]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
Merge pull request #969 from pwpiwi/gcc10_fixes
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "iso14443a.h"
14
15 #include <stdio.h>
16 #include <string.h>
17 #include <inttypes.h>
18
19 #include "proxmark3.h"
20 #include "apps.h"
21 #include "util.h"
22 #include "usb_cdc.h"
23 #include "iso14443crc.h"
24 #include "crapto1/crapto1.h"
25 #include "mifareutil.h"
26 #include "mifaresniff.h"
27 #include "BigBuf.h"
28 #include "protocols.h"
29 #include "parity.h"
30 #include "fpgaloader.h"
31
32 typedef struct {
33 enum {
34 DEMOD_UNSYNCD,
35 // DEMOD_HALF_SYNCD,
36 // DEMOD_MOD_FIRST_HALF,
37 // DEMOD_NOMOD_FIRST_HALF,
38 DEMOD_MANCHESTER_DATA
39 } state;
40 uint16_t twoBits;
41 uint16_t highCnt;
42 uint16_t bitCount;
43 uint16_t collisionPos;
44 uint16_t syncBit;
45 uint8_t parityBits;
46 uint8_t parityLen;
47 uint16_t shiftReg;
48 uint16_t samples;
49 uint16_t len;
50 uint32_t startTime, endTime;
51 uint8_t *output;
52 uint8_t *parity;
53 } tDemod;
54
55 typedef enum {
56 MOD_NOMOD = 0,
57 MOD_SECOND_HALF,
58 MOD_FIRST_HALF,
59 MOD_BOTH_HALVES
60 } Modulation_t;
61
62 typedef struct {
63 enum {
64 STATE_UNSYNCD,
65 STATE_START_OF_COMMUNICATION,
66 STATE_MILLER_X,
67 STATE_MILLER_Y,
68 STATE_MILLER_Z,
69 // DROP_NONE,
70 // DROP_FIRST_HALF,
71 } state;
72 uint16_t shiftReg;
73 int16_t bitCount;
74 uint16_t len;
75 uint16_t byteCntMax;
76 uint16_t posCnt;
77 uint16_t syncBit;
78 uint8_t parityBits;
79 uint8_t parityLen;
80 uint32_t fourBits;
81 uint32_t startTime, endTime;
82 uint8_t *output;
83 uint8_t *parity;
84 } tUart;
85
86 static uint32_t iso14a_timeout;
87 #define MAX_ISO14A_TIMEOUT 524288
88
89 int rsamples = 0;
90 uint8_t trigger = 0;
91 // the block number for the ISO14443-4 PCB
92 static uint8_t iso14_pcb_blocknum = 0;
93
94 //
95 // ISO14443 timing:
96 //
97 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
98 #define REQUEST_GUARD_TIME (7000/16 + 1)
99 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
100 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
101 // bool LastCommandWasRequest = false;
102
103 //
104 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
105 //
106 // When the PM acts as reader and is receiving tag data, it takes
107 // 3 ticks delay in the AD converter
108 // 16 ticks until the modulation detector completes and sets curbit
109 // 8 ticks until bit_to_arm is assigned from curbit
110 // 8*16 ticks for the transfer from FPGA to ARM
111 // 4*16 ticks until we measure the time
112 // - 8*16 ticks because we measure the time of the previous transfer
113 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
114
115 // When the PM acts as a reader and is sending, it takes
116 // 4*16 ticks until we can write data to the sending hold register
117 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
118 // 8 ticks until the first transfer starts
119 // 8 ticks later the FPGA samples the data
120 // 1 tick to assign mod_sig_coil
121 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
122
123 // When the PM acts as tag and is receiving it takes
124 // 2 ticks delay in the RF part (for the first falling edge),
125 // 3 ticks for the A/D conversion,
126 // 8 ticks on average until the start of the SSC transfer,
127 // 8 ticks until the SSC samples the first data
128 // 7*16 ticks to complete the transfer from FPGA to ARM
129 // 8 ticks until the next ssp_clk rising edge
130 // 4*16 ticks until we measure the time
131 // - 8*16 ticks because we measure the time of the previous transfer
132 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
133
134 // The FPGA will report its internal sending delay in
135 uint16_t FpgaSendQueueDelay;
136 // the 5 first bits are the number of bits buffered in mod_sig_buf
137 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
138 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
139
140 // When the PM acts as tag and is sending, it takes
141 // 4*16 + 8 ticks until we can write data to the sending hold register
142 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
143 // 8 ticks later the FPGA samples the first data
144 // + 16 ticks until assigned to mod_sig
145 // + 1 tick to assign mod_sig_coil
146 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
147 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE)
148
149 // When the PM acts as sniffer and is receiving tag data, it takes
150 // 3 ticks A/D conversion
151 // 14 ticks to complete the modulation detection
152 // 8 ticks (on average) until the result is stored in to_arm
153 // + the delays in transferring data - which is the same for
154 // sniffing reader and tag data and therefore not relevant
155 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
156
157 // When the PM acts as sniffer and is receiving reader data, it takes
158 // 2 ticks delay in analogue RF receiver (for the falling edge of the
159 // start bit, which marks the start of the communication)
160 // 3 ticks A/D conversion
161 // 8 ticks on average until the data is stored in to_arm.
162 // + the delays in transferring data - which is the same for
163 // sniffing reader and tag data and therefore not relevant
164 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
165
166 //variables used for timing purposes:
167 //these are in ssp_clk cycles:
168 static uint32_t NextTransferTime;
169 static uint32_t LastTimeProxToAirStart;
170 static uint32_t LastProxToAirDuration;
171
172
173
174 // CARD TO READER - manchester
175 // Sequence D: 11110000 modulation with subcarrier during first half
176 // Sequence E: 00001111 modulation with subcarrier during second half
177 // Sequence F: 00000000 no modulation with subcarrier
178 // READER TO CARD - miller
179 // Sequence X: 00001100 drop after half a period
180 // Sequence Y: 00000000 no drop
181 // Sequence Z: 11000000 drop at start
182 #define SEC_D 0xf0
183 #define SEC_E 0x0f
184 #define SEC_F 0x00
185 #define SEC_X 0x0c
186 #define SEC_Y 0x00
187 #define SEC_Z 0xc0
188
189 void iso14a_set_trigger(bool enable) {
190 trigger = enable;
191 }
192
193
194 void iso14a_set_timeout(uint32_t timeout) {
195 // adjust timeout by FPGA delays and 2 additional ssp_frames to detect SOF
196 iso14a_timeout = timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) + 2;
197 if (MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %" PRIu32 " (%dms)", timeout, timeout / 106);
198 }
199
200
201 uint32_t iso14a_get_timeout(void) {
202 return iso14a_timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) - 2;
203 }
204
205 //-----------------------------------------------------------------------------
206 // Generate the parity value for a byte sequence
207 //
208 //-----------------------------------------------------------------------------
209 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
210 {
211 uint16_t paritybit_cnt = 0;
212 uint16_t paritybyte_cnt = 0;
213 uint8_t parityBits = 0;
214
215 for (uint16_t i = 0; i < iLen; i++) {
216 // Generate the parity bits
217 parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt));
218 if (paritybit_cnt == 7) {
219 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
220 parityBits = 0; // and advance to next Parity Byte
221 paritybyte_cnt++;
222 paritybit_cnt = 0;
223 } else {
224 paritybit_cnt++;
225 }
226 }
227
228 // save remaining parity bits
229 par[paritybyte_cnt] = parityBits;
230
231 }
232
233 void AppendCrc14443a(uint8_t* data, int len)
234 {
235 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
236 }
237
238 static void AppendCrc14443b(uint8_t* data, int len)
239 {
240 ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
241 }
242
243
244 //=============================================================================
245 // ISO 14443 Type A - Miller decoder
246 //=============================================================================
247 // Basics:
248 // This decoder is used when the PM3 acts as a tag.
249 // The reader will generate "pauses" by temporarily switching of the field.
250 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
251 // The FPGA does a comparison with a threshold and would deliver e.g.:
252 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
253 // The Miller decoder needs to identify the following sequences:
254 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
255 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
256 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
257 // Note 1: the bitstream may start at any time. We therefore need to sync.
258 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
259 //-----------------------------------------------------------------------------
260 static tUart Uart;
261
262 // Lookup-Table to decide if 4 raw bits are a modulation.
