]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
cf20a96a3bc77245af23dab2c176e227a84620d2
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <string.h>
13 #include <inttypes.h>
14 #include "cmdlfem4x.h"
15 #include "proxmark3.h"
16 #include "ui.h"
17 #include "util.h"
18 #include "data.h"
19 #include "graph.h"
20 #include "cmdparser.h"
21 #include "cmddata.h"
22 #include "cmdlf.h"
23 #include "cmdmain.h"
24 #include "lfdemod.h"
25 #include "protocols.h"
26 #include "util_posix.h"
27
28 uint64_t g_em410xId=0;
29
30 static int CmdHelp(const char *Cmd);
31
32 int CmdEMdemodASK(const char *Cmd)
33 {
34 char cmdp = param_getchar(Cmd, 0);
35 int findone = (cmdp == '1') ? 1 : 0;
36 UsbCommand c={CMD_EM410X_DEMOD};
37 c.arg[0]=findone;
38 SendCommand(&c);
39 return 0;
40 }
41
42 //by marshmellow
43 //print 64 bit EM410x ID in multiple formats
44 void printEM410x(uint32_t hi, uint64_t id)
45 {
46 if (id || hi){
47 uint64_t iii=1;
48 uint64_t id2lo=0;
49 uint32_t ii=0;
50 uint32_t i=0;
51 for (ii=5; ii>0;ii--){
52 for (i=0;i<8;i++){
53 id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
54 }
55 }
56 if (hi){
57 //output 88 bit em id
58 PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
59 } else{
60 //output 40 bit em id
61 PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
62 PrintAndLog("\nPossible de-scramble patterns");
63 PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
64 PrintAndLog("HoneyWell IdentKey {");
65 PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
66 PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
67 PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
68 PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
69 PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
70 PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
71 PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
72 PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
73 PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
74 (id2lo & 0xf000000000) >> 36,
75 (id2lo & 0x0f00000000) >> 32,
76 (id2lo & 0x00f0000000) >> 28,
77 (id2lo & 0x000f000000) >> 24,
78 (id2lo & 0x0000f00000) >> 20,
79 (id2lo & 0x00000f0000) >> 16,
80 (id2lo & 0x000000f000) >> 12,
81 (id2lo & 0x0000000f00) >> 8,
82 (id2lo & 0x00000000f0) >> 4,
83 (id2lo & 0x000000000f)
84 );
85 uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
86 PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
87 PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
88
89 uint32_t p1id = (id & 0xFFFFFF);
90 uint8_t arr[32] = {0x00};
91 int i =0;
92 int j = 23;
93 for (; i < 24; ++i, --j ){
94 arr[i] = (p1id >> i) & 1;
95 }
96
97 uint32_t p1 = 0;
98
99 p1 |= arr[23] << 21;
100 p1 |= arr[22] << 23;
101 p1 |= arr[21] << 20;
102 p1 |= arr[20] << 22;
103
104 p1 |= arr[19] << 18;
105 p1 |= arr[18] << 16;
106 p1 |= arr[17] << 19;
107 p1 |= arr[16] << 17;
108
109 p1 |= arr[15] << 13;
110 p1 |= arr[14] << 15;
111 p1 |= arr[13] << 12;
112 p1 |= arr[12] << 14;
113
114 p1 |= arr[11] << 6;
115 p1 |= arr[10] << 2;
116 p1 |= arr[9] << 7;
117 p1 |= arr[8] << 1;
118
119 p1 |= arr[7] << 0;
120 p1 |= arr[6] << 8;
121 p1 |= arr[5] << 11;
122 p1 |= arr[4] << 3;
123
124 p1 |= arr[3] << 10;
125 p1 |= arr[2] << 4;
126 p1 |= arr[1] << 5;
127 p1 |= arr[0] << 9;
128 PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
129
130 uint16_t sebury1 = id & 0xFFFF;
131 uint8_t sebury2 = (id >> 16) & 0x7F;
132 uint32_t sebury3 = id & 0x7FFFFF;
133 PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
134 }
135 }
136 return;
137 }
138
139 /* Read the ID of an EM410x tag.
