 32), (uint32_t)id);
1333 }
1334
1335 // Clone Indala 64-bit tag by UID to T55x7
1336 void CopyIndala64toT55x7(int hi, int lo)
1337 {
1338
1339 //Program the 2 data blocks for supplied 64bit UID
1340 // and the block 0 for Indala64 format
1341 T55xxWriteBlock(hi,1,0,0);
1342 T55xxWriteBlock(lo,2,0,0);
1343 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1344 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1345 T55x7_MODULATION_PSK1 |
1346 2 << T55x7_MAXBLOCK_SHIFT,
1347 0, 0, 0);
1348 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1349 // T5567WriteBlock(0x603E1042,0);
1350
1351 DbpString("DONE!");
1352
1353 }
1354
1355 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1356 {
1357
1358 //Program the 7 data blocks for supplied 224bit UID
1359 // and the block 0 for Indala224 format
1360 T55xxWriteBlock(uid1,1,0,0);
1361 T55xxWriteBlock(uid2,2,0,0);
1362 T55xxWriteBlock(uid3,3,0,0);
1363 T55xxWriteBlock(uid4,4,0,0);
1364 T55xxWriteBlock(uid5,5,0,0);
1365 T55xxWriteBlock(uid6,6,0,0);
1366 T55xxWriteBlock(uid7,7,0,0);
1367 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1368 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1369 T55x7_MODULATION_PSK1 |
1370 7 << T55x7_MAXBLOCK_SHIFT,
1371 0,0,0);
1372 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1373 // T5567WriteBlock(0x603E10E2,0);
1374
1375 DbpString("DONE!");
1376
1377 }
1378
1379
1380 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1381 #define max(x,y) ( x<y ? y:x)
1382
1383 int DemodPCF7931(uint8_t **outBlocks) {
1384 uint8_t BitStream[256];
1385 uint8_t Blocks[8][16];
1386 uint8_t *GraphBuffer = BigBuf_get_addr();
1387 int GraphTraceLen = BigBuf_max_traceLen();
1388 int i, j, lastval, bitidx, half_switch;
1389 int clock = 64;
1390 int tolerance = clock / 8;
1391 int pmc, block_done;
1392 int lc, warnings = 0;
1393 int num_blocks = 0;
1394 int lmin=128, lmax=128;
1395 uint8_t dir;
1396
1397 AcquireRawAdcSamples125k(0);
1398
1399 lmin = 64;
1400 lmax = 192;
1401
1402 i = 2;
1403
1404 /* Find first local max/min */
1405 if(GraphBuffer[1] > GraphBuffer[0]) {
1406 while(i < GraphTraceLen) {
1407 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1408 break;
1409 i++;
1410 }
1411 dir = 0;
1412 }
1413 else {
1414 while(i < GraphTraceLen) {
1415 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1416 break;
1417 i++;
1418 }
1419 dir = 1;
1420 }
1421
1422 lastval = i++;
1423 half_switch = 0;
1424 pmc = 0;
1425 block_done = 0;
1426
1427 for (bitidx = 0; i < GraphTraceLen; i++)
1428 {
1429 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1430 {
1431 lc = i - lastval;
1432 lastval = i;
1433
1434 // Switch depending on lc length:
1435 // Tolerance is 1/8 of clock rate (arbitrary)
1436 if (abs(lc-clock/4) < tolerance) {
1437 // 16T0
1438 if((i - pmc) == lc) { /* 16T0 was previous one */
1439 /* It's a PMC ! */
1440 i += (128+127+16+32+33+16)-1;
1441 lastval = i;
1442 pmc = 0;
1443 block_done = 1;
1444 }
1445 else {
1446 pmc = i;
1447 }
1448 } else if (abs(lc-clock/2) < tolerance) {
1449 // 32TO
1450 if((i - pmc) == lc) { /* 16T0 was previous one */
1451 /* It's a PMC ! */
1452 i += (128+127+16+32+33)-1;
1453 lastval = i;
1454 pmc = 0;
1455 block_done = 1;
1456 }
1457 else if(half_switch == 1) {
1458 BitStream[bitidx++] = 0;
1459 half_switch = 0;
1460 }
1461 else
1462 half_switch++;
1463 } else if (abs(lc-clock) < tolerance) {
1464 // 64TO
1465 BitStream[bitidx++] = 1;
1466 } else {
1467 // Error
1468 warnings++;
1469 if (warnings > 10)
1470 {
1471 Dbprintf("Error: too many detection errors, aborting.");
1472 return 0;
1473 }
1474 }
1475
1476 if(block_done == 1) {
1477 if(bitidx == 128) {
1478 for(j=0; j<16; j++) {
1479 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1480 64*BitStream[j*8+6]+
1481 32*BitStream[j*8+5]+
1482 16*BitStream[j*8+4]+
1483 8*BitStream[j*8+3]+
1484 4*BitStream[j*8+2]+
1485 2*BitStream[j*8+1]+
1486 BitStream[j*8];
1487 }
1488 num_blocks++;
1489 }
1490 bitidx = 0;
1491 block_done = 0;
1492 half_switch = 0;
1493 }
1494 if(i < GraphTraceLen)
1495 {
1496 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1497 else dir = 1;
1498 }
1499 }
1500 if(bitidx==255)
1501 bitidx=0;
1502 warnings = 0;
1503 if(num_blocks == 4) break;
1504 }
1505 memcpy(outBlocks, Blocks, 16*num_blocks);
1506 return num_blocks;
1507 }
1508
1509 int IsBlock0PCF7931(uint8_t *Block) {
1510 // Assume RFU means 0 :)
1511 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1512 return 1;
1513 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1514 return 1;
1515 return 0;
1516 }
1517
1518 int IsBlock1PCF7931(uint8_t *Block) {
1519 // Assume RFU means 0 :)
1520 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1521 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1522 return 1;
1523
1524 return 0;
1525 }
1526
1527 #define ALLOC 16
1528
1529 void ReadPCF7931() {
1530 uint8_t Blocks[8][17];
1531 uint8_t tmpBlocks[4][16];
1532 int i, j, ind, ind2, n;
1533 int num_blocks = 0;
1534 int max_blocks = 8;
1535 int ident = 0;
1536 int error = 0;
1537 int tries = 0;