263 // We accept the following:
264 // 0001 - a 3 tick wide pause
265 // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left
266 // 0111 - a 2 tick wide pause shifted left
267 // 1001 - a 2 tick wide pause shifted right
268 const bool Mod_Miller_LUT[] = {
269 false, true, false, true, false, false, false, true,
270 false, true, false, false, false, false, false, false
271 };
272 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
273 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
274
275 static void UartReset() {
276 Uart.state = STATE_UNSYNCD;
277 Uart.bitCount = 0;
278 Uart.len = 0; // number of decoded data bytes
279 Uart.parityLen = 0; // number of decoded parity bytes
280 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
281 Uart.parityBits = 0; // holds 8 parity bits
282 }
283
284 static void UartInit(uint8_t *data, uint8_t *parity) {
285 Uart.output = data;
286 Uart.parity = parity;
287 Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits
288 Uart.startTime = 0;
289 Uart.endTime = 0;
290 UartReset();
291 }
292
293 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
294 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) {
295
296 Uart.fourBits = (Uart.fourBits << 8) | bit;
297
298 if (Uart.state == STATE_UNSYNCD) { // not yet synced
299
300 Uart.syncBit = 9999; // not set
301 // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
302 // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111)
303 // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern
304 // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
305 #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000
306 #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000
307 if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
308 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
309 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
310 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
311 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
312 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
313 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
314 else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
315
316 if (Uart.syncBit != 9999) { // found a sync bit
317 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
318 Uart.startTime -= Uart.syncBit;
319 Uart.endTime = Uart.startTime;
320 Uart.state = STATE_START_OF_COMMUNICATION;
321 LED_B_ON();
322 }
323
324 } else {
325
326 if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {
327 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error
328 LED_B_OFF();
329 UartReset();
330 } else { // Modulation in first half = Sequence Z = logic "0"
331 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
332 LED_B_OFF();
333 UartReset();
334 } else {
335 Uart.bitCount++;
336 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
337 Uart.state = STATE_MILLER_Z;
338 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
339 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
340 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
341 Uart.parityBits <<= 1; // make room for the parity bit
342 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
343 Uart.bitCount = 0;
344 Uart.shiftReg = 0;
345 if((Uart.len&0x0007) == 0) { // every 8 data bytes
346 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
347 Uart.parityBits = 0;
348 }
349 }
350 }
351 }
352 } else {
353 if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
354 Uart.bitCount++;
355 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
356 Uart.state = STATE_MILLER_X;
357 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
358 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
359 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
360 Uart.parityBits <<= 1; // make room for the new parity bit
361 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
362 Uart.bitCount = 0;
363 Uart.shiftReg = 0;
364 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
365 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
366 Uart.parityBits = 0;
367 }
368 }
369 } else { // no modulation in both halves - Sequence Y
370 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
371 LED_B_OFF();
372 Uart.state = STATE_UNSYNCD;
373 Uart.bitCount--; // last "0" was part of EOC sequence
374 Uart.shiftReg <<= 1; // drop it
375 if(Uart.bitCount > 0) { // if we decoded some bits
376 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
377 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
378 Uart.parityBits <<= 1; // add a (void) parity bit
379 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
380 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
381 return true;
382 } else if (Uart.len & 0x0007) { // there are some parity bits to store
383 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
384 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
385 }
386 if (Uart.len) {
387 return true; // we are finished with decoding the raw data sequence
388 } else {
389 UartReset(); // Nothing received - start over
390 }
391 }
392 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
393 LED_B_OFF();
394 UartReset();
395 } else { // a logic "0"
396 Uart.bitCount++;
397 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
398 Uart.state = STATE_MILLER_Y;
399 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
400 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
401 Uart.parityBits <<= 1; // make room for the parity bit
402 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
403 Uart.bitCount = 0;
404 Uart.shiftReg = 0;
405 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
406 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
407 Uart.parityBits = 0;
408 }
409 }
410 }
411 }
412 }
413
414 }
415
416 return false; // not finished yet, need more data
417 }
418
419
420
421 //=============================================================================
422 // ISO 14443 Type A - Manchester decoder
423 //=============================================================================
424 // Basics:
425 // This decoder is used when the PM3 acts as a reader.
426 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
427 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
428 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
429 // The Manchester decoder needs to identify the following sequences:
430 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
431 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
432 // 8 ticks unmodulated: Sequence F = end of communication
433 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
434 // Note 1: the bitstream may start at any time. We therefore need to sync.
435 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
436 static tDemod Demod;
437
438 // Lookup-Table to decide if 4 raw bits are a modulation.
439 // We accept three or four "1" in any position
440 const bool Mod_Manchester_LUT[] = {
441 false, false, false, false, false, false, false, true,
442 false, false, false, true, false, true, true, true
443 };
444
445 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
446 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
447
448
449 static void DemodReset() {
450 Demod.state = DEMOD_UNSYNCD;
451 Demod.len = 0; // number of decoded data bytes
452 Demod.parityLen = 0;
453 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
454 Demod.parityBits = 0; //
455 Demod.collisionPos = 0; // Position of collision bit
456 Demod.twoBits = 0xffff; // buffer for 2 Bits
457 Demod.highCnt = 0;
458 Demod.startTime = 0;
459 Demod.endTime = 0;
460 }
461
462 static void DemodInit(uint8_t *data, uint8_t *parity) {
463 Demod.output = data;
464 Demod.parity = parity;
465 DemodReset();
466 }
467
468 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
469 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) {
470
471 Demod.twoBits = (Demod.twoBits << 8) | bit;
472
473 if (Demod.state == DEMOD_UNSYNCD) {
474
475 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
476 if (Demod.twoBits == 0x0000) {
477 Demod.highCnt++;
478 } else {
479 Demod.highCnt = 0;
480 }
481 } else {
482 Demod.syncBit = 0xFFFF; // not set
483 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
484 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
485 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
486 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
487 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
488 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
489 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
490 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
491 if (Demod.syncBit != 0xFFFF) {
492 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
493 Demod.startTime -= Demod.syncBit;
494 Demod.bitCount = offset; // number of decoded data bits
495 Demod.state = DEMOD_MANCHESTER_DATA;
496 LED_C_ON();
497 }
498 }
499
500 } else {
501
502 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
503 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
504 if (!Demod.collisionPos) {
505 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
506 }
507 } // modulation in first half only - Sequence D = 1
508 Demod.bitCount++;
509 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
510 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
511 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
512 Demod.parityBits <<= 1; // make room for the parity bit
513 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
514 Demod.bitCount = 0;
515 Demod.shiftReg = 0;
516 if((Demod.len&0x0007) == 0) { // every 8 data bytes
517 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
518 Demod.parityBits = 0;
519 }
520 }
521 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
522 } else { // no modulation in first half
523 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
524 Demod.bitCount++;
525 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
526 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
527 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
528 Demod.parityBits <<= 1; // make room for the new parity bit
529 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
530 Demod.bitCount = 0;
531 Demod.shiftReg = 0;
532 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
533 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
534 Demod.parityBits = 0;
535 }
536 }
537 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
538 } else { // no modulation in both halves - End of communication
539 LED_C_OFF();
540 if(Demod.bitCount > 0) { // there are some remaining data bits
541 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
542 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
543 Demod.parityBits <<= 1; // add a (void) parity bit
544 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
545 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
546 return true;
547 } else if (Demod.len & 0x0007) { // there are some parity bits to store
548 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
549 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
550 }
551 if (Demod.len) {
552 return true; // we are finished with decoding the raw data sequence
553 } else { // nothing received. Start over
554 DemodReset();
555 }
556 }
557 }
558
559 }
560
561 return false; // not finished yet, need more data
562 }
563
564 //=============================================================================
565 // Finally, a `sniffer' for ISO 14443 Type A
566 // Both sides of communication!
567 //=============================================================================
568
569 //-----------------------------------------------------------------------------
570 // Record the sequence of commands sent by the reader to the tag, with
571 // triggering so that we start recording at the point that the tag is moved
572 // near the reader.
573 //-----------------------------------------------------------------------------
574 void RAMFUNC SnoopIso14443a(uint8_t param) {
575 // param:
576 // bit 0 - trigger from first card answer
577 // bit 1 - trigger from first reader 7-bit request
578
579 LEDsoff();
580 LED_A_ON();
581
582 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
583
584 // Allocate memory from BigBuf for some buffers
585 // free all previous allocations first
586 BigBuf_free();
587
588 // The command (reader -> tag) that we're receiving.
589 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
590 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
591
592 // The response (tag -> reader) that we're receiving.
593 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
594 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
595
596 // The DMA buffer, used to stream samples from the FPGA
597 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
598
599 // init trace buffer
600 clear_trace();
601 set_tracing(true);
602
603 uint8_t *data = dmaBuf;
604 uint8_t previous_data = 0;
605 int maxDataLen = 0;
606 int dataLen = 0;
607 bool TagIsActive = false;
608 bool ReaderIsActive = false;
609
610 // Set up the demodulator for tag -> reader responses.
611 DemodInit(receivedResponse, receivedResponsePar);
612
613 // Set up the demodulator for the reader -> tag commands
614 UartInit(receivedCmd, receivedCmdPar);
615
616 // Setup and start DMA.
617 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
618
619 // We won't start recording the frames that we acquire until we trigger;
620 // a good trigger condition to get started is probably when we see a
621 // response from the tag.
622 // triggered == false -- to wait first for card
623 bool triggered = !(param & 0x03);
624
625 // And now we loop, receiving samples.
626 for (uint32_t rsamples = 0; true; ) {
627
628 if (BUTTON_PRESS()) {
629 DbpString("cancelled by button");
630 break;
631 }
632
633 WDT_HIT();
634
635 int register readBufDataP = data - dmaBuf;
636 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
637 if (readBufDataP <= dmaBufDataP){
638 dataLen = dmaBufDataP - readBufDataP;
639 } else {
640 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
641 }
642 // test for length of buffer
643 if(dataLen > maxDataLen) {
644 maxDataLen = dataLen;
645 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
646 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
647 break;
648 }
649 }
650 if(dataLen < 1) continue;
651
652 // primary buffer was stopped( <-- we lost data!