140 * Format:
141 * 1111 1111 1 <-- standard non-repeatable header
142 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
143 * ....
144 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
145 * 0 <-- stop bit, end of tag
146 */
147 int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
148 {
149 size_t idx = 0;
150 uint8_t BitStream[512]={0};
151 size_t BitLen = sizeof(BitStream);
152 if ( !getDemodBuf(BitStream, &BitLen) ) return 0;
153
154 if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) {
155 //set GraphBuffer for clone or sim command
156 setDemodBuf(DemodBuffer, (BitLen==40) ? 64 : 128, idx+1);
157 setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock));
158
159 if (g_debugMode) {
160 PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
161 printDemodBuff();
162 }
163 if (verbose) {
164 PrintAndLog("EM410x pattern found: ");
165 printEM410x(*hi, *lo);
166 g_em410xId = *lo;
167 }
168 return 1;
169 }
170 return 0;
171 }
172
173 //askdemod then call Em410xdecode
174 int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
175 {
176 bool st = true;
177 if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
178 return AskEm410xDecode(verbose, hi, lo);
179 }
180
181 //by marshmellow
182 //takes 3 arguments - clock, invert and maxErr as integers
183 //attempts to demodulate ask while decoding manchester
184 //prints binary found and saves in graphbuffer for further commands
185 int CmdAskEM410xDemod(const char *Cmd)
186 {
187 char cmdp = param_getchar(Cmd, 0);
188 if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
189 PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
190 PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
191 PrintAndLog(" <invert>, 1 for invert output");
192 PrintAndLog(" [set maximum allowed errors], default = 100.");
193 PrintAndLog("");
194 PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
195 PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
196 PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
197 PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
198 PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
199 return 0;
200 }
201 uint64_t lo = 0;
202 uint32_t hi = 0;
203 return AskEm410xDemod(Cmd, &hi, &lo, true);
204 }
205
206 int usage_lf_em410x_sim(void) {
207 PrintAndLog("Simulating EM410x tag");
208 PrintAndLog("");
209 PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
210 PrintAndLog("Options:");
211 PrintAndLog(" h - this help");
212 PrintAndLog(" uid - uid (10 HEX symbols)");
213 PrintAndLog(" clock - clock (32|64) (optional)");
214 PrintAndLog("samples:");
215 PrintAndLog(" lf em 410xsim 0F0368568B");
216 PrintAndLog(" lf em 410xsim 0F0368568B 32");
217 return 0;
218 }
219
220 // emulate an EM410X tag
221 int CmdEM410xSim(const char *Cmd)
222 {
223 int i, n, j, binary[4], parity[4];
224
225 char cmdp = param_getchar(Cmd, 0);
226 uint8_t uid[5] = {0x00};
227
228 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
229 /* clock is 64 in EM410x tags */
230 uint8_t clock = 64;
231
232 if (param_gethex(Cmd, 0, uid, 10)) {
233 PrintAndLog("UID must include 10 HEX symbols");
234 return 0;
235 }
236 param_getdec(Cmd,1, &clock);
237
238 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
239 PrintAndLog("Press pm3-button to abort simulation");
240
241
242 /* clear our graph */
243 ClearGraph(0);
244
245 /* write 9 start bits */
246 for (i = 0; i < 9; i++)
247 AppendGraph(0, clock, 1);
248
249 /* for each hex char */
250 parity[0] = parity[1] = parity[2] = parity[3] = 0;
251 for (i = 0; i < 10; i++)
252 {
253 /* read each hex char */
254 sscanf(&Cmd[i], "%1x", &n);
255 for (j = 3; j >= 0; j--, n/= 2)
256 binary[j] = n % 2;
257
258 /* append each bit */
259 AppendGraph(0, clock, binary[0]);
260 AppendGraph(0, clock, binary[1]);
261 AppendGraph(0, clock, binary[2]);
262 AppendGraph(0, clock, binary[3]);
263
264 /* append parity bit */
265 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
266
267 /* keep track of column parity */
268 parity[0] ^= binary[0];
269 parity[1] ^= binary[1];
270 parity[2] ^= binary[2];
271 parity[3] ^= binary[3];