1538
1539 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1540
1541 do {
1542 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1543 n = DemodPCF7931((uint8_t**)tmpBlocks);
1544 if(!n)
1545 error++;
1546 if(error==10 && num_blocks == 0) {
1547 Dbprintf("Error, no tag or bad tag");
1548 return;
1549 }
1550 else if (tries==20 || error==10) {
1551 Dbprintf("Error reading the tag");
1552 Dbprintf("Here is the partial content");
1553 goto end;
1554 }
1555
1556 for(i=0; i<n; i++)
1557 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1558 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1559 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1560 if(!ident) {
1561 for(i=0; i<n; i++) {
1562 if(IsBlock0PCF7931(tmpBlocks[i])) {
1563 // Found block 0 ?
1564 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1565 // Found block 1!
1566 // \o/
1567 ident = 1;
1568 memcpy(Blocks[0], tmpBlocks[i], 16);
1569 Blocks[0][ALLOC] = 1;
1570 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1571 Blocks[1][ALLOC] = 1;
1572 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1573 // Debug print
1574 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1575 num_blocks = 2;
1576 // Handle following blocks
1577 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1578 if(j==n) j=0;
1579 if(j==i) break;
1580 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1581 Blocks[ind2][ALLOC] = 1;
1582 }
1583 break;
1584 }
1585 }
1586 }
1587 }
1588 else {
1589 for(i=0; i<n; i++) { // Look for identical block in known blocks
1590 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1591 for(j=0; j<max_blocks; j++) {
1592 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1593 // Found an identical block
1594 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1595 if(ind2 < 0)
1596 ind2 = max_blocks;
1597 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1598 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1599 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1600 Blocks[ind2][ALLOC] = 1;
1601 num_blocks++;
1602 if(num_blocks == max_blocks) goto end;
1603 }
1604 }
1605 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1606 if(ind2 > max_blocks)
1607 ind2 = 0;
1608 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1609 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1610 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1611 Blocks[ind2][ALLOC] = 1;
1612 num_blocks++;
1613 if(num_blocks == max_blocks) goto end;
1614 }
1615 }
1616 }
1617 }
1618 }
1619 }
1620 }
1621 tries++;
1622 if (BUTTON_PRESS()) return;
1623 } while (num_blocks != max_blocks);
1624 end:
1625 Dbprintf("-----------------------------------------");
1626 Dbprintf("Memory content:");
1627 Dbprintf("-----------------------------------------");
1628 for(i=0; i<max_blocks; i++) {
1629 if(Blocks[i][ALLOC]==1)
1630 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1631 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1632 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1633 else
1634 Dbprintf("<missing block %d>", i);
1635 }
1636 Dbprintf("-----------------------------------------");
1637
1638 return ;
1639 }
1640
1641
1642 //-----------------------------------
1643 // EM4469 / EM4305 routines
1644 //-----------------------------------
1645 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1646 #define FWD_CMD_WRITE 0xA
1647 #define FWD_CMD_READ 0x9
1648 #define FWD_CMD_DISABLE 0x5
1649
1650
1651 uint8_t forwardLink_data[64]; //array of forwarded bits
1652 uint8_t * forward_ptr; //ptr for forward message preparation
1653 uint8_t fwd_bit_sz; //forwardlink bit counter
1654 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1655
1656 //====================================================================
1657 // prepares command bits
1658 // see EM4469 spec
1659 //====================================================================
1660 //--------------------------------------------------------------------
1661 uint8_t Prepare_Cmd( uint8_t cmd ) {
1662 //--------------------------------------------------------------------
1663
1664 *forward_ptr++ = 0; //start bit
1665 *forward_ptr++ = 0; //second pause for 4050 code
1666
1667 *forward_ptr++ = cmd;
1668 cmd >>= 1;
1669 *forward_ptr++ = cmd;
1670 cmd >>= 1;
1671 *forward_ptr++ = cmd;
1672 cmd >>= 1;
1673 *forward_ptr++ = cmd;
1674
1675 return 6; //return number of emited bits
1676 }
1677
1678 //====================================================================
1679 // prepares address bits
1680 // see EM4469 spec
1681 //====================================================================
1682
1683 //--------------------------------------------------------------------
1684 uint8_t Prepare_Addr( uint8_t addr ) {
1685 //--------------------------------------------------------------------
1686
1687 register uint8_t line_parity;
1688
1689 uint8_t i;
1690 line_parity = 0;
1691 for(i=0;i<6;i++) {
1692 *forward_ptr++ = addr;
1693 line_parity ^= addr;
1694 addr >>= 1;
1695 }
1696
1697 *forward_ptr++ = (line_parity & 1);
1698
1699 return 7; //return number of emited bits
1700 }
1701
1702 //====================================================================
1703 // prepares data bits intreleaved with parity bits
1704 // see EM4469 spec
1705 //====================================================================
1706
1707 //--------------------------------------------------------------------
1708 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1709 //--------------------------------------------------------------------
1710
1711 register uint8_t line_parity;
1712 register uint8_t column_parity;
1713 register uint8_t i, j;
1714 register uint16_t data;
1715
1716 data = data_low;
1717 column_parity = 0;
1718
1719 for(i=0; i<4; i++) {
1720 line_parity = 0;
1721 for(j=0; j<8; j++) {
1722 line_parity ^= data;
1723 column_parity ^= (data & 1) << j;
1724 *forward_ptr++ = data;
1725 data >>= 1;
1726 }
1727 *forward_ptr++ = line_parity;
1728 if(i == 1)
1729 data = data_hi;
1730 }
1731
1732 for(j=0; j<8; j++) {
1733 *forward_ptr++ = column_parity;
1734 column_parity >>= 1;
1735 }
1736 *forward_ptr = 0;
1737
1738 return 45; //return number of emited bits
1739 }
1740
1741 //====================================================================
1742 // Forward Link send function
1743 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1744 // fwd_bit_count set with number of bits to be sent
1745 //====================================================================
1746 void SendForward(uint8_t fwd_bit_count) {
1747
1748 fwd_write_ptr = forwardLink_data;
1749 fwd_bit_sz = fwd_bit_count;
1750
1751 LED_D_ON();
1752
1753 //Field on
1754 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1755 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1756 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1757
1758 // Give it a bit of time for the resonant antenna to settle.
1759 // And for the tag to fully power up
1760 SpinDelay(150);
1761
1762 // force 1st mod pulse (start gap must be longer for 4305)
1763 fwd_bit_sz--; //prepare next bit modulation
1764 fwd_write_ptr++;
1765 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1766 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1767 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1768 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1769 SpinDelayUs(16*8); //16 cycles on (8us each)
1770
1771 // now start writting
1772 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1773 if(((*fwd_write_ptr++) & 1) == 1)
1774 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1775 else {
1776 //These timings work for 4469/4269/4305 (with the 55*8 above)
1777 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1778 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1779 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1780 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1781 SpinDelayUs(9*8); //16 cycles on (8us each)
1782 }
1783 }
1784 }
1785
1786 void EM4xLogin(uint32_t Password) {
1787
1788 uint8_t fwd_bit_count;
1789
1790 forward_ptr = forwardLink_data;
1791 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1792 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1793
1794 SendForward(fwd_bit_count);
1795
1796 //Wait for command to complete
1797 SpinDelay(20);
1798
1799 }
1800
1801 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1802
1803 uint8_t fwd_bit_count;
1804 uint8_t *dest = BigBuf_get_addr();
1805 int m=0, i=0;
1806
1807 //If password mode do login
1808 if (PwdMode == 1) EM4xLogin(Pwd);
1809
1810 forward_ptr = forwardLink_data;
1811 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1812 fwd_bit_count += Prepare_Addr( Address );
1813
1814 m = BigBuf_max_traceLen();
1815 // Clear destination buffer before sending the command
1816 memset(dest, 128, m);
1817 // Connect the A/D to the peak-detected low-frequency path.
1818 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1819 // Now set up the SSC to get the ADC samples that are now streaming at us.
1820 FpgaSetupSsc();
1821
1822 SendForward(fwd_bit_count);
1823
1824 // Now do the acquisition
1825 i = 0;
1826 for(;;) {
1827 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1828 AT91C_BASE_SSC->SSC_THR = 0x43;
1829 }
1830 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1831 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1832 i++;
1833 if (i >= m) break;
1834 }
1835 }
1836 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1837 LED_D_OFF();
1838 }
1839
1840 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1841
1842 uint8_t fwd_bit_count;
1843
1844 //If password mode do login
1845 if (PwdMode == 1) EM4xLogin(Pwd);
1846
1847 forward_ptr = forwardLink_data;
1848 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1849 fwd_bit_count += Prepare_Addr( Address );
1850 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1851
1852 SendForward(fwd_bit_count);
1853
1854 //Wait for write to complete
1855 SpinDelay(20);
1856 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1857 LED_D_OFF();
1858 }
Impressum, Datenschutz