653 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
654 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
655 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
656 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
657 }
658 // secondary buffer sets as primary, secondary buffer was stopped
659 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
660 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
661 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
662 }
663
664 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
665
666 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
667 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
668 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
669 // check - if there is a short 7bit request from reader
670 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) {
671 triggered = true;
672 }
673 if(triggered) {
674 if (!LogTrace(receivedCmd,
675 Uart.len,
676 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
677 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
678 Uart.parity,
679 true)) break;
680 }
681 /* And ready to receive another command. */
682 UartReset();
683 /* And also reset the demod code, which might have been */
684 /* false-triggered by the commands from the reader. */
685 DemodReset();
686 }
687 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
688 }
689
690 if (!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
691 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
692 if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
693 if (!LogTrace(receivedResponse,
694 Demod.len,
695 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
696 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
697 Demod.parity,
698 false)) break;
699 if ((!triggered) && (param & 0x01)) triggered = true;
700 // And ready to receive another response.
701 DemodReset();
702 // And reset the Miller decoder including itS (now outdated) input buffer
703 UartInit(receivedCmd, receivedCmdPar);
704 }
705 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
706 }
707 }
708
709 previous_data = *data;
710 rsamples++;
711 data++;
712 if(data == dmaBuf + DMA_BUFFER_SIZE) {
713 data = dmaBuf;
714 }
715 } // main cycle
716
717 FpgaDisableSscDma();
718 LEDsoff();
719
720 DbpString("COMMAND FINISHED");
721 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
722 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
723 }
724
725 //-----------------------------------------------------------------------------
726 // Prepare tag messages
727 //-----------------------------------------------------------------------------
728 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) {
729 ToSendReset();
730
731 // Correction bit, might be removed when not needed
732 ToSendStuffBit(0);
733 ToSendStuffBit(0);
734 ToSendStuffBit(0);
735 ToSendStuffBit(0);
736 ToSendStuffBit(1); // 1
737 ToSendStuffBit(0);
738 ToSendStuffBit(0);
739 ToSendStuffBit(0);
740
741 // Send startbit
742 ToSend[++ToSendMax] = SEC_D;
743 LastProxToAirDuration = 8 * ToSendMax - 4;
744
745 for (uint16_t i = 0; i < len; i++) {
746 uint8_t b = cmd[i];
747
748 // Data bits
749 for (uint16_t j = 0; j < 8; j++) {
750 if(b & 1) {
751 ToSend[++ToSendMax] = SEC_D;
752 } else {
753 ToSend[++ToSendMax] = SEC_E;
754 }
755 b >>= 1;
756 }
757
758 // Get the parity bit
759 if (parity[i>>3] & (0x80>>(i&0x0007))) {
760 ToSend[++ToSendMax] = SEC_D;
761 LastProxToAirDuration = 8 * ToSendMax - 4;
762 } else {
763 ToSend[++ToSendMax] = SEC_E;
764 LastProxToAirDuration = 8 * ToSendMax;
765 }
766 }
767
768 // Send stopbit
769 ToSend[++ToSendMax] = SEC_F;
770
771 // Convert from last byte pos to length
772 ToSendMax++;
773 }
774
775
776 static void Code4bitAnswerAsTag(uint8_t cmd) {
777 int i;
778
779 ToSendReset();
780
781 // Correction bit, might be removed when not needed
782 ToSendStuffBit(0);
783 ToSendStuffBit(0);
784 ToSendStuffBit(0);
785 ToSendStuffBit(0);
786 ToSendStuffBit(1); // 1
787 ToSendStuffBit(0);
788 ToSendStuffBit(0);
789 ToSendStuffBit(0);
790
791 // Send startbit
792 ToSend[++ToSendMax] = SEC_D;
793
794 uint8_t b = cmd;
795 for (i = 0; i < 4; i++) {
796 if(b & 1) {
797 ToSend[++ToSendMax] = SEC_D;
798 LastProxToAirDuration = 8 * ToSendMax - 4;
799 } else {
800 ToSend[++ToSendMax] = SEC_E;
801 LastProxToAirDuration = 8 * ToSendMax;
802 }
803 b >>= 1;
804 }
805
806 // Send stopbit
807 ToSend[++ToSendMax] = SEC_F;
808
809 // Convert from last byte pos to length
810 ToSendMax++;
811 }
812
813
814 static uint8_t *LastReaderTraceTime = NULL;
815
816 static void EmLogTraceReader(void) {
817 // remember last reader trace start to fix timing info later
818 LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen();
819 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
820 }
821
822
823 static void FixLastReaderTraceTime(uint32_t tag_StartTime) {
824 uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG;
825 uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG;
826 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
827 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
828 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
829 reader_StartTime = tag_StartTime - exact_fdt - reader_modlen;
830 LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff;
831 LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff;
832 LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff;
833 LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff;
834 }
835
836
837 static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) {
838 uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG;
839 uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG;
840 LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false);
841 FixLastReaderTraceTime(tag_StartTime);
842 }
843
844
845 //-----------------------------------------------------------------------------
846 // Wait for commands from reader
847 // Stop when button is pressed
848 // Or return true when command is captured
849 //-----------------------------------------------------------------------------
850 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) {
851 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
852 // only, since we are receiving, not transmitting).
853 // Signal field is off with the appropriate LED
854 LED_D_OFF();
855 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
856
857 // Now run a `software UART' on the stream of incoming samples.
858 UartInit(received, parity);
859
860 // clear RXRDY:
861 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
862
863 for (;;) {
864 WDT_HIT();
865
866 if(BUTTON_PRESS()) return false;
867
868 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
869 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
870 if(MillerDecoding(b, 0)) {
871 *len = Uart.len;
872 EmLogTraceReader();
873 return true;
874 }
875 }
876 }
877 }
878
879
880 int EmSend4bit(uint8_t resp);
881 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
882 int EmSendCmd(uint8_t *resp, uint16_t respLen);
883 int EmSendPrecompiledCmd(tag_response_info_t *response_info);
884
885
886 static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
887 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
888 // This will need the following byte array for a modulation sequence
889 // 144 data bits (18 * 8)
890 // 18 parity bits
891 // 2 Start and stop
892 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
893 // 1 just for the case
894 // ----------- +
895 // 166 bytes, since every bit that needs to be send costs us a byte
896 //
897
898
899 // Prepare the tag modulation bits from the message
900 GetParity(response_info->response, response_info->response_n, &(response_info->par));
901 CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par));
902
903 // Make sure we do not exceed the free buffer space
904 if (ToSendMax > max_buffer_size) {
905 Dbprintf("Out of memory, when modulating bits for tag answer:");
906 Dbhexdump(response_info->response_n, response_info->response, false);
907 return false;
908 }
909
910 // Copy the byte array, used for this modulation to the buffer position
911 memcpy(response_info->modulation, ToSend, ToSendMax);
912
913 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
914 response_info->modulation_n = ToSendMax;
915 response_info->ProxToAirDuration = LastProxToAirDuration;
916
917 return true;
918 }
919
920
921 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
922 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
923 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation
924 // -> need 273 bytes buffer
925 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
926
927 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) {
928
929 // Retrieve and store the current buffer index
930 response_info->modulation = *buffer;
931
932 // Forward the prepare tag modulation function to the inner function
933 if (prepare_tag_modulation(response_info, *max_buffer_size)) {
934 // Update the free buffer offset and the remaining buffer size
935 *buffer += ToSendMax;
936 *max_buffer_size -= ToSendMax;
937 return true;
938 } else {
939 return false;
940 }
941 }
942
943 //-----------------------------------------------------------------------------
944 // Main loop of simulated tag: receive commands from reader, decide what
945 // response to send, and send it.
946 //-----------------------------------------------------------------------------
947 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, uint8_t* data) {
948
949 uint8_t sak;
950
951 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
952 uint8_t response1[2];
953
954 switch (tagType) {
955 case 1: { // MIFARE Classic
956 // Says: I am Mifare 1k - original line
957 response1[0] = 0x04;
958 response1[1] = 0x00;
959 sak = 0x08;
960 } break;
961 case 2: { // MIFARE Ultralight
962 // Says: I am a stupid memory tag, no crypto
963 response1[0] = 0x04;
964 response1[1] = 0x00;
965 sak = 0x00;
966 } break;
967 case 3: { // MIFARE DESFire
968 // Says: I am a DESFire tag, ph33r me
969 response1[0] = 0x04;
970 response1[1] = 0x03;
971 sak = 0x20;
972 } break;
973 case 4: { // ISO/IEC 14443-4
974 // Says: I am a javacard (JCOP)
975 response1[0] = 0x04;
976 response1[1] = 0x00;
977 sak = 0x28;
978 } break;
979 case 5: { // MIFARE TNP3XXX
980 // Says: I am a toy
981 response1[0] = 0x01;
982 response1[1] = 0x0f;
983 sak = 0x01;
984 } break;
985 default: {
986 Dbprintf("Error: unkown tagtype (%d)",tagType);
987 return;
988 } break;
989 }
990
991 // The second response contains the (mandatory) first 24 bits of the UID
992 uint8_t response2[5] = {0x00};
993
994 // Check if the uid uses the (optional) part
995 uint8_t response2a[5] = {0x00};
996
997 if (uid_2nd) {
998 response2[0] = 0x88;
999 num_to_bytes(uid_1st,3,response2+1);
1000 num_to_bytes(uid_2nd,4,response2a);
1001 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
1002
1003 // Configure the ATQA and SAK accordingly
1004 response1[0] |= 0x40;
1005 sak |= 0x04;
1006 } else {
1007 num_to_bytes(uid_1st,4,response2);
1008 // Configure the ATQA and SAK accordingly
1009 response1[0] &= 0xBF;
1010 sak &= 0xFB;
1011 }
1012
1013 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
1014 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
1015
1016 // Prepare the mandatory SAK (for 4 and 7 byte UID)
1017 uint8_t response3[3] = {0x00};
1018 response3[0] = sak;
1019 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
1020
1021 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
1022 uint8_t response3a[3] = {0x00};
1023 response3a[0] = sak & 0xFB;
1024 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
1025
1026 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
1027 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
1028 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1029 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1030 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1031 // TC(1) = 0x02: CID supported, NAD not supported
1032 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1033
1034 #define TAG_RESPONSE_COUNT 7
1035 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1036 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1037 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1038 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1039 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1040 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1041 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1042 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1043 };
1044
1045 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1046 // Such a response is less time critical, so we can prepare them on the fly
1047 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1048 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1049 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1050 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1051 tag_response_info_t dynamic_response_info = {
1052 .response = dynamic_response_buffer,
1053 .response_n = 0,
1054 .modulation = dynamic_modulation_buffer,
1055 .modulation_n = 0
1056 };
1057
1058 // We need to listen to the high-frequency, peak-detected path.
1059 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1060
1061 BigBuf_free_keep_EM();
1062
1063 // allocate buffers:
1064 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1065 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1066 uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1067 size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
1068 // clear trace
1069 clear_trace();
1070 set_tracing(true);
1071
1072 // Prepare the responses of the anticollision phase
1073 // there will be not enough time to do this at the moment the reader sends it REQA
1074 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1075 prepare_allocated_tag_modulation(&responses[i], &free_buffer_pointer, &free_buffer_size);
1076 }
1077
1078 int len = 0;
1079
1080 // To control where we are in the protocol
1081 int order = 0;
1082 int lastorder;
1083
1084 // Just to allow some checks
1085 int happened = 0;
1086 int happened2 = 0;
1087 int cmdsRecvd = 0;
1088
1089 cmdsRecvd = 0;
1090 tag_response_info_t* p_response;
1091
1092 LED_A_ON();
1093 for (;;) {
1094 // Clean receive command buffer
1095 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1096 DbpString("Button press");
1097 break;
1098 }
1099
1100 p_response = NULL;
1101
1102 // Okay, look at the command now.
1103 lastorder = order;
1104 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1105 p_response = &responses[0]; order = 1;
1106 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1107 p_response = &responses[0]; order = 6;
1108 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1109 p_response = &responses[1]; order = 2;
1110 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1111 p_response = &responses[2]; order = 20;
1112 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1113 p_response = &responses[3]; order = 3;
1114 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1115 p_response = &responses[4]; order = 30;
1116 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1117 EmSendCmd(data+(4*receivedCmd[1]),16);
1118 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1119 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1120 p_response = NULL;
1121 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1122 p_response = NULL;
1123 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1124 p_response = &responses[5]; order = 7;
1125 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1126 if (tagType == 1 || tagType == 2) { // RATS not supported
1127 EmSend4bit(CARD_NACK_NA);
1128 p_response = NULL;
1129 } else {
1130 p_response = &responses[6]; order = 70;
1131 }
1132 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1133 uint32_t nr = bytes_to_num(receivedCmd,4);
1134 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1135 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1136 } else {
1137 // Check for ISO 14443A-4 compliant commands, look at left nibble
1138 switch (receivedCmd[0]) {
1139
1140 case 0x0B:
1141 case 0x0A: { // IBlock (command)
1142 dynamic_response_info.response[0] = receivedCmd[0];
1143 dynamic_response_info.response[1] = 0x00;
1144 dynamic_response_info.response[2] = 0x90;
1145 dynamic_response_info.response[3] = 0x00;
1146 dynamic_response_info.response_n = 4;
1147 } break;
1148
1149 case 0x1A:
1150 case 0x1B: { // Chaining command
1151 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1152 dynamic_response_info.response_n = 2;
1153 } break;
1154
1155 case 0xaa:
1156 case 0xbb: {
1157 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1158 dynamic_response_info.response_n = 2;
1159 } break;
1160
1161 case 0xBA: { //
1162 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1163 dynamic_response_info.response_n = 2;
1164 } break;
1165
1166 case 0xCA:
1167 case 0xC2: { // Readers sends deselect command
1168 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1169 dynamic_response_info.response_n = 2;
1170 } break;
1171
1172 default: {
1173 // Never seen this command before
1174 Dbprintf("Received unknown command (len=%d):",len);
1175 Dbhexdump(len,receivedCmd,false);
1176 // Do not respond
1177 dynamic_response_info.response_n = 0;
1178 } break;
1179 }
1180
1181 if (dynamic_response_info.response_n > 0) {
1182 // Copy the CID from the reader query
1183 dynamic_response_info.response[1] = receivedCmd[1];
1184
1185 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1186 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1187 dynamic_response_info.response_n += 2;
1188
1189 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1190 Dbprintf("Error preparing tag response");
1191 break;
1192 }
1193 p_response = &dynamic_response_info;
1194 }
1195 }
1196
1197 // Count number of wakeups received after a halt
1198 if(order == 6 && lastorder == 5) { happened++; }
1199
1200 // Count number of other messages after a halt
1201 if(order != 6 && lastorder == 5) { happened2++; }
1202
1203 if(cmdsRecvd > 999) {
1204 DbpString("1000 commands later...");
1205 break;
1206 }
1207 cmdsRecvd++;
1208
1209 if (p_response != NULL) {
1210 EmSendPrecompiledCmd(p_response);
1211 }
1212
1213 if (!get_tracing()) {
1214 Dbprintf("Trace Full. Simulation stopped.");
1215 break;
1216 }
1217 }
1218
1219 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1220 LED_A_OFF();
1221 BigBuf_free_keep_EM();
1222 }
1223
1224
1225 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1226 // of bits specified in the delay parameter.
1227 static void PrepareDelayedTransfer(uint16_t delay) {
1228 uint8_t bitmask = 0;
1229 uint8_t bits_to_shift = 0;
1230 uint8_t bits_shifted = 0;
1231
1232 delay &= 0x07;
1233 if (delay) {
1234 for (uint16_t i = 0; i < delay; i++) {
1235 bitmask |= (0x01 << i);
1236 }
1237 ToSend[ToSendMax++] = 0x00;
1238 for (uint16_t i = 0; i < ToSendMax; i++) {
1239 bits_to_shift = ToSend[i] & bitmask;
1240 ToSend[i] = ToSend[i] >> delay;
1241 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1242 bits_shifted = bits_to_shift;
1243 }
1244 }
1245 }
1246
1247
1248 //-------------------------------------------------------------------------------------
1249 // Transmit the command (to the tag) that was placed in ToSend[].
1250 // Parameter timing:
1251 // if NULL: transfer at next possible time, taking into account
1252 // request guard time, startup frame guard time and frame delay time
1253 // if == 0: transfer immediately and return time of transfer
1254 // if != 0: delay transfer until time specified
1255 //-------------------------------------------------------------------------------------
1256 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) {
1257 LED_B_ON();
1258 LED_D_ON();
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1260
1261 uint32_t ThisTransferTime = 0;
1262
1263 if (timing) {
1264 if (*timing == 0) { // Measure time
1265 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1266 } else {
1267 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 }
1269 if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1270 while (GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1271 LastTimeProxToAirStart = *timing;
1272 } else {
1273 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1274 while (GetCountSspClk() < ThisTransferTime);
1275 LastTimeProxToAirStart = ThisTransferTime;
1276 }
1277
1278 uint16_t c = 0;
1279 for (;;) {
1280 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1281 AT91C_BASE_SSC->SSC_THR = cmd[c];
1282 c++;
1283 if(c >= len) {
1284 break;
1285 }
1286 }
1287 }
1288
1289 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1290 LED_B_OFF();
1291 }
1292
1293
1294 //-----------------------------------------------------------------------------
1295 // Prepare reader command (in bits, support short frames) to send to FPGA
1296 //-----------------------------------------------------------------------------
1297 static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) {
1298 int i, j;
1299 int last;
1300 uint8_t b;
1301
1302 ToSendReset();
1303
1304 // Start of Communication (Seq. Z)
1305 ToSend[++ToSendMax] = SEC_Z;
1306 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1307 last = 0;
1308
1309 size_t bytecount = nbytes(bits);
1310 // Generate send structure for the data bits
1311 for (i = 0; i < bytecount; i++) {
1312 // Get the current byte to send
1313 b = cmd[i];
1314 size_t bitsleft = MIN((bits-(i*8)),8);
1315
1316 for (j = 0; j < bitsleft; j++) {
1317 if (b & 1) {
1318 // Sequence X
1319 ToSend[++ToSendMax] = SEC_X;
1320 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1321 last = 1;
1322 } else {
1323 if (last == 0) {
1324 // Sequence Z
1325 ToSend[++ToSendMax] = SEC_Z;
1326 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1327 } else {
1328 // Sequence Y
1329 ToSend[++ToSendMax] = SEC_Y;
1330 last = 0;
1331 }
1332 }
1333 b >>= 1;
1334 }
1335
1336 // Only transmit parity bit if we transmitted a complete byte
1337 if (j == 8 && parity != NULL) {
1338 // Get the parity bit
1339 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1340 // Sequence X
1341 ToSend[++ToSendMax] = SEC_X;
1342 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1343 last = 1;
1344 } else {
1345 if (last == 0) {
1346 // Sequence Z
1347 ToSend[++ToSendMax] = SEC_Z;
1348 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1349 } else {
1350 // Sequence Y
1351 ToSend[++ToSendMax] = SEC_Y;
1352 last = 0;
1353 }
1354 }
1355 }
1356 }
1357
1358 // End of Communication: Logic 0 followed by Sequence Y
1359 if (last == 0) {
1360 // Sequence Z
1361 ToSend[++ToSendMax] = SEC_Z;
1362 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1363 } else {
1364 // Sequence Y
1365 ToSend[++ToSendMax] = SEC_Y;
1366 last = 0;
1367 }
1368 ToSend[++ToSendMax] = SEC_Y;
1369
1370 // Convert to length of command:
1371 ToSendMax++;
1372 }
1373
1374
1375 //-----------------------------------------------------------------------------
1376 // Wait for commands from reader
1377 // Stop when button is pressed (return 1) or field was gone (return 2)
1378 // Or return 0 when command is captured
1379 //-----------------------------------------------------------------------------
1380 int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) {
1381 uint32_t field_off_time = -1;
1382 uint32_t samples = 0;
1383 int ret = 0;
1384 uint8_t b = 0;;
1385 uint8_t dmaBuf[DMA_BUFFER_SIZE];
1386 uint8_t *upTo = dmaBuf;
1387
1388 *len = 0;
1389
1390 // Run a 'software UART' on the stream of incoming samples.
1391 UartInit(received, parity);
1392
1393 // start ADC
1394 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1395
1396 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN
1397 while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ;
1398
1399 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1400 // only, since we are receiving, not transmitting).
1401 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1402
1403 // clear receive register, measure time of next transfer
1404 uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp;
1405 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
1406 uint32_t start_time = GetCountSspClk() & 0xfffffff8;
1407
1408 // Setup and start DMA.
1409 FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE);
1410
1411 for(;;) {
1412 uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1);
1413
1414 if (behindBy == 0) continue;
1415
1416 b = *upTo++;
1417
1418 if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
1419 upTo = dmaBuf; // start reading the circular buffer from the beginning
1420 if(behindBy > (9*DMA_BUFFER_SIZE/10)) {
1421 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
1422 ret = 1;
1423 break;
1424 }
1425 }
1426 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
1427 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
1428 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers
1429 }
1430
1431 if (BUTTON_PRESS()) {
1432 ret = 1;
1433 break;
1434 }
1435
1436 // check reader's HF field
1437 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) {
1438 if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) {
1439 if (GetTickCount() - field_off_time > 50) {
1440 ret = 2; // reader has switched off HF field for more than 50ms. Timeout
1441 break;
1442 }
1443 } else {
1444 field_off_time = GetTickCount(); // HF field is still there. Reset timer
1445 }
1446 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC
1447 }
1448
1449 if (MillerDecoding(b, start_time + samples*8)) {
1450 *len = Uart.len;
1451 EmLogTraceReader();
1452 ret = 0;
1453 break;
1454 }
1455
1456 samples++;
1457 }
1458
1459 FpgaDisableSscDma();
1460 return ret;
1461 }
1462
1463
1464 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) {
1465 LED_C_ON();
1466
1467 uint8_t b;
1468 uint16_t i = 0;
1469 bool correctionNeeded;
1470
1471 // Modulate Manchester
1472 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1473
1474 // include correction bit if necessary
1475 if (Uart.bitCount == 7)
1476 {
1477 // Short tags (7 bits) don't have parity, determine the correct value from MSB
1478 correctionNeeded = Uart.output[0] & 0x40;
1479 }
1480 else
1481 {
1482 // Look at the last parity bit
1483 correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7));
1484 }
1485
1486 if (correctionNeeded) {
1487 // 1236, so correction bit needed
1488 i = 0;
1489 } else {
1490 i = 1;
1491 }
1492
1493 // clear receiving shift register and holding register
1494 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1495 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1496 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1497
1498 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1499 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1500 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1501 if (AT91C_BASE_SSC->SSC_RHR) break;
1502 }
1503
1504 LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0);
1505
1506 // send cycle
1507 for (; i < respLen; ) {
1508 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1509 AT91C_BASE_SSC->SSC_THR = resp[i++];
1510 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1511 }
1512
1513 if(BUTTON_PRESS()) {
1514 break;
1515 }
1516 }
1517
1518 LED_C_OFF();
1519 return 0;
1520 }
1521
1522
1523 int EmSend4bit(uint8_t resp){
1524 Code4bitAnswerAsTag(resp);
1525 int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
1526 // Log this tag answer and fix timing of previous reader command:
1527 EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration);
1528 return res;
1529 }
1530
1531
1532 static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1533 CodeIso14443aAsTagPar(resp, respLen, par);
1534 int res = EmSendCmd14443aRaw(ToSend, ToSendMax);
1535 // Log this tag answer and fix timing of previous reader command:
1536 EmLogTraceTag(resp, respLen, par, LastProxToAirDuration);
1537 return res;
1538 }
1539
1540
1541 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1542 uint8_t par[MAX_PARITY_SIZE];
1543 GetParity(resp, respLen, par);
1544 return EmSendCmdExPar(resp, respLen, par);
1545 }
1546
1547
1548 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1549 return EmSendCmdExPar(resp, respLen, par);
1550 }
1551
1552
1553 int EmSendPrecompiledCmd(tag_response_info_t *response_info) {
1554 int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n);
1555 // Log this tag answer and fix timing of previous reader command:
1556 EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration);
1557 return ret;
1558 }
1559
1560
1561 //-----------------------------------------------------------------------------
1562 // Wait a certain time for tag response
1563 // If a response is captured return true
1564 // If it takes too long return false
1565 //-----------------------------------------------------------------------------
1566 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) {
1567 uint32_t c;
1568
1569 // Set FPGA mode to "reader listen mode", no modulation (listen
1570 // only, since we are receiving, not transmitting).
1571 // Signal field is on with the appropriate LED
1572 LED_D_ON();
1573 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1574
1575 // Now get the answer from the card
1576 DemodInit(receivedResponse, receivedResponsePar);
1577
1578 // clear RXRDY:
1579 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1580
1581 c = 0;
1582 for (;;) {
1583 WDT_HIT();
1584
1585 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1586 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1587 if (ManchesterDecoding(b, offset, 0)) {
1588 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1589 return true;
1590 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1591 return false;
1592 }
1593 }
1594 }
1595 }
1596
1597
1598 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) {
1599
1600 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1601
1602 // Send command to tag
1603 TransmitFor14443a(ToSend, ToSendMax, timing);
1604 if (trigger)
1605 LED_A_ON();
1606
1607 // Log reader command in trace buffer
1608 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true);
1609 }
1610
1611
1612 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) {
1613 ReaderTransmitBitsPar(frame, len*8, par, timing);
1614 }
1615
1616
1617 static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) {
1618 // Generate parity and redirect
1619 uint8_t par[MAX_PARITY_SIZE];
1620 GetParity(frame, len/8, par);
1621 ReaderTransmitBitsPar(frame, len, par, timing);
1622 }
1623
1624
1625 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) {
1626 // Generate parity and redirect
1627 uint8_t par[MAX_PARITY_SIZE];
1628 GetParity(frame, len, par);
1629 ReaderTransmitBitsPar(frame, len*8, par, timing);
1630 }
1631
1632
1633 static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) {
1634 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false;
1635 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
1636 return Demod.len;
1637 }
1638
1639
1640 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) {
1641 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false;
1642
1643 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false);
1644 return Demod.len;
1645 }
1646
1647
1648 static void iso14a_set_ATS_times(uint8_t *ats) {
1649
1650 uint8_t tb1;
1651 uint8_t fwi, sfgi;
1652 uint32_t fwt, sfgt;
1653
1654 if (ats[0] > 1) { // there is a format byte T0
1655 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
1656 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
1657 tb1 = ats[3];
1658 } else {
1659 tb1 = ats[2];
1660 }
1661 fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI)
1662 if (fwi != 15) {
1663 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
1664 iso14a_set_timeout(fwt/(8*16));
1665 }
1666 sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI)
1667 if (sfgi != 0 && sfgi != 15) {
1668 sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc
1669 NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16);
1670 }
1671 }
1672 }
1673 }
1674
1675
1676 static int GetATQA(uint8_t *resp, uint8_t *resp_par) {
1677
1678 #define WUPA_RETRY_TIMEOUT 10 // 10ms
1679 uint8_t wupa[] = {ISO14443A_CMD_WUPA}; // 0x26 - REQA 0x52 - WAKE-UP
1680
1681 uint32_t save_iso14a_timeout = iso14a_get_timeout();
1682 iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer.
1683
1684 uint32_t start_time = GetTickCount();
1685 int len;
1686
1687 // we may need several tries if we did send an unknown command or a wrong authentication before...
1688 do {
1689 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1690 ReaderTransmitBitsPar(wupa, 7, NULL, NULL);
1691 // Receive the ATQA
1692 len = ReaderReceive(resp, resp_par);
1693 } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT);
1694
1695 iso14a_set_timeout(save_iso14a_timeout);
1696 return len;
1697 }
1698
1699
1700 // performs iso14443a anticollision (optional) and card select procedure
1701 // fills the uid and cuid pointer unless NULL
1702 // fills the card info record unless NULL
1703 // if anticollision is false, then the UID must be provided in uid_ptr[]
1704 // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID)
1705 // requests ATS unless no_rats is true
1706 int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) {
1707 uint8_t sel_all[] = { 0x93,0x20 };
1708 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1709 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1710 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1711 uint8_t resp_par[MAX_PARITY_SIZE];
1712 uint8_t uid_resp[4];
1713 size_t uid_resp_len;
1714
1715 uint8_t sak = 0x04; // cascade uid
1716 int cascade_level = 0;
1717 int len;
1718
1719 // init card struct
1720 if (p_hi14a_card) {
1721 p_hi14a_card->uidlen = 0;
1722 memset(p_hi14a_card->uid, 0, 10);
1723 p_hi14a_card->ats_len = 0;
1724 }
1725
1726 if (!GetATQA(resp, resp_par)) {
1727 return 0;
1728 }
1729
1730 if (p_hi14a_card) {
1731 memcpy(p_hi14a_card->atqa, resp, 2);
1732 }
1733
1734 if (anticollision) {
1735 // clear uid
1736 if (uid_ptr) {
1737 memset(uid_ptr,0,10);
1738 }
1739 }
1740
1741 // check for proprietary anticollision:
1742 if ((resp[0] & 0x1F) == 0) {
1743 return 3;
1744 }
1745
1746 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1747 // which case we need to make a cascade 2 request and select - this is a long UID
1748 // While the UID is not complete, the 3rd bit (from the right) is set in the SAK.
1749 for (; sak & 0x04; cascade_level++) {
1750 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1751 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1752
1753 if (anticollision) {
1754 // SELECT_ALL
1755 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1756 if (!ReaderReceive(resp, resp_par)) {
1757 return 0;
1758 }
1759
1760 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1761 memset(uid_resp, 0, 4);
1762 uint16_t uid_resp_bits = 0;
1763 uint16_t collision_answer_offset = 0;
1764 // anti-collision-loop:
1765 while (Demod.collisionPos) {
1766 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1767 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1768 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1769 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1770 }
1771 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1772 uid_resp_bits++;
1773 // construct anticollosion command:
1774 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1775 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1776 sel_uid[2+i] = uid_resp[i];
1777 }
1778 collision_answer_offset = uid_resp_bits%8;
1779 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1780 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) {
1781 return 0;
1782 }
1783 }
1784 // finally, add the last bits and BCC of the UID
1785 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1786 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1787 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1788 }
1789
1790 } else { // no collision, use the response to SELECT_ALL as current uid
1791 memcpy(uid_resp, resp, 4);
1792 }
1793 } else {
1794 if (cascade_level < num_cascades - 1) {
1795 uid_resp[0] = 0x88;
1796 memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3);
1797 } else {
1798 memcpy(uid_resp, uid_ptr+cascade_level*3, 4);
1799 }
1800 }
1801 uid_resp_len = 4;
1802
1803 // calculate crypto UID. Always use last 4 Bytes.
1804 if(cuid_ptr) {
1805 *cuid_ptr = bytes_to_num(uid_resp, 4);
1806 }
1807
1808 // Construct SELECT UID command
1809 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1810 memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID
1811 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1812 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1813 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1814
1815 // Receive the SAK
1816 if (!ReaderReceive(resp, resp_par)) {
1817 return 0;
1818 }
1819 sak = resp[0];
1820
1821 // Test if more parts of the uid are coming
1822 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1823 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1824 // http://www.nxp.com/documents/application_note/AN10927.pdf
1825 uid_resp[0] = uid_resp[1];
1826 uid_resp[1] = uid_resp[2];
1827 uid_resp[2] = uid_resp[3];
1828 uid_resp_len = 3;
1829 }
1830
1831 if(uid_ptr && anticollision) {
1832 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1833 }
1834
1835 if(p_hi14a_card) {
1836 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1837 p_hi14a_card->uidlen += uid_resp_len;
1838 }
1839 }
1840
1841 if(p_hi14a_card) {
1842 p_hi14a_card->sak = sak;
1843 }
1844
1845 // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0)
1846 if( (sak & 0x20) == 0) return 2;
1847
1848 if (!no_rats) {
1849 // Request for answer to select
1850 AppendCrc14443a(rats, 2);
1851 ReaderTransmit(rats, sizeof(rats), NULL);
1852
1853 if (!(len = ReaderReceive(resp, resp_par))) {
1854 return 0;
1855 }
1856
1857 if(p_hi14a_card) {
1858 memcpy(p_hi14a_card->ats, resp, len);
1859 p_hi14a_card->ats_len = len;
1860 }
1861
1862 // reset the PCB block number
1863 iso14_pcb_blocknum = 0;
1864
1865 // set default timeout and delay next transfer based on ATS
1866 iso14a_set_ATS_times(resp);
1867
1868 }
1869 return 1;
1870 }
1871
1872
1873 void iso14443a_setup(uint8_t fpga_minor_mode) {
1874 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1875 // Set up the synchronous serial port
1876 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1877 // connect Demodulated Signal to ADC:
1878 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1879
1880 // Signal field is on with the appropriate LED
1881 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1882 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1883 LED_D_ON();
1884 } else {
1885 LED_D_OFF();
1886 }
1887 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1888
1889 // Set ADC to read field strength
1890 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1891 AT91C_BASE_ADC->ADC_MR =
1892 ADC_MODE_PRESCALE(63) |
1893 ADC_MODE_STARTUP_TIME(1) |
1894 ADC_MODE_SAMPLE_HOLD_TIME(15);
1895 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW);
1896
1897 // Start the timer
1898 StartCountSspClk();
1899
1900 DemodReset();
1901 UartReset();
1902 LastTimeProxToAirStart = 0;
1903 FpgaSendQueueDelay = 0;
1904 LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd()
1905 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1906 iso14a_set_timeout(1060); // 10ms default
1907 }
1908
1909 /* Peter Fillmore 2015
1910 Added card id field to the function
1911 info from ISO14443A standard
1912 b1 = Block Number
1913 b2 = RFU (always 1)
1914 b3 = depends on block
1915 b4 = Card ID following if set to 1
1916 b5 = depends on block type
1917 b6 = depends on block type
1918 b7,b8 = block type.
1919 Coding of I-BLOCK:
1920 b8 b7 b6 b5 b4 b3 b2 b1
1921 0 0 0 x x x 1 x
1922 b5 = chaining bit
1923 Coding of R-block:
1924 b8 b7 b6 b5 b4 b3 b2 b1
1925 1 0 1 x x 0 1 x
1926 b5 = ACK/NACK
1927 Coding of S-block:
1928 b8 b7 b6 b5 b4 b3 b2 b1
1929 1 1 x x x 0 1 0
1930 b5,b6 = 00 - DESELECT
1931 11 - WTX
1932 */
1933 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) {
1934 uint8_t parity[MAX_PARITY_SIZE];
1935 uint8_t real_cmd[cmd_len + 4];
1936
1937 if (cmd_len) {
1938 // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02
1939 real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00)
1940 if (send_chaining) {
1941 real_cmd[0] |= 0x10;
1942 }
1943 // put block number into the PCB
1944 real_cmd[0] |= iso14_pcb_blocknum;
1945 memcpy(real_cmd + 1, cmd, cmd_len);
1946 } else {
1947 // R-block. ACK
1948 real_cmd[0] = 0xA2; // r-block + ACK
1949 real_cmd[0] |= iso14_pcb_blocknum;
1950 }
1951 AppendCrc14443a(real_cmd, cmd_len + 1);
1952
1953 ReaderTransmit(real_cmd, cmd_len + 3, NULL);
1954
1955 size_t len = ReaderReceive(data, parity);
1956 uint8_t *data_bytes = (uint8_t *) data;
1957
1958 if (!len) {
1959 return 0; //DATA LINK ERROR
1960 } else {
1961 // S-Block WTX
1962 while (len && ((data_bytes[0] & 0xF2) == 0xF2)) {
1963 uint32_t save_iso14a_timeout = iso14a_get_timeout();
1964 // temporarily increase timeout
1965 iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT));
1966 // Transmit WTX back
1967 // byte1 - WTXM [1..59]. command FWT=FWT*WTXM
1968 data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b
1969 // now need to fix CRC.
1970 AppendCrc14443a(data_bytes, len - 2);
1971 // transmit S-Block
1972 ReaderTransmit(data_bytes, len, NULL);
1973 // retrieve the result again (with increased timeout)
1974 len = ReaderReceive(data, parity);
1975 data_bytes = data;
1976 // restore timeout
1977 iso14a_set_timeout(save_iso14a_timeout);
1978 }
1979
1980 // if we received an I- or R(ACK)-Block with a block number equal to the
1981 // current block number, toggle the current block number
1982 if (len >= 3 // PCB+CRC = 3 bytes
1983 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1984 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1985 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1986 {
1987 iso14_pcb_blocknum ^= 1;
1988 }
1989
1990 // if we received I-block with chaining we need to send ACK and receive another block of data
1991 if (res)
1992 *res = data_bytes[0];
1993
1994 // crc check
1995 if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) {
1996 return -1;
1997 }
1998
1999 }
2000
2001 if (len) {
2002 // cut frame byte
2003 len -= 1;
2004 // memmove(data_bytes, data_bytes + 1, len);
2005 for (int i = 0; i < len; i++)
2006 data_bytes[i] = data_bytes[i + 1];
2007 }
2008
2009 return len;
2010 }
2011
2012
2013 //-----------------------------------------------------------------------------
2014 // Read an ISO 14443a tag. Send out commands and store answers.
2015 //
2016 //-----------------------------------------------------------------------------
2017 void ReaderIso14443a(UsbCommand *c) {
2018
2019 iso14a_command_t param = c->arg[0];
2020 uint8_t *cmd = c->d.asBytes;
2021 size_t len = c->arg[1] & 0xffff;
2022 size_t lenbits = c->arg[1] >> 16;
2023 uint32_t timeout = c->arg[2];
2024 uint32_t arg0 = 0;
2025 uint8_t buf[USB_CMD_DATA_SIZE] = {0};
2026 uint8_t par[MAX_PARITY_SIZE];
2027 bool cantSELECT = false;
2028
2029 set_tracing(true);
2030
2031 if (param & ISO14A_CLEAR_TRACE) {
2032 clear_trace();
2033 }
2034
2035 if (param & ISO14A_REQUEST_TRIGGER) {
2036 iso14a_set_trigger(true);
2037 }
2038
2039 if (param & ISO14A_CONNECT) {
2040 LED_A_ON();
2041 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
2042 if(!(param & ISO14A_NO_SELECT)) {
2043 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
2044 arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS);
2045
2046 // if we cant select then we cant send data
2047 if (arg0 != 1 && arg0 != 2) {
2048 // 1 - all is OK with ATS, 2 - without ATS
2049 cantSELECT = true;
2050 }
2051 FpgaDisableTracing();
2052 LED_B_ON();
2053 cmd_send(CMD_NACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
2054 LED_B_OFF();
2055 }
2056 }
2057
2058 if (param & ISO14A_SET_TIMEOUT) {
2059 iso14a_set_timeout(timeout);
2060 }
2061
2062 if (param & ISO14A_APDU && !cantSELECT) {
2063 uint8_t res;
2064 arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res);
2065 FpgaDisableTracing();
2066 LED_B_ON();
2067 cmd_send(CMD_ACK, arg0, res, 0, buf, sizeof(buf));
2068 LED_B_OFF();
2069 }
2070
2071 if (param & ISO14A_RAW && !cantSELECT) {
2072 if (param & ISO14A_APPEND_CRC) {
2073 if(param & ISO14A_TOPAZMODE) {
2074 AppendCrc14443b(cmd,len);
2075 } else {
2076 AppendCrc14443a(cmd,len);
2077 }
2078 len += 2;
2079 if (lenbits) lenbits += 16;
2080 }
2081 if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands)
2082 if (param & ISO14A_TOPAZMODE) {
2083 int bits_to_send = lenbits;
2084 uint16_t i = 0;
2085 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity
2086 bits_to_send -= 7;
2087 while (bits_to_send > 0) {
2088 ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity
2089 bits_to_send -= 8;
2090 }
2091 } else {
2092 GetParity(cmd, lenbits/8, par);
2093 ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity
2094 }
2095 } else { // want to send complete bytes only
2096 if (param & ISO14A_TOPAZMODE) {
2097 uint16_t i = 0;
2098 ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy
2099 while (i < len) {
2100 ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy
2101 }
2102 } else {
2103 ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity
2104 }
2105 }
2106 arg0 = ReaderReceive(buf, par);
2107 FpgaDisableTracing();
2108
2109 LED_B_ON();
2110 cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf));
2111 LED_B_OFF();
2112 }
2113
2114 if (param & ISO14A_REQUEST_TRIGGER) {
2115 iso14a_set_trigger(false);
2116 }
2117
2118 if (param & ISO14A_NO_DISCONNECT) {
2119 return;
2120 }
2121
2122 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2123 LEDsoff();
2124 }
2125
2126
2127 // Determine the distance between two nonces.
2128 // Assume that the difference is small, but we don't know which is first.
2129 // Therefore try in alternating directions.
2130 static int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
2131
2132 uint16_t i;
2133 uint32_t nttmp1, nttmp2;
2134
2135 if (nt1 == nt2) return 0;
2136
2137 nttmp1 = nt1;
2138 nttmp2 = nt2;
2139
2140 for (i = 1; i < 32768; i++) {
2141 nttmp1 = prng_successor(nttmp1, 1);
2142 if (nttmp1 == nt2) return i;
2143 nttmp2 = prng_successor(nttmp2, 1);
2144 if (nttmp2 == nt1) return -i;
2145 }
2146
2147 return(-99999); // either nt1 or nt2 are invalid nonces
2148 }
2149
2150
2151 //-----------------------------------------------------------------------------
2152 // Recover several bits of the cypher stream. This implements (first stages of)
2153 // the algorithm described in "The Dark Side of Security by Obscurity and
2154 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
2155 // (article by Nicolas T. Courtois, 2009)
2156 //-----------------------------------------------------------------------------
2157 void ReaderMifare(bool first_try)
2158 {
2159 // Mifare AUTH
2160 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
2161 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
2162 static uint8_t mf_nr_ar3;
2163
2164 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
2165 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
2166
2167 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2168
2169 // free eventually allocated BigBuf memory. We want all for tracing.
2170 BigBuf_free();
2171
2172 clear_trace();
2173 set_tracing(true);
2174
2175 uint8_t nt_diff = 0;
2176 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2177 static uint8_t par_low = 0;
2178 bool led_on = true;
2179 uint8_t uid[10] ={0};
2180 uint32_t cuid;
2181
2182 uint32_t nt = 0;
2183 uint32_t previous_nt = 0;
2184 static uint32_t nt_attacked = 0;
2185 uint8_t par_list[8] = {0x00};
2186 uint8_t ks_list[8] = {0x00};
2187
2188 #define PRNG_SEQUENCE_LENGTH (1 << 16);
2189 uint32_t sync_time = GetCountSspClk() & 0xfffffff8;
2190 static int32_t sync_cycles;
2191 int catch_up_cycles = 0;
2192 int last_catch_up = 0;
2193 uint16_t elapsed_prng_sequences;
2194 uint16_t consecutive_resyncs = 0;
2195 int isOK = 0;
2196
2197 if (first_try) {
2198 mf_nr_ar3 = 0;
2199 par[0] = par_low = 0;
2200 sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces).
2201 nt_attacked = 0;
2202 }
2203 else {
2204 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2205 mf_nr_ar3++;
2206 mf_nr_ar[3] = mf_nr_ar3;
2207 par[0] = par_low;
2208 }
2209
2210 LED_A_ON();
2211 LED_B_OFF();
2212 LED_C_OFF();
2213
2214
2215 #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
2216 #define MAX_SYNC_TRIES 32
2217 #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle
2218 #define NUM_DEBUG_INFOS 8 // per strategy
2219 #define MAX_STRATEGY 3
2220 uint16_t unexpected_random = 0;
2221 uint16_t sync_tries = 0;
2222 int16_t debug_info_nr = -1;
2223 uint16_t strategy = 0;
2224 int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS];
2225 uint32_t select_time;
2226 uint32_t halt_time;
2227
2228 for (uint16_t i = 0; true; i++) {
2229
2230 LED_C_ON();
2231 WDT_HIT();
2232
2233 // Test if the action was cancelled
2234 if(BUTTON_PRESS()) {
2235 isOK = -1;
2236 break;
2237 }
2238
2239 if (strategy == 2) {
2240 // test with additional hlt command
2241 halt_time = 0;
2242 int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time);
2243 if (len && MF_DBGLEVEL >= 3) {
2244 Dbprintf("Unexpected response of %d bytes to hlt command (additional debugging).", len);
2245 }
2246 }
2247
2248 if (strategy == 3) {
2249 // test with FPGA power off/on
2250 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2251 SpinDelay(200);
2252 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2253 SpinDelay(100);
2254 }
2255
2256 if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
2257 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2258 continue;
2259 }
2260 select_time = GetCountSspClk();
2261
2262 elapsed_prng_sequences = 1;
2263 if (debug_info_nr == -1) {
2264 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2265 catch_up_cycles = 0;
2266
2267 // if we missed the sync time already or are about to miss it, advance to the next nonce repeat
2268 while(sync_time < GetCountSspClk() + SYNC_TIME_BUFFER) {
2269 elapsed_prng_sequences++;
2270 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2271 }
2272
2273 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2274 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2275 } else {
2276 // collect some information on tag nonces for debugging:
2277 #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH
2278 if (strategy == 0) {
2279 // nonce distances at fixed time after card select:
2280 sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES;
2281 } else if (strategy == 1) {
2282 // nonce distances at fixed time between authentications:
2283 sync_time = sync_time + DEBUG_FIXED_SYNC_CYCLES;
2284 } else if (strategy == 2) {
2285 // nonce distances at fixed time after halt:
2286 sync_time = halt_time + DEBUG_FIXED_SYNC_CYCLES;
2287 } else {
2288 // nonce_distances at fixed time after power on
2289 sync_time = DEBUG_FIXED_SYNC_CYCLES;
2290 }
2291 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2292 }
2293
2294 // Receive the (4 Byte) "random" nonce
2295 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2296 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2297 continue;
2298 }
2299
2300 previous_nt = nt;
2301 nt = bytes_to_num(receivedAnswer, 4);
2302
2303 // Transmit reader nonce with fake par
2304 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2305
2306 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2307 int nt_distance = dist_nt(previous_nt, nt);
2308 if (nt_distance == 0) {
2309 nt_attacked = nt;
2310 } else {
2311 if (nt_distance == -99999) { // invalid nonce received
2312 unexpected_random++;
2313 if (unexpected_random > MAX_UNEXPECTED_RANDOM) {
2314 isOK = -3; // Card has an unpredictable PRNG. Give up
2315 break;
2316 } else {
2317 continue; // continue trying...
2318 }
2319 }
2320 if (++sync_tries > MAX_SYNC_TRIES) {
2321 if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) {
2322 isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly
2323 break;
2324 } else { // continue for a while, just to collect some debug info
2325 debug_info[strategy][debug_info_nr] = nt_distance;
2326 debug_info_nr++;
2327 if (debug_info_nr == NUM_DEBUG_INFOS) {
2328 strategy++;
2329 debug_info_nr = 0;
2330 }
2331 continue;
2332 }
2333 }
2334 sync_cycles = (sync_cycles - nt_distance/elapsed_prng_sequences);
2335 if (sync_cycles <= 0) {
2336 sync_cycles += PRNG_SEQUENCE_LENGTH;
2337 }
2338 if (MF_DBGLEVEL >= 3) {
2339 Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles);
2340 }
2341 continue;
2342 }
2343 }
2344
2345 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2346 catch_up_cycles = -dist_nt(nt_attacked, nt);
2347 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2348 catch_up_cycles = 0;
2349 continue;
2350 }
2351 catch_up_cycles /= elapsed_prng_sequences;
2352 if (catch_up_cycles == last_catch_up) {
2353 consecutive_resyncs++;
2354 }
2355 else {
2356 last_catch_up = catch_up_cycles;
2357 consecutive_resyncs = 0;
2358 }
2359 if (consecutive_resyncs < 3) {
2360 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2361 }
2362 else {
2363 sync_cycles = sync_cycles + catch_up_cycles;
2364 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2365 last_catch_up = 0;
2366 catch_up_cycles = 0;
2367 consecutive_resyncs = 0;
2368 }
2369 continue;
2370 }
2371
2372 consecutive_resyncs = 0;
2373
2374 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2375 if (ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2376 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2377
2378 if (nt_diff == 0) {
2379 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2380 }
2381
2382 led_on = !led_on;
2383 if(led_on) LED_B_ON(); else LED_B_OFF();
2384
2385 par_list[nt_diff] = SwapBits(par[0], 8);
2386 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2387
2388 // Test if the information is complete
2389 if (nt_diff == 0x07) {
2390 isOK = 1;
2391 break;
2392 }
2393
2394 nt_diff = (nt_diff + 1) & 0x07;
2395 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2396 par[0] = par_low;
2397 } else {
2398 if (nt_diff == 0 && first_try)
2399 {
2400 par[0]++;
2401 if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK.
2402 isOK = -2;
2403 break;
2404 }
2405 } else {
2406 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2407 }
2408 }
2409 }
2410
2411
2412 mf_nr_ar[3] &= 0x1F;
2413
2414 if (isOK == -4) {
2415 if (MF_DBGLEVEL >= 3) {
2416 for (uint16_t i = 0; i <= MAX_STRATEGY; i++) {
2417 for (uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) {
2418 Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]);
2419 }
2420 }
2421 }
2422 }
2423
2424 FpgaDisableTracing();
2425
2426 uint8_t buf[32];
2427 memcpy(buf + 0, uid, 4);
2428 num_to_bytes(nt, 4, buf + 4);
2429 memcpy(buf + 8, par_list, 8);
2430 memcpy(buf + 16, ks_list, 8);
2431 memcpy(buf + 24, mf_nr_ar, 8);
2432
2433 cmd_send(CMD_ACK, isOK, 0, 0, buf, 32);
2434
2435 // Thats it...
2436 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2437 LEDsoff();
2438
2439 set_tracing(false);
2440 }
2441
2442
2443 //-----------------------------------------------------------------------------
2444 // MIFARE sniffer.
2445 //
2446 //-----------------------------------------------------------------------------
2447 void RAMFUNC SniffMifare(uint8_t param) {
2448 // param:
2449 // bit 0 - trigger from first card answer
2450 // bit 1 - trigger from first reader 7-bit request
2451
2452 // C(red) A(yellow) B(green)
2453 LEDsoff();
2454 LED_A_ON();
2455
2456 // init trace buffer
2457 clear_trace();
2458 set_tracing(true);
2459
2460 // The command (reader -> tag) that we're receiving.
2461 // The length of a received command will in most cases be no more than 18 bytes.
2462 // So 32 should be enough!
2463 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2464 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2465 // The response (tag -> reader) that we're receiving.
2466 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2467 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2468
2469 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2470
2471 // free eventually allocated BigBuf memory
2472 BigBuf_free();
2473 // allocate the DMA buffer, used to stream samples from the FPGA
2474 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2475 uint8_t *data = dmaBuf;
2476 uint8_t previous_data = 0;
2477 int maxDataLen = 0;
2478 int dataLen = 0;
2479 bool ReaderIsActive = false;
2480 bool TagIsActive = false;
2481
2482 // Set up the demodulator for tag -> reader responses.
2483 DemodInit(receivedResponse, receivedResponsePar);
2484
2485 // Set up the demodulator for the reader -> tag commands
2486 UartInit(receivedCmd, receivedCmdPar);
2487
2488 // Setup for the DMA.
2489 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2490
2491 // init sniffer
2492 MfSniffInit();
2493
2494 // And now we loop, receiving samples.
2495 for (uint32_t sniffCounter = 0; true; ) {
2496
2497 if(BUTTON_PRESS()) {
2498 DbpString("Canceled by button.");
2499 break;
2500 }
2501
2502 WDT_HIT();
2503
2504 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2505 // check if a transaction is completed (timeout after 2000ms).
2506 // if yes, stop the DMA transfer and send what we have so far to the client
2507 if (MfSniffSend(2000)) {
2508 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2509 sniffCounter = 0;
2510 data = dmaBuf;
2511 maxDataLen = 0;
2512 ReaderIsActive = false;
2513 TagIsActive = false;
2514 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2515 }
2516 }
2517
2518 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2519 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2520 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2521 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2522 } else {
2523 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2524 }
2525 // test for length of buffer
2526 if(dataLen > maxDataLen) { // we are more behind than ever...
2527 maxDataLen = dataLen;
2528 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2529 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2530 break;
2531 }
2532 }
2533 if(dataLen < 1) continue;
2534
2535 // primary buffer was stopped ( <-- we lost data!
2536 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2537 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2538 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2539 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2540 }
2541 // secondary buffer sets as primary, secondary buffer was stopped
2542 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2543 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2544 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2545 }
2546
2547 if (sniffCounter & 0x01) {
2548
2549 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2550 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2551 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2552
2553 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break;
2554
2555 /* And ready to receive another command. */
2556 UartInit(receivedCmd, receivedCmdPar);
2557
2558 /* And also reset the demod code */
2559 DemodReset();
2560 }
2561 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2562 }
2563
2564 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2565 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2566 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2567
2568 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break;
2569
2570 // And ready to receive another response.
2571 DemodReset();
2572 // And reset the Miller decoder including its (now outdated) input buffer
2573 UartInit(receivedCmd, receivedCmdPar);
2574 }
2575 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2576 }
2577 }
2578
2579 previous_data = *data;
2580 sniffCounter++;
2581 data++;
2582 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2583 data = dmaBuf;
2584 }
2585
2586 } // main cycle
2587
2588 FpgaDisableTracing();
2589 FpgaDisableSscDma();
2590 LEDsoff();
2591
2592 DbpString("COMMAND FINISHED.");
2593
2594 MfSniffEnd();
2595
2596 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2597 }
Impressum, Datenschutz