272 }
273
274 /* parity columns */
275 AppendGraph(0, clock, parity[0]);
276 AppendGraph(0, clock, parity[1]);
277 AppendGraph(0, clock, parity[2]);
278 AppendGraph(0, clock, parity[3]);
279
280 /* stop bit */
281 AppendGraph(1, clock, 0);
282
283 CmdLFSim("0"); //240 start_gap.
284 return 0;
285 }
286
287 int usage_lf_em410x_brute(void) {
288 PrintAndLog("Bruteforcing by emulating EM410x tag");
289 PrintAndLog("");
290 PrintAndLog("Usage: lf em 410xbrute [h] ids.txt");
291 PrintAndLog("Options:");
292 PrintAndLog(" h - this help");
293 PrintAndLog(" ids.txt - file with id in HEX format one per line");
294 PrintAndLog(" clock - clock (32|64) (optional)");
295 PrintAndLog("samples:");
296 PrintAndLog(" lf em 410xbrute ids.txt");
297 PrintAndLog(" lf em 410xbrute ids.txt 32");
298 return 0;
299 }
300
301 int CmdEM410xBrute(const char *Cmd)
302 {
303 char filename[FILE_PATH_SIZE]={0};
304 FILE *f = NULL;
305 char buf[11];
306 int i, n, j, binary[4], parity[4];
307
308 char cmdp = param_getchar(Cmd, 0);
309 uint8_t uid[5] = {0x00};
310
311 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
312 /* clock is 64 in EM410x tags */
313 uint8_t clock = 64;
314
315 param_getdec(Cmd,1, &clock);
316
317 param_getstr(Cmd, 0, filename);
318
319 if (strlen(filename) > 0) {
320 if ((f = fopen(filename, "r")) == NULL) {
321 PrintAndLog("Error: Could not open IDs file [%s]",filename);
322 return 1;
323 }
324 } else {
325 PrintAndLog("Error: Please specify a filename");
326 return 1;
327 }
328
329
330 while( fgets(buf, sizeof(buf), f) ) {
331 msleep(1000);
332 if (strlen(buf) < 10 || buf[9] == '\n') continue;
333 while (fgetc(f) != '\n' && !feof(f)); //goto next line
334
335 //The line start with # is comment, skip
336 if( buf[0]=='#' ) continue;
337
338 buf[10] = 0;
339 //PrintAndLog("ID: %s", buf);
340
341 if (param_gethex(buf, 0, uid, 10)) {
342 PrintAndLog("UID must include 10 HEX symbols");
343 return 0;
344 }
345
346 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
347
348 /* clear our graph */
349 ClearGraph(0);
350
351 /* write 9 start bits */
352 for (i = 0; i < 9; i++)
353 AppendGraph(0, clock, 1);
354
355 /* for each hex char */
356 parity[0] = parity[1] = parity[2] = parity[3] = 0;
357 for (i = 0; i < 10; i++)
358 {
359 /* read each hex char */
360 sscanf(&buf[i], "%1x", &n);
361 for (j = 3; j >= 0; j--, n/= 2)
362 binary[j] = n % 2;
363
364 /* append each bit */
365 AppendGraph(0, clock, binary[0]);
366 AppendGraph(0, clock, binary[1]);
367 AppendGraph(0, clock, binary[2]);
368 AppendGraph(0, clock, binary[3]);
369
370 /* append parity bit */
371 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
372
373 /* keep track of column parity */
374 parity[0] ^= binary[0];
375 parity[1] ^= binary[1];
376 parity[2] ^= binary[2];
377 parity[3] ^= binary[3];
378 }
379
380 /* parity columns */
381 AppendGraph(0, clock, parity[0]);
382 AppendGraph(0, clock, parity[1]);
383 AppendGraph(0, clock, parity[2]);
384 AppendGraph(0, clock, parity[3]);
385
386 /* stop bit */
387 AppendGraph(1, clock, 0);
388
389 CmdLFSim("0"); //240 start_gap.
390
391 memset(buf, 0, sizeof(buf));
392
393 }
394
395 fclose(f);
396
397 return 0;
398 }
399
400
401 /* Function is equivalent of lf read + data samples + em410xread
402 * looped until an EM410x tag is detected
403 *
404 * Why is CmdSamples("16000")?
