update more demods for graphing
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "cmdlfem4x.h"
15 #include "proxmark3.h"
16 #include "ui.h"
17 #include "util.h"
18 #include "data.h"
19 #include "graph.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #include "cmdlf.h"
23 #include "cmdmain.h"
24 #include "lfdemod.h"
25 #include "protocols.h"
26
27 uint64_t g_em410xId=0;
28
29 static int CmdHelp(const char *Cmd);
30
31 int CmdEMdemodASK(const char *Cmd)
32 {
33 char cmdp = param_getchar(Cmd, 0);
34 int findone = (cmdp == '1') ? 1 : 0;
35 UsbCommand c={CMD_EM410X_DEMOD};
36 c.arg[0]=findone;
37 SendCommand(&c);
38 return 0;
39 }
40
41 //by marshmellow
42 //print 64 bit EM410x ID in multiple formats
43 void printEM410x(uint32_t hi, uint64_t id)
44 {
45 if (id || hi){
46 uint64_t iii=1;
47 uint64_t id2lo=0;
48 uint32_t ii=0;
49 uint32_t i=0;
50 for (ii=5; ii>0;ii--){
51 for (i=0;i<8;i++){
52 id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
53 }
54 }
55 if (hi){
56 //output 88 bit em id
57 PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
58 } else{
59 //output 40 bit em id
60 PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
61 PrintAndLog("\nPossible de-scramble patterns");
62 PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
63 PrintAndLog("HoneyWell IdentKey {");
64 PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
65 PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
66 PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
67 PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
68 PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
69 PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
70 PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
71 PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
72 PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
73 (id2lo & 0xf000000000) >> 36,
74 (id2lo & 0x0f00000000) >> 32,
75 (id2lo & 0x00f0000000) >> 28,
76 (id2lo & 0x000f000000) >> 24,
77 (id2lo & 0x0000f00000) >> 20,
78 (id2lo & 0x00000f0000) >> 16,
79 (id2lo & 0x000000f000) >> 12,
80 (id2lo & 0x0000000f00) >> 8,
81 (id2lo & 0x00000000f0) >> 4,
82 (id2lo & 0x000000000f)
83 );
84 uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
85 PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
86 PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
87
88 uint32_t p1id = (id & 0xFFFFFF);
89 uint8_t arr[32] = {0x00};
90 int i =0;
91 int j = 23;
92 for (; i < 24; ++i, --j ){
93 arr[i] = (p1id >> i) & 1;
94 }
95
96 uint32_t p1 = 0;
97
98 p1 |= arr[23] << 21;
99 p1 |= arr[22] << 23;
100 p1 |= arr[21] << 20;
101 p1 |= arr[20] << 22;
102
103 p1 |= arr[19] << 18;
104 p1 |= arr[18] << 16;
105 p1 |= arr[17] << 19;
106 p1 |= arr[16] << 17;
107
108 p1 |= arr[15] << 13;
109 p1 |= arr[14] << 15;
110 p1 |= arr[13] << 12;
111 p1 |= arr[12] << 14;
112
113 p1 |= arr[11] << 6;
114 p1 |= arr[10] << 2;
115 p1 |= arr[9] << 7;
116 p1 |= arr[8] << 1;
117
118 p1 |= arr[7] << 0;
119 p1 |= arr[6] << 8;
120 p1 |= arr[5] << 11;
121 p1 |= arr[4] << 3;
122
123 p1 |= arr[3] << 10;
124 p1 |= arr[2] << 4;
125 p1 |= arr[1] << 5;
126 p1 |= arr[0] << 9;
127 PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
128
129 uint16_t sebury1 = id & 0xFFFF;
130 uint8_t sebury2 = (id >> 16) & 0x7F;
131 uint32_t sebury3 = id & 0x7FFFFF;
132 PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
133 }
134 }
135 return;
136 }
137
138 /* Read the ID of an EM410x tag.
139 * Format:
140 * 1111 1111 1 <-- standard non-repeatable header
141 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
142 * ....
143 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
144 * 0 <-- stop bit, end of tag
145 */
146 int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
147 {
148 size_t idx = 0;
149 uint8_t BitStream[512]={0};
150 size_t BitLen = sizeof(BitStream);
151 if ( !getDemodBuf(BitStream, &BitLen) ) return 0;
152
153 if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) {
154 //set GraphBuffer for clone or sim command
155 setDemodBuf(DemodBuffer, (BitLen==40) ? 64 : 128, idx+1);
156 setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock));
157
158 if (g_debugMode) {
159 PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
160 printDemodBuff();
161 }
162 if (verbose) {
163 PrintAndLog("EM410x pattern found: ");
164 printEM410x(*hi, *lo);
165 g_em410xId = *lo;
166 }
167 return 1;
168 }
169 return 0;
170 }
171
172 //askdemod then call Em410xdecode
173 int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
174 {
175 bool st = true;
176 if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
177 return AskEm410xDecode(verbose, hi, lo);
178 }
179
180 //by marshmellow
181 //takes 3 arguments - clock, invert and maxErr as integers
182 //attempts to demodulate ask while decoding manchester
183 //prints binary found and saves in graphbuffer for further commands
184 int CmdAskEM410xDemod(const char *Cmd)
185 {
186 char cmdp = param_getchar(Cmd, 0);
187 if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
188 PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
189 PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
190 PrintAndLog(" <invert>, 1 for invert output");
191 PrintAndLog(" [set maximum allowed errors], default = 100.");
192 PrintAndLog("");
193 PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
194 PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
195 PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
196 PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
197 PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
198 return 0;
199 }
200 uint64_t lo = 0;
201 uint32_t hi = 0;
202 return AskEm410xDemod(Cmd, &hi, &lo, true);
203 }
204
205 int usage_lf_em410x_sim(void) {
206 PrintAndLog("Simulating EM410x tag");
207 PrintAndLog("");
208 PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
209 PrintAndLog("Options:");
210 PrintAndLog(" h - this help");
211 PrintAndLog(" uid - uid (10 HEX symbols)");
212 PrintAndLog(" clock - clock (32|64) (optional)");
213 PrintAndLog("samples:");
214 PrintAndLog(" lf em 410xsim 0F0368568B");
215 PrintAndLog(" lf em 410xsim 0F0368568B 32");
216 return 0;
217 }
218
219 // emulate an EM410X tag
220 int CmdEM410xSim(const char *Cmd)
221 {
222 int i, n, j, binary[4], parity[4];
223
224 char cmdp = param_getchar(Cmd, 0);
225 uint8_t uid[5] = {0x00};
226
227 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
228 /* clock is 64 in EM410x tags */
229 uint8_t clock = 64;
230
231 if (param_gethex(Cmd, 0, uid, 10)) {
232 PrintAndLog("UID must include 10 HEX symbols");
233 return 0;
234 }
235 param_getdec(Cmd,1, &clock);
236
237 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
238 PrintAndLog("Press pm3-button to about simulation");
239
240
241 /* clear our graph */
242 ClearGraph(0);
243
244 /* write 9 start bits */
245 for (i = 0; i < 9; i++)
246 AppendGraph(0, clock, 1);
247
248 /* for each hex char */
249 parity[0] = parity[1] = parity[2] = parity[3] = 0;
250 for (i = 0; i < 10; i++)
251 {
252 /* read each hex char */
253 sscanf(&Cmd[i], "%1x", &n);
254 for (j = 3; j >= 0; j--, n/= 2)
255 binary[j] = n % 2;
256
257 /* append each bit */
258 AppendGraph(0, clock, binary[0]);
259 AppendGraph(0, clock, binary[1]);
260 AppendGraph(0, clock, binary[2]);
261 AppendGraph(0, clock, binary[3]);
262
263 /* append parity bit */
264 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
265
266 /* keep track of column parity */
267 parity[0] ^= binary[0];
268 parity[1] ^= binary[1];
269 parity[2] ^= binary[2];
270 parity[3] ^= binary[3];
271 }
272
273 /* parity columns */
274 AppendGraph(0, clock, parity[0]);
275 AppendGraph(0, clock, parity[1]);
276 AppendGraph(0, clock, parity[2]);
277 AppendGraph(0, clock, parity[3]);
278
279 /* stop bit */
280 AppendGraph(1, clock, 0);
281
282 CmdLFSim("0"); //240 start_gap.
283 return 0;
284 }
285
286 /* Function is equivalent of lf read + data samples + em410xread
287 * looped until an EM410x tag is detected
288 *
289 * Why is CmdSamples("16000")?
290 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
291 * rate gets lower, then grow the number of samples
292 * Changed by martin, 4000 x 4 = 16000,
293 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
294 *
295 * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
296 */
297 int CmdEM410xWatch(const char *Cmd)
298 {
299 do {
300 if (ukbhit()) {
301 printf("\naborted via keyboard!\n");
302 break;
303 }
304 lf_read(true, 8201);
305 } while (!CmdAskEM410xDemod(""));
306
307 return 0;
308 }
309
310 //currently only supports manchester modulations
311 int CmdEM410xWatchnSpoof(const char *Cmd)
312 {
313 CmdEM410xWatch(Cmd);
314 PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
315 CmdLFaskSim("");
316 return 0;
317 }
318
319 int CmdEM410xWrite(const char *Cmd)
320 {
321 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
322 int card = 0xFF; // invalid card value
323 unsigned int clock = 0; // invalid clock value
324
325 sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
326
327 // Check ID
328 if (id == 0xFFFFFFFFFFFFFFFF) {
329 PrintAndLog("Error! ID is required.\n");
330 return 0;
331 }
332 if (id >= 0x10000000000) {
333 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
334 return 0;
335 }
336
337 // Check Card
338 if (card == 0xFF) {
339 PrintAndLog("Error! Card type required.\n");
340 return 0;
341 }
342 if (card < 0) {
343 PrintAndLog("Error! Bad card type selected.\n");
344 return 0;
345 }
346
347 // Check Clock
348 // Default: 64
349 if (clock == 0)
350 clock = 64;
351
352 // Allowed clock rates: 16, 32, 40 and 64
353 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
354 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
355 return 0;
356 }
357
358 if (card == 1) {
359 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
360 // NOTE: We really should pass the clock in as a separate argument, but to
361 // provide for backwards-compatibility for older firmware, and to avoid
362 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
363 // the clock rate in bits 8-15 of the card value
364 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
365 } else if (card == 0) {
366 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
367 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
368 } else {
369 PrintAndLog("Error! Bad card type selected.\n");
370 return 0;
371 }
372
373 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
374 SendCommand(&c);
375
376 return 0;
377 }
378
379 //**************** Start of EM4x50 Code ************************
380 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
381 {
382 if (rows*cols>size) return false;
383 uint8_t colP=0;
384 //assume last col is a parity and do not test
385 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
386 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
387 colP ^= BitStream[(rowNum*cols)+colNum];
388 }
389 if (colP != pType) return false;
390 }
391 return true;
392 }
393
394 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
395 {
396 if (rows*cols>size) return false;
397 uint8_t rowP=0;
398 //assume last row is a parity row and do not test
399 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
400 for (uint8_t colNum = 0; colNum < cols; colNum++) {
401 rowP ^= BitStream[(rowNum*cols)+colNum];
402 }
403 if (rowP != pType) return false;
404 }
405 return true;
406 }
407
408 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
409 {
410 if (size<45) return 0;
411 uint32_t code = bytebits_to_byte(BitStream,8);
412 code = code<<8 | bytebits_to_byte(BitStream+9,8);
413 code = code<<8 | bytebits_to_byte(BitStream+18,8);
414 code = code<<8 | bytebits_to_byte(BitStream+27,8);
415 if (verbose || g_debugMode){
416 for (uint8_t i = 0; i<5; i++){
417 if (i == 4) PrintAndLog(""); //parity byte spacer
418 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
419 BitStream[i*9],
420 BitStream[i*9+1],
421 BitStream[i*9+2],
422 BitStream[i*9+3],
423 BitStream[i*9+4],
424 BitStream[i*9+5],
425 BitStream[i*9+6],
426 BitStream[i*9+7],
427 BitStream[i*9+8],
428 bytebits_to_byte(BitStream+i*9,8)
429 );
430 }
431 if (pTest)
432 PrintAndLog("Parity Passed");
433 else
434 PrintAndLog("Parity Failed");
435 }
436 return code;
437 }
438 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
439 * Format:
440 *
441 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
442 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
443 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
444 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
445 * CCCCCCCC <- column parity bits
446 * 0 <- stop bit
447 * LW <- Listen Window
448 *
449 * This pattern repeats for every block of data being transmitted.
450 * Transmission starts with two Listen Windows (LW - a modulated
451 * pattern of 320 cycles each (32/32/128/64/64)).
452 *
453 * Note that this data may or may not be the UID. It is whatever data
454 * is stored in the blocks defined in the control word First and Last
455 * Word Read values. UID is stored in block 32.
456 */
457 //completed by Marshmellow
458 int EM4x50Read(const char *Cmd, bool verbose)
459 {
460 uint8_t fndClk[] = {8,16,32,40,50,64,128};
461 int clk = 0;
462 int invert = 0;
463 int tol = 0;
464 int i, j, startblock, skip, block, start, end, low, high, minClk;
465 bool complete = false;
466 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
467 uint32_t Code[6];
468 char tmp[6];
469 char tmp2[20];
470 int phaseoff;
471 high = low = 0;
472 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
473
474 // get user entry if any
475 sscanf(Cmd, "%i %i", &clk, &invert);
476
477 // save GraphBuffer - to restore it later
478 save_restoreGB(1);
479
480 // first get high and low values
481 for (i = 0; i < GraphTraceLen; i++) {
482 if (GraphBuffer[i] > high)
483 high = GraphBuffer[i];
484 else if (GraphBuffer[i] < low)
485 low = GraphBuffer[i];
486 }
487
488 i = 0;
489 j = 0;
490 minClk = 255;
491 // get to first full low to prime loop and skip incomplete first pulse
492 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
493 ++i;
494 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
495 ++i;
496 skip = i;
497
498 // populate tmpbuff buffer with pulse lengths
499 while (i < GraphTraceLen) {
500 // measure from low to low
501 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
502 ++i;
503 start= i;
504 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
505 ++i;
506 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
507 ++i;
508 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
509 break;
510 }
511 tmpbuff[j++]= i - start;
512 if (i-start < minClk && i < GraphTraceLen) {
513 minClk = i - start;
514 }
515 }
516 // set clock
517 if (!clk) {
518 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
519 tol = fndClk[clkCnt]/8;
520 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
521 clk=fndClk[clkCnt];
522 break;
523 }
524 }
525 if (!clk) return 0;
526 } else tol = clk/8;
527
528 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
529 start = -1;
530 for (i= 0; i < j - 4 ; ++i) {
531 skip += tmpbuff[i];
532 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
533 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
534 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
535 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
536 {
537 start= i + 4;
538 break;
539 }
540 }
541 startblock = i + 4;
542
543 // skip over the remainder of LW
544 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
545 if (tmpbuff[i+3]>clk)
546 phaseoff = tmpbuff[i+3]-clk;
547 else
548 phaseoff = 0;
549 // now do it again to find the end
550 end = skip;
551 for (i += 3; i < j - 4 ; ++i) {
552 end += tmpbuff[i];
553 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
554 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
555 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
556 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
557 {
558 complete= true;
559 break;
560 }
561 }
562 end = i;
563 // report back
564 if (verbose || g_debugMode) {
565 if (start >= 0) {
566 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
567 } else {
568 PrintAndLog("No data found!, clock tried:%d",clk);
569 PrintAndLog("Try again with more samples.");
570 PrintAndLog(" or after a 'data askedge' command to clean up the read");
571 return 0;
572 }
573 } else if (start < 0) return 0;
574 start = skip;
575 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
576 // get rid of leading crap
577 snprintf(tmp, sizeof(tmp), "%i", skip);
578 CmdLtrim(tmp);
579 bool pTest;
580 bool AllPTest = true;
581 // now work through remaining buffer printing out data blocks
582 block = 0;
583 i = startblock;
584 while (block < 6) {
585 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
586 skip = phaseoff;
587
588 // look for LW before start of next block
589 for ( ; i < j - 4 ; ++i) {
590 skip += tmpbuff[i];
591 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
592 if (tmpbuff[i+1] >= clk-tol)
593 break;
594 }
595 if (i >= j-4) break; //next LW not found
596 skip += clk;
597 if (tmpbuff[i+1]>clk)
598 phaseoff = tmpbuff[i+1]-clk;
599 else
600 phaseoff = 0;
601 i += 2;
602 if (ASKDemod(tmp2, false, false, 1) < 1) {
603 save_restoreGB(0);
604 return 0;
605 }
606 //set DemodBufferLen to just one block
607 DemodBufferLen = skip/clk;
608 //test parities
609 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
610 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
611 AllPTest &= pTest;
612 //get output
613 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
614 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
615 //skip to start of next block
616 snprintf(tmp,sizeof(tmp),"%i",skip);
617 CmdLtrim(tmp);
618 block++;
619 if (i >= end) break; //in case chip doesn't output 6 blocks
620 }
621 //print full code:
622 if (verbose || g_debugMode || AllPTest){
623 if (!complete) {
624 PrintAndLog("*** Warning!");
625 PrintAndLog("Partial data - no end found!");
626 PrintAndLog("Try again with more samples.");
627 }
628 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
629 end = block;
630 for (block=0; block < end; block++){
631 PrintAndLog("Block %d: %08x",block,Code[block]);
632 }
633 if (AllPTest) {
634 PrintAndLog("Parities Passed");
635 } else {
636 PrintAndLog("Parities Failed");
637 PrintAndLog("Try cleaning the read samples with 'data askedge'");
638 }
639 }
640
641 //restore GraphBuffer
642 save_restoreGB(0);
643 return (int)AllPTest;
644 }
645
646 int CmdEM4x50Read(const char *Cmd)
647 {
648 return EM4x50Read(Cmd, true);
649 }
650
651 //**************** Start of EM4x05/EM4x69 Code ************************
652 int usage_lf_em_read(void) {
653 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
654 PrintAndLog("");
655 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
656 PrintAndLog("Options:");
657 PrintAndLog(" h - this help");
658 PrintAndLog(" address - memory address to read. (0-15)");
659 PrintAndLog(" pwd - password (hex) (optional)");
660 PrintAndLog("samples:");
661 PrintAndLog(" lf em 4x05readword 1");
662 PrintAndLog(" lf em 4x05readword 1 11223344");
663 return 0;
664 }
665
666 // for command responses from em4x05 or em4x69
667 // download samples from device and copy them to the Graphbuffer
668 bool downloadSamplesEM() {
669 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
670 uint8_t got[6000];
671 GetFromBigBuf(got, sizeof(got), 0);
672 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
673 PrintAndLog("command execution time out");
674 return false;
675 }
676 setGraphBuf(got, sizeof(got));
677 return true;
678 }
679
680 bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
681 // em4x05/em4x69 command response preamble is 00001010
682 // skip first two 0 bits as they might have been missed in the demod
683 uint8_t preamble[] = {0,0,1,0,1,0};
684 size_t startIdx = 0;
685
686 // set size to 20 to only test first 14 positions for the preamble or less if not a read command
687 size_t size = (readCmd) ? 20 : 11;
688 // sanity check
689 size = (size > DemodBufferLen) ? DemodBufferLen : size;
690 // test preamble
691 if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
692 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
693 return false;
694 }
695 // if this is a readword command, get the read bytes and test the parities
696 if (readCmd) {
697 if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
698 if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
699 return false;
700 }
701 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
702 if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
703 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
704 return false;
705 }
706
707 setDemodBuf(DemodBuffer, 32, 0);
708 setClockGrid(0,0);
709
710 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
711 }
712 return true;
713 }
714
715 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
716 // should cover 90% of known used configs
717 // the rest will need to be manually demoded for now...
718 int demodEM4x05resp(uint32_t *word, bool readCmd) {
719 int ans = 0;
720
721 // test for FSK wave (easiest to 99% ID)
722 if (GetFskClock("", false, false)) {
723 //valid fsk clocks found
724 ans = FSKrawDemod("0 0", false);
725 if (!ans) {
726 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
727 } else {
728 if (EM4x05testDemodReadData(word, readCmd)) {
729 return 1;
730 }
731 }
732 }
733 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
734 ans = GetPskClock("", false, false);
735 if (ans>0) {
736 //try psk1
737 ans = PSKDemod("0 0 6", false);
738 if (!ans) {
739 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
740 } else {
741 if (EM4x05testDemodReadData(word, readCmd)) {
742 return 1;
743 } else {
744 //try psk2
745 psk1TOpsk2(DemodBuffer, DemodBufferLen);
746 if (EM4x05testDemodReadData(word, readCmd)) {
747 return 1;
748 }
749 }
750 //try psk1 inverted
751 ans = PSKDemod("0 1 6", false);
752 if (!ans) {
753 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
754 } else {
755 if (EM4x05testDemodReadData(word, readCmd)) {
756 return 1;
757 } else {
758 //try psk2
759 psk1TOpsk2(DemodBuffer, DemodBufferLen);
760 if (EM4x05testDemodReadData(word, readCmd)) {
761 return 1;
762 }
763 }
764 }
765 }
766 }
767
768 // manchester is more common than biphase... try first
769 bool stcheck = false;
770 // try manchester - NOTE: ST only applies to T55x7 tags.
771 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
772 if (!ans) {
773 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
774 } else {
775 if (EM4x05testDemodReadData(word, readCmd)) {
776 return 1;
777 }
778 }
779
780 //try biphase
781 ans = ASKbiphaseDemod("0 0 1", false);
782 if (!ans) {
783 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
784 } else {
785 if (EM4x05testDemodReadData(word, readCmd)) {
786 return 1;
787 }
788 }
789
790 //try diphase (differential biphase or inverted)
791 ans = ASKbiphaseDemod("0 1 1", false);
792 if (!ans) {
793 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
794 } else {
795 if (EM4x05testDemodReadData(word, readCmd)) {
796 return 1;
797 }
798 }
799
800 return -1;
801 }
802
803 int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
804 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
805 clearCommandBuffer();
806 SendCommand(&c);
807 UsbCommand resp;
808 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
809 PrintAndLog("Command timed out");
810 return -1;
811 }
812 if ( !downloadSamplesEM() ) {
813 return -1;
814 }
815 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
816 if (graphJustNoise(GraphBuffer, testLen)) {
817 PrintAndLog("no tag not found");
818 return -1;
819 }
820 //attempt demod:
821 return demodEM4x05resp(wordData, true);
822 }
823
824 int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
825 uint32_t wordData = 0;
826 int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
827 if (success == 1)
828 PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
829 else
830 PrintAndLog("Read Address %02d | failed",addr);
831
832 return success;
833 }
834
835 int CmdEM4x05ReadWord(const char *Cmd) {
836 uint8_t addr;
837 uint32_t pwd;
838 bool usePwd = false;
839 uint8_t ctmp = param_getchar(Cmd, 0);
840 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
841
842 addr = param_get8ex(Cmd, 0, 50, 10);
843 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
844 pwd = param_get32ex(Cmd, 1, 1, 16);
845
846 if ( (addr > 15) ) {
847 PrintAndLog("Address must be between 0 and 15");
848 return 1;
849 }
850 if ( pwd == 1 ) {
851 PrintAndLog("Reading address %02u", addr);
852 } else {
853 usePwd = true;
854 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
855 }
856
857 return EM4x05ReadWord(addr, pwd, usePwd);
858 }
859
860 int usage_lf_em_dump(void) {
861 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
862 PrintAndLog("");
863 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
864 PrintAndLog("Options:");
865 PrintAndLog(" h - this help");
866 PrintAndLog(" pwd - password (hex) (optional)");
867 PrintAndLog("samples:");
868 PrintAndLog(" lf em 4x05dump");
869 PrintAndLog(" lf em 4x05dump 11223344");
870 return 0;
871 }
872
873 int CmdEM4x05dump(const char *Cmd) {
874 uint8_t addr = 0;
875 uint32_t pwd;
876 bool usePwd = false;
877 uint8_t ctmp = param_getchar(Cmd, 0);
878 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
879
880 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
881 pwd = param_get32ex(Cmd, 0, 1, 16);
882
883 if ( pwd != 1 ) {
884 usePwd = true;
885 }
886 int success = 1;
887 for (; addr < 16; addr++) {
888 if (addr == 2) {
889 if (usePwd) {
890 PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
891 } else {
892 PrintAndLog(" PWD Address 02 | cannot read");
893 }
894 } else {
895 success &= EM4x05ReadWord(addr, pwd, usePwd);
896 }
897 }
898
899 return success;
900 }
901
902
903 int usage_lf_em_write(void) {
904 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
905 PrintAndLog("");
906 PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]");
907 PrintAndLog("Options:");
908 PrintAndLog(" h - this help");
909 PrintAndLog(" a <address> - memory address to write to. (0-15)");
910 PrintAndLog(" d <data> - data to write (hex)");
911 PrintAndLog(" p <pwd> - password (hex) (optional)");
912 PrintAndLog(" s - swap the data bit order before write");
913 PrintAndLog(" i - invert the data bits before write");
914 PrintAndLog("samples:");
915 PrintAndLog(" lf em 4x05writeword a 5 d 11223344");
916 PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i");
917 return 0;
918 }
919
920 // note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing
921 // it if invertion is needed. (example FSK2a vs FSK)
922 // also em4x05 requires swapping word data when compared to the data used for t55xx chips.
923 int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) {
924 if (swap) data = SwapBits(data, 32);
925
926 if (invert) data ^= 0xFFFFFFFF;
927
928 if ( (addr > 15) ) {
929 PrintAndLog("Address must be between 0 and 15");
930 return -1;
931 }
932 if ( !usePwd ) {
933 PrintAndLog("Writing address %d data %08X", addr, data);
934 } else {
935 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
936 }
937
938 uint16_t flag = (addr << 8 ) | usePwd;
939
940 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
941 clearCommandBuffer();
942 SendCommand(&c);
943 UsbCommand resp;
944 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
945 PrintAndLog("Error occurred, device did not respond during write operation.");
946 return -1;
947 }
948 if ( !downloadSamplesEM() ) {
949 return -1;
950 }
951 //check response for 00001010 for write confirmation!
952 //attempt demod:
953 uint32_t dummy = 0;
954 int result = demodEM4x05resp(&dummy,false);
955 if (result == 1) {
956 PrintAndLog("Write Verified");
957 } else {
958 PrintAndLog("Write could not be verified");
959 }
960 return result;
961 }
962
963 int CmdEM4x05WriteWord(const char *Cmd) {
964 bool errors = false;
965 bool usePwd = false;
966 uint32_t data = 0xFFFFFFFF;
967 uint32_t pwd = 0xFFFFFFFF;
968 bool swap = false;
969 bool invert = false;
970 uint8_t addr = 16; // default to invalid address
971 bool gotData = false;
972 char cmdp = 0;
973 while(param_getchar(Cmd, cmdp) != 0x00)
974 {
975 switch(param_getchar(Cmd, cmdp))
976 {
977 case 'h':
978 case 'H':
979 return usage_lf_em_write();
980 case 'a':
981 case 'A':
982 addr = param_get8ex(Cmd, cmdp+1, 16, 10);
983 cmdp += 2;
984 break;
985 case 'd':
986 case 'D':
987 data = param_get32ex(Cmd, cmdp+1, 0, 16);
988 gotData = true;
989 cmdp += 2;
990 break;
991 case 'i':
992 case 'I':
993 invert = true;
994 cmdp++;
995 break;
996 case 'p':
997 case 'P':
998 pwd = param_get32ex(Cmd, cmdp+1, 1, 16);
999 if (pwd == 1) {
1000 PrintAndLog("invalid pwd");
1001 errors = true;
1002 }
1003 usePwd = true;
1004 cmdp += 2;
1005 break;
1006 case 's':
1007 case 'S':
1008 swap = true;
1009 cmdp++;
1010 break;
1011 default:
1012 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
1013 errors = true;
1014 break;
1015 }
1016 if(errors) break;
1017 }
1018 //Validations
1019 if(errors) return usage_lf_em_write();
1020
1021 if ( strlen(Cmd) == 0 ) return usage_lf_em_write();
1022
1023 if (!gotData) {
1024 PrintAndLog("You must enter the data you want to write");
1025 return usage_lf_em_write();
1026 }
1027 return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert);
1028 }
1029
1030 void printEM4x05config(uint32_t wordData) {
1031 uint16_t datarate = EM4x05_GET_BITRATE(wordData);
1032 uint8_t encoder = ((wordData >> 6) & 0xF);
1033 char enc[14];
1034 memset(enc,0,sizeof(enc));
1035
1036 uint8_t PSKcf = (wordData >> 10) & 0x3;
1037 char cf[10];
1038 memset(cf,0,sizeof(cf));
1039 uint8_t delay = (wordData >> 12) & 0x3;
1040 char cdelay[33];
1041 memset(cdelay,0,sizeof(cdelay));
1042 uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData);
1043 uint8_t LWR = numblks+5-1; //last word read
1044 switch (encoder) {
1045 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
1046 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
1047 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
1048 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
1049 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
1050 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
1051 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
1052 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
1053 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
1054 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
1055 default: snprintf(enc,sizeof(enc),"Unknown"); break;
1056 }
1057
1058 switch (PSKcf) {
1059 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
1060 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
1061 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
1062 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
1063 }
1064
1065 switch (delay) {
1066 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1067 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
1068 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
1069 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1070 }
1071 uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18;
1072 uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19;
1073 uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20;
1074 uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21;
1075 uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22;
1076 uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23;
1077 uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24;
1078 uint8_t pigeon = (wordData & (1<<26))>>26;
1079 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
1080 PrintAndLog("Config Breakdown:");
1081 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
1082 PrintAndLog(" Encoder: %u | %s", encoder, enc);
1083 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
1084 PrintAndLog(" Delay: %u | %s", delay, cdelay);
1085 PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks);
1086 PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required");
1087 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required");
1088 PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required");
1089 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required");
1090 PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off");
1091 PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted");
1092 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled");
1093 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled");
1094 }
1095
1096 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
1097 switch (chipType) {
1098 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
1099 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
1100 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
1101 //add more here when known
1102 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
1103 }
1104
1105 switch (cap) {
1106 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
1107 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
1108 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
1109 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
1110 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
1111 }
1112
1113 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1114 if (serial != 0) {
1115 PrintAndLog("\n Serial #: %08X\n", serial);
1116 }
1117 }
1118
1119 void printEM4x05ProtectionBits(uint32_t wordData) {
1120 for (uint8_t i = 0; i < 15; i++) {
1121 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1122 if (i==14) {
1123 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1124 }
1125 }
1126 }
1127
1128 //quick test for EM4x05/EM4x69 tag
1129 bool EM4x05Block0Test(uint32_t *wordData) {
1130 if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
1131 return true;
1132 }
1133 return false;
1134 }
1135
1136 int CmdEM4x05info(const char *Cmd) {
1137 //uint8_t addr = 0;
1138 uint32_t pwd;
1139 uint32_t wordData = 0;
1140 bool usePwd = false;
1141 uint8_t ctmp = param_getchar(Cmd, 0);
1142 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
1143
1144 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1145 pwd = param_get32ex(Cmd, 0, 1, 16);
1146
1147 if ( pwd != 1 ) {
1148 usePwd = true;
1149 }
1150
1151 // read word 0 (chip info)
1152 // block 0 can be read even without a password.
1153 if ( !EM4x05Block0Test(&wordData) )
1154 return -1;
1155
1156 uint8_t chipType = (wordData >> 1) & 0xF;
1157 uint8_t cap = (wordData >> 5) & 3;
1158 uint16_t custCode = (wordData >> 9) & 0x3FF;
1159
1160 // read word 1 (serial #) doesn't need pwd
1161 wordData = 0;
1162 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
1163 //failed, but continue anyway...
1164 }
1165 printEM4x05info(chipType, cap, custCode, wordData);
1166
1167 // read word 4 (config block)
1168 // needs password if one is set
1169 wordData = 0;
1170 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
1171 //failed
1172 PrintAndLog("Config block read failed - might be password protected.");
1173 return 0;
1174 }
1175 printEM4x05config(wordData);
1176
1177 // read word 14 and 15 to see which is being used for the protection bits
1178 wordData = 0;
1179 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
1180 //failed
1181 return 0;
1182 }
1183 // if status bit says this is not the used protection word
1184 if (!(wordData & 0x8000)) {
1185 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
1186 //failed
1187 return 0;
1188 }
1189 }
1190 if (!(wordData & 0x8000)) {
1191 //something went wrong
1192 return 0;
1193 }
1194 printEM4x05ProtectionBits(wordData);
1195
1196 return 1;
1197 }
1198
1199
1200 static command_t CommandTable[] =
1201 {
1202 {"help", CmdHelp, 1, "This help"},
1203 {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1204 {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
1205 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
1206 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1207 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1208 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1209 {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
1210 {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
1211 {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
1212 {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
1213 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
1214 {NULL, NULL, 0, NULL}
1215 };
1216
1217 int CmdLFEM4X(const char *Cmd)
1218 {
1219 CmdsParse(CommandTable, Cmd);
1220 return 0;
1221 }
1222
1223 int CmdHelp(const char *Cmd)
1224 {
1225 CmdsHelp(CommandTable);
1226 return 0;
1227 }
Impressum, Datenschutz