]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Merge pull request #64 from jessegit/csetuidfix
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend[TOSEND_BUFFER_SIZE];
41 int ToSendMax;
42 static int ToSendBit;
43 struct common_area common_area __attribute__((section(".commonarea")));
44
45 void ToSendReset(void)
46 {
47 ToSendMax = -1;
48 ToSendBit = 8;
49 }
50
51 void ToSendStuffBit(int b)
52 {
53 if(ToSendBit >= 8) {
54 ToSendMax++;
55 ToSend[ToSendMax] = 0;
56 ToSendBit = 0;
57 }
58
59 if(b) {
60 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
61 }
62
63 ToSendBit++;
64
65 if(ToSendMax >= sizeof(ToSend)) {
66 ToSendBit = 0;
67 DbpString("ToSendStuffBit overflowed!");
68 }
69 }
70
71 //=============================================================================
72 // Debug print functions, to go out over USB, to the usual PC-side client.
73 //=============================================================================
74
75 void DbpString(char *str)
76 {
77 byte_t len = strlen(str);
78 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
79 }
80
81 #if 0
82 void DbpIntegers(int x1, int x2, int x3)
83 {
84 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
85 }
86 #endif
87
88 void Dbprintf(const char *fmt, ...) {
89 // should probably limit size here; oh well, let's just use a big buffer
90 char output_string[128];
91 va_list ap;
92
93 va_start(ap, fmt);
94 kvsprintf(fmt, output_string, 10, ap);
95 va_end(ap);
96
97 DbpString(output_string);
98 }
99
100 // prints HEX & ASCII
101 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
102 int l=0,i;
103 char ascii[9];
104
105 while (len>0) {
106 if (len>8) l=8;
107 else l=len;
108
109 memcpy(ascii,d,l);
110 ascii[l]=0;
111
112 // filter safe ascii
113 for (i=0;i<l;i++)
114 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
115
116 if (bAsci) {
117 Dbprintf("%-8s %*D",ascii,l,d," ");
118 } else {
119 Dbprintf("%*D",l,d," ");
120 }
121
122 len-=8;
123 d+=8;
124 }
125 }
126
127 //-----------------------------------------------------------------------------
128 // Read an ADC channel and block till it completes, then return the result
129 // in ADC units (0 to 1023). Also a routine to average 32 samples and
130 // return that.
131 //-----------------------------------------------------------------------------
132 static int ReadAdc(int ch)
133 {
134 uint32_t d;
135
136 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
137 AT91C_BASE_ADC->ADC_MR =
138 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
139 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
140 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
141
142 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
143 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
144 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
145 //
146 // The maths are:
147 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
148 //
149 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
150 //
151 // Note: with the "historic" values in the comments above, the error was 34% !!!
152
153 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
154
155 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
156
157 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
158 ;
159 d = AT91C_BASE_ADC->ADC_CDR[ch];
160
161 return d;
162 }
163
164 int AvgAdc(int ch) // was static - merlok
165 {
166 int i;
167 int a = 0;
168
169 for(i = 0; i < 32; i++) {
170 a += ReadAdc(ch);
171 }
172
173 return (a + 15) >> 5;
174 }
175
176 void MeasureAntennaTuning(void)
177 {
178 uint8_t LF_Results[256];
179 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
180 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
181
182 LED_B_ON();
183
184 /*
185 * Sweeps the useful LF range of the proxmark from
186 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
187 * read the voltage in the antenna, the result left
188 * in the buffer is a graph which should clearly show
189 * the resonating frequency of your LF antenna
190 * ( hopefully around 95 if it is tuned to 125kHz!)
191 */
192
193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
194 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
195 for (i=255; i>=19; i--) {
196 WDT_HIT();
197 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
198 SpinDelay(20);
199 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
200 if (i==95) vLf125 = adcval; // voltage at 125Khz
201 if (i==89) vLf134 = adcval; // voltage at 134Khz
202
203 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
204 if(LF_Results[i] > peak) {
205 peakv = adcval;
206 peak = LF_Results[i];
207 peakf = i;
208 //ptr = i;
209 }
210 }
211
212 for (i=18; i >= 0; i--) LF_Results[i] = 0;
213
214 LED_A_ON();
215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
216 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
218 SpinDelay(20);
219 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
220
221 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
222 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
223 LED_A_OFF();
224 LED_B_OFF();
225 return;
226 }
227
228 void MeasureAntennaTuningHf(void)
229 {
230 int vHf = 0; // in mV
231
232 DbpString("Measuring HF antenna, press button to exit");
233
234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
237
238 for (;;) {
239 SpinDelay(20);
240 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
241
242 Dbprintf("%d mV",vHf);
243 if (BUTTON_PRESS()) break;
244 }
245 DbpString("cancelled");
246
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
248
249 }
250
251
252 void SimulateTagHfListen(void)
253 {
254 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
255 // There might be a better size to be defined:
256 #define HF_14B_SNOOP_BUFFER_SIZE 2744
257 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
258 uint8_t v = 0;
259 int i;
260 int p = 0;
261
262 // We're using this mode just so that I can test it out; the simulated
263 // tag mode would work just as well and be simpler.
264 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
265 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
266
267 // We need to listen to the high-frequency, peak-detected path.
268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
269
270 FpgaSetupSsc();
271
272 i = 0;
273 for(;;) {
274 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
275 AT91C_BASE_SSC->SSC_THR = 0xff;
276 }
277 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
278 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
279
280 v <<= 1;
281 if(r & 1) {
282 v |= 1;
283 }
284 p++;
285
286 if(p >= 8) {
287 dest[i] = v;
288 v = 0;
289 p = 0;
290 i++;
291
292 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
293 break;
294 }
295 }
296 }
297 }
298 DbpString("simulate tag (now type bitsamples)");
299 }
300
301 void ReadMem(int addr)
302 {
303 const uint8_t *data = ((uint8_t *)addr);
304
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
307 }
308
309 /* osimage version information is linked in */
310 extern struct version_information version_information;
311 /* bootrom version information is pointed to from _bootphase1_version_pointer */
312 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
313 void SendVersion(void)
314 {
315 char temp[512]; /* Limited data payload in USB packets */
316 DbpString("Prox/RFID mark3 RFID instrument");
317
318 /* Try to find the bootrom version information. Expect to find a pointer at
319 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
320 * pointer, then use it.
321 */
322 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
323 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
324 DbpString("bootrom version information appears invalid");
325 } else {
326 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
327 DbpString(temp);
328 }
329
330 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
331 DbpString(temp);
332
333 FpgaGatherVersion(temp, sizeof(temp));
334 DbpString(temp);
335 // Send Chip ID
336 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
337 }
338
339 #ifdef WITH_LF
340 // samy's sniff and repeat routine
341 void SamyRun()
342 {
343 DbpString("Stand-alone mode! No PC necessary.");
344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
345
346 // 3 possible options? no just 2 for now
347 #define OPTS 2
348
349 int high[OPTS], low[OPTS];
350
351 // Oooh pretty -- notify user we're in elite samy mode now
352 LED(LED_RED, 200);
353 LED(LED_ORANGE, 200);
354 LED(LED_GREEN, 200);
355 LED(LED_ORANGE, 200);
356 LED(LED_RED, 200);
357 LED(LED_ORANGE, 200);
358 LED(LED_GREEN, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_RED, 200);
361
362 int selected = 0;
363 int playing = 0;
364 int cardRead = 0;
365
366 // Turn on selected LED
367 LED(selected + 1, 0);
368
369 for (;;)
370 {
371 usb_poll();
372 WDT_HIT();
373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
379 if (button_pressed > 0 && cardRead == 0)
380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
405
406 cardRead = 1;
407
408 }
409
410 else if (button_pressed > 0 && cardRead == 1)
411 {
412 LEDsoff();
413 LED(selected + 1, 0);
414 LED(LED_ORANGE, 0);
415
416 // record
417 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
418
419 // wait for button to be released
420 while(BUTTON_PRESS())
421 WDT_HIT();
422
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425
426 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
428
429 LEDsoff();
430 LED(selected + 1, 0);
431 // Finished recording
432
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
435 playing = 0;
436
437 cardRead = 0;
438
439 }
440
441 // Change where to record (or begin playing)
442 else if (button_pressed)
443 {
444 // Next option if we were previously playing
445 if (playing)
446 selected = (selected + 1) % OPTS;
447 playing = !playing;
448
449 LEDsoff();
450 LED(selected + 1, 0);
451
452 // Begin transmitting
453 if (playing)
454 {
455 LED(LED_GREEN, 0);
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
459 WDT_HIT();
460 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
461 CmdHIDsimTAG(high[selected], low[selected], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
464 {
465 DbpString("Exiting");
466 LEDsoff();
467 return;
468 }
469
470 /* We pressed a button so ignore it here with a delay */
471 SpinDelay(300);
472
473 // when done, we're done playing, move to next option
474 selected = (selected + 1) % OPTS;
475 playing = !playing;
476 LEDsoff();
477 LED(selected + 1, 0);
478 }
479 else
480 while(BUTTON_PRESS())
481 WDT_HIT();
482 }
483 }
484 }
485 #endif
486
487 /*
488 OBJECTIVE
489 Listen and detect an external reader. Determine the best location
490 for the antenna.
491
492 INSTRUCTIONS:
493 Inside the ListenReaderField() function, there is two mode.
494 By default, when you call the function, you will enter mode 1.
495 If you press the PM3 button one time, you will enter mode 2.
496 If you press the PM3 button a second time, you will exit the function.
497
498 DESCRIPTION OF MODE 1:
499 This mode just listens for an external reader field and lights up green
500 for HF and/or red for LF. This is the original mode of the detectreader
501 function.
502
503 DESCRIPTION OF MODE 2:
504 This mode will visually represent, using the LEDs, the actual strength of the
505 current compared to the maximum current detected. Basically, once you know
506 what kind of external reader is present, it will help you spot the best location to place
507 your antenna. You will probably not get some good results if there is a LF and a HF reader
508 at the same place! :-)
509
510 LIGHT SCHEME USED:
511 */
512 static const char LIGHT_SCHEME[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
521 };
522 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
523
524 void ListenReaderField(int limit)
525 {
526 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
527 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
528 int mode=1, display_val, display_max, i;
529
530 #define LF_ONLY 1
531 #define HF_ONLY 2
532 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
533
534
535 // switch off FPGA - we don't want to measure our own signal
536 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
537 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
538
539 LEDsoff();
540
541 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
542
543 if(limit != HF_ONLY) {
544 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
545 lf_baseline = lf_av;
546 }
547
548 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
549
550 if (limit != LF_ONLY) {
551 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
552 hf_baseline = hf_av;
553 }
554
555 for(;;) {
556 if (BUTTON_PRESS()) {
557 SpinDelay(500);
558 switch (mode) {
559 case 1:
560 mode=2;
561 DbpString("Signal Strength Mode");
562 break;
563 case 2:
564 default:
565 DbpString("Stopped");
566 LEDsoff();
567 return;
568 break;
569 }
570 }
571 WDT_HIT();
572
573 if (limit != HF_ONLY) {
574 if(mode == 1) {
575 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
576 LED_D_ON();
577 else
578 LED_D_OFF();
579 }
580
581 lf_av_new = AvgAdc(ADC_CHAN_LF);
582 // see if there's a significant change
583 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
584 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
585 lf_av = lf_av_new;
586 if (lf_av > lf_max)
587 lf_max = lf_av;
588 }
589 }
590
591 if (limit != LF_ONLY) {
592 if (mode == 1){
593 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
594 LED_B_ON();
595 else
596 LED_B_OFF();
597 }
598
599 hf_av_new = AvgAdc(ADC_CHAN_HF);
600 // see if there's a significant change
601 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
602 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
603 hf_av = hf_av_new;
604 if (hf_av > hf_max)
605 hf_max = hf_av;
606 }
607 }
608
609 if(mode == 2) {
610 if (limit == LF_ONLY) {
611 display_val = lf_av;
612 display_max = lf_max;
613 } else if (limit == HF_ONLY) {
614 display_val = hf_av;
615 display_max = hf_max;
616 } else { /* Pick one at random */
617 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
618 display_val = hf_av;
619 display_max = hf_max;
620 } else {
621 display_val = lf_av;
622 display_max = lf_max;
623 }
624 }
625 for (i=0; i<LIGHT_LEN; i++) {
626 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
627 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
628 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
629 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
630 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
631 break;
632 }
633 }
634 }
635 }
636 }
637
638 void UsbPacketReceived(uint8_t *packet, int len)
639 {
640 UsbCommand *c = (UsbCommand *)packet;
641
642 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
643
644 switch(c->cmd) {
645 #ifdef WITH_LF
646 case CMD_SET_LF_SAMPLING_CONFIG:
647 setSamplingConfig((sample_config *) c->d.asBytes);
648 break;
649 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
650 cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
651 break;
652 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
653 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
654 break;
655 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
656 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
657 break;
658 case CMD_HID_DEMOD_FSK:
659 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
660 break;
661 case CMD_HID_SIM_TAG:
662 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
663 break;
664 case CMD_HID_CLONE_TAG:
665 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
666 break;
667 case CMD_IO_DEMOD_FSK:
668 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
669 break;
670 case CMD_IO_CLONE_TAG:
671 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
672 break;
673 case CMD_EM410X_DEMOD:
674 CmdEM410xdemod(c->arg[0], 0, 0, 1);
675 break;
676 case CMD_EM410X_WRITE_TAG:
677 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
678 break;
679 case CMD_READ_TI_TYPE:
680 ReadTItag();
681 break;
682 case CMD_WRITE_TI_TYPE:
683 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
684 break;
685 case CMD_SIMULATE_TAG_125K:
686 LED_A_ON();
687 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
688 LED_A_OFF();
689 break;
690 case CMD_LF_SIMULATE_BIDIR:
691 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
692 break;
693 case CMD_INDALA_CLONE_TAG:
694 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
695 break;
696 case CMD_INDALA_CLONE_TAG_L:
697 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
698 break;
699 case CMD_T55XX_READ_BLOCK:
700 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
701 break;
702 case CMD_T55XX_WRITE_BLOCK:
703 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
704 break;
705 case CMD_T55XX_READ_TRACE:
706 T55xxReadTrace();
707 break;
708 case CMD_PCF7931_READ:
709 ReadPCF7931();
710 cmd_send(CMD_ACK,0,0,0,0,0);
711 break;
712 case CMD_EM4X_READ_WORD:
713 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
714 break;
715 case CMD_EM4X_WRITE_WORD:
716 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
717 break;
718 #endif
719
720 #ifdef WITH_HITAG
721 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
722 SnoopHitag(c->arg[0]);
723 break;
724 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
725 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
726 break;
727 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
728 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
729 break;
730 #endif
731
732 #ifdef WITH_ISO15693
733 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
734 AcquireRawAdcSamplesIso15693();
735 break;
736 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
737 RecordRawAdcSamplesIso15693();
738 break;
739
740 case CMD_ISO_15693_COMMAND:
741 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
742 break;
743
744 case CMD_ISO_15693_FIND_AFI:
745 BruteforceIso15693Afi(c->arg[0]);
746 break;
747
748 case CMD_ISO_15693_DEBUG:
749 SetDebugIso15693(c->arg[0]);
750 break;
751
752 case CMD_READER_ISO_15693:
753 ReaderIso15693(c->arg[0]);
754 break;
755 case CMD_SIMTAG_ISO_15693:
756 SimTagIso15693(c->arg[0], c->d.asBytes);
757 break;
758 #endif
759
760 #ifdef WITH_LEGICRF
761 case CMD_SIMULATE_TAG_LEGIC_RF:
762 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
763 break;
764
765 case CMD_WRITER_LEGIC_RF:
766 LegicRfWriter(c->arg[1], c->arg[0]);
767 break;
768
769 case CMD_READER_LEGIC_RF:
770 LegicRfReader(c->arg[0], c->arg[1]);
771 break;
772 #endif
773
774 #ifdef WITH_ISO14443b
775 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
776 AcquireRawAdcSamplesIso14443(c->arg[0]);
777 break;
778 case CMD_READ_SRI512_TAG:
779 ReadSTMemoryIso14443(0x0F);
780 break;
781 case CMD_READ_SRIX4K_TAG:
782 ReadSTMemoryIso14443(0x7F);
783 break;
784 case CMD_SNOOP_ISO_14443:
785 SnoopIso14443();
786 break;
787 case CMD_SIMULATE_TAG_ISO_14443:
788 SimulateIso14443Tag();
789 break;
790 case CMD_ISO_14443B_COMMAND:
791 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
792 break;
793 #endif
794
795 #ifdef WITH_ISO14443a
796 case CMD_SNOOP_ISO_14443a:
797 SnoopIso14443a(c->arg[0]);
798 break;
799 case CMD_READER_ISO_14443a:
800 ReaderIso14443a(c);
801 break;
802 case CMD_SIMULATE_TAG_ISO_14443a:
803 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
804 break;
805
806 case CMD_EPA_PACE_COLLECT_NONCE:
807 EPA_PACE_Collect_Nonce(c);
808 break;
809
810 case CMD_READER_MIFARE:
811 ReaderMifare(c->arg[0]);
812 break;
813 case CMD_MIFARE_READBL:
814 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
815 break;
816 case CMD_MIFAREU_READBL:
817 MifareUReadBlock(c->arg[0],c->d.asBytes);
818 break;
819 case CMD_MIFAREUC_AUTH1:
820 MifareUC_Auth1(c->arg[0],c->d.asBytes);
821 break;
822 case CMD_MIFAREUC_AUTH2:
823 MifareUC_Auth2(c->arg[0],c->d.asBytes);
824 break;
825 case CMD_MIFAREU_READCARD:
826 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
827 break;
828 case CMD_MIFAREUC_READCARD:
829 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
830 break;
831 case CMD_MIFARE_READSC:
832 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
833 break;
834 case CMD_MIFARE_WRITEBL:
835 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
836 break;
837 case CMD_MIFAREU_WRITEBL_COMPAT:
838 MifareUWriteBlock(c->arg[0], c->d.asBytes);
839 break;
840 case CMD_MIFAREU_WRITEBL:
841 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
842 break;
843 case CMD_MIFARE_NESTED:
844 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
845 break;
846 case CMD_MIFARE_CHKKEYS:
847 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
848 break;
849 case CMD_SIMULATE_MIFARE_CARD:
850 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
851 break;
852
853 // emulator
854 case CMD_MIFARE_SET_DBGMODE:
855 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
856 break;
857 case CMD_MIFARE_EML_MEMCLR:
858 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
859 break;
860 case CMD_MIFARE_EML_MEMSET:
861 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
862 break;
863 case CMD_MIFARE_EML_MEMGET:
864 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
865 break;
866 case CMD_MIFARE_EML_CARDLOAD:
867 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
868 break;
869
870 // Work with "magic Chinese" card
871 case CMD_MIFARE_CSETBLOCK:
872 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
873 break;
874 case CMD_MIFARE_CGETBLOCK:
875 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
876 break;
877 case CMD_MIFARE_CIDENT:
878 MifareCIdent();
879 break;
880
881 // mifare sniffer
882 case CMD_MIFARE_SNIFFER:
883 SniffMifare(c->arg[0]);
884 break;
885
886 #endif
887
888 #ifdef WITH_ICLASS
889 // Makes use of ISO14443a FPGA Firmware
890 case CMD_SNOOP_ICLASS:
891 SnoopIClass();
892 break;
893 case CMD_SIMULATE_TAG_ICLASS:
894 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
895 break;
896 case CMD_READER_ICLASS:
897 ReaderIClass(c->arg[0]);
898 break;
899 case CMD_READER_ICLASS_REPLAY:
900 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
901 break;
902 #endif
903
904 case CMD_SIMULATE_TAG_HF_LISTEN:
905 SimulateTagHfListen();
906 break;
907
908 case CMD_BUFF_CLEAR:
909 BigBuf_Clear();
910 break;
911
912 case CMD_MEASURE_ANTENNA_TUNING:
913 MeasureAntennaTuning();
914 break;
915
916 case CMD_MEASURE_ANTENNA_TUNING_HF:
917 MeasureAntennaTuningHf();
918 break;
919
920 case CMD_LISTEN_READER_FIELD:
921 ListenReaderField(c->arg[0]);
922 break;
923
924 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
925 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
926 SpinDelay(200);
927 LED_D_OFF(); // LED D indicates field ON or OFF
928 break;
929
930 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
931
932 LED_B_ON();
933 uint8_t *BigBuf = BigBuf_get_addr();
934 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
935 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
936 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,traceLen,BigBuf+c->arg[0]+i,len);
937 }
938 // Trigger a finish downloading signal with an ACK frame
939 cmd_send(CMD_ACK,1,0,traceLen,getSamplingConfig(),sizeof(sample_config));
940 LED_B_OFF();
941 break;
942
943 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
944 uint8_t *b = BigBuf_get_addr();
945 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
946 cmd_send(CMD_ACK,0,0,0,0,0);
947 break;
948 }
949 case CMD_READ_MEM:
950 ReadMem(c->arg[0]);
951 break;
952
953 case CMD_SET_LF_DIVISOR:
954 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
955 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
956 break;
957
958 case CMD_SET_ADC_MUX:
959 switch(c->arg[0]) {
960 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
961 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
962 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
963 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
964 }
965 break;
966
967 case CMD_VERSION:
968 SendVersion();
969 break;
970
971 #ifdef WITH_LCD
972 case CMD_LCD_RESET:
973 LCDReset();
974 break;
975 case CMD_LCD:
976 LCDSend(c->arg[0]);
977 break;
978 #endif
979 case CMD_SETUP_WRITE:
980 case CMD_FINISH_WRITE:
981 case CMD_HARDWARE_RESET:
982 usb_disable();
983 SpinDelay(1000);
984 SpinDelay(1000);
985 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
986 for(;;) {
987 // We're going to reset, and the bootrom will take control.
988 }
989 break;
990
991 case CMD_START_FLASH:
992 if(common_area.flags.bootrom_present) {
993 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
994 }
995 usb_disable();
996 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
997 for(;;);
998 break;
999
1000 case CMD_DEVICE_INFO: {
1001 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1002 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1003 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1004 break;
1005 }
1006 default:
1007 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1008 break;
1009 }
1010 }
1011
1012 void __attribute__((noreturn)) AppMain(void)
1013 {
1014 SpinDelay(100);
1015
1016 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1017 /* Initialize common area */
1018 memset(&common_area, 0, sizeof(common_area));
1019 common_area.magic = COMMON_AREA_MAGIC;
1020 common_area.version = 1;
1021 }
1022 common_area.flags.osimage_present = 1;
1023
1024 LED_D_OFF();
1025 LED_C_OFF();
1026 LED_B_OFF();
1027 LED_A_OFF();
1028
1029 // Init USB device
1030 usb_enable();
1031
1032 // The FPGA gets its clock from us from PCK0 output, so set that up.
1033 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1034 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1035 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1036 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1037 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1038 AT91C_PMC_PRES_CLK_4;
1039 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1040
1041 // Reset SPI
1042 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1043 // Reset SSC
1044 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1045
1046 // Load the FPGA image, which we have stored in our flash.
1047 // (the HF version by default)
1048 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1049
1050 StartTickCount();
1051
1052 #ifdef WITH_LCD
1053 LCDInit();
1054 #endif
1055
1056 byte_t rx[sizeof(UsbCommand)];
1057 size_t rx_len;
1058
1059 for(;;) {
1060 if (usb_poll()) {
1061 rx_len = usb_read(rx,sizeof(UsbCommand));
1062 if (rx_len) {
1063 UsbPacketReceived(rx,rx_len);
1064 }
1065 }
1066 WDT_HIT();
1067
1068 #ifdef WITH_LF
1069 if (BUTTON_HELD(1000) > 0)
1070 SamyRun();
1071 #endif
1072 }
1073 }
Impressum, Datenschutz