405 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
406 * rate gets lower, then grow the number of samples
407 * Changed by martin, 4000 x 4 = 16000,
408 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
409 *
410 * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
411 */
412 int CmdEM410xWatch(const char *Cmd)
413 {
414 do {
415 if (ukbhit()) {
416 printf("\naborted via keyboard!\n");
417 break;
418 }
419 lf_read(true, 8201);
420 } while (!CmdAskEM410xDemod(""));
421
422 return 0;
423 }
424
425 //currently only supports manchester modulations
426 int CmdEM410xWatchnSpoof(const char *Cmd)
427 {
428 CmdEM410xWatch(Cmd);
429 PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
430 CmdLFaskSim("");
431 return 0;
432 }
433
434 int CmdEM410xWrite(const char *Cmd)
435 {
436 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
437 int card = 0xFF; // invalid card value
438 unsigned int clock = 0; // invalid clock value
439
440 sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
441
442 // Check ID
443 if (id == 0xFFFFFFFFFFFFFFFF) {
444 PrintAndLog("Error! ID is required.\n");
445 return 0;
446 }
447 if (id >= 0x10000000000) {
448 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
449 return 0;
450 }
451
452 // Check Card
453 if (card == 0xFF) {
454 PrintAndLog("Error! Card type required.\n");
455 return 0;
456 }
457 if (card < 0) {
458 PrintAndLog("Error! Bad card type selected.\n");
459 return 0;
460 }
461
462 // Check Clock
463 // Default: 64
464 if (clock == 0)
465 clock = 64;
466
467 // Allowed clock rates: 16, 32, 40 and 64
468 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
469 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
470 return 0;
471 }
472
473 if (card == 1) {
474 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
475 // NOTE: We really should pass the clock in as a separate argument, but to
476 // provide for backwards-compatibility for older firmware, and to avoid
477 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
478 // the clock rate in bits 8-15 of the card value
479 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
480 } else if (card == 0) {
481 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
482 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
483 } else {
484 PrintAndLog("Error! Bad card type selected.\n");
485 return 0;
486 }
487
488 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
489 SendCommand(&c);
490
491 return 0;
492 }
493
494 //**************** Start of EM4x50 Code ************************
495 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
496 {
497 if (rows*cols>size) return false;
498 uint8_t colP=0;
499 //assume last col is a parity and do not test
500 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
501 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
502 colP ^= BitStream[(rowNum*cols)+colNum];
503 }
504 if (colP != pType) return false;
505 }
506 return true;
507 }
508
509 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
510 {
511 if (rows*cols>size) return false;
512 uint8_t rowP=0;
513 //assume last row is a parity row and do not test
514 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
515 for (uint8_t colNum = 0; colNum < cols; colNum++) {
516 rowP ^= BitStream[(rowNum*cols)+colNum];
517 }
518 if (rowP != pType) return false;
519 }
520 return true;
521 }
522
523 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
524 {
525 if (size<45) return 0;
526 uint32_t code = bytebits_to_byte(BitStream,8);
527 code = code<<8 | bytebits_to_byte(BitStream+9,8);
528 code = code<<8 | bytebits_to_byte(BitStream+18,8);
529 code = code<<8 | bytebits_to_byte(BitStream+27,8);
530 if (verbose || g_debugMode){
531 for (uint8_t i = 0; i<5; i++){
532 if (i == 4) PrintAndLog(""); //parity byte spacer
533 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
534 BitStream[i*9],
535 BitStream[i*9+1],
536 BitStream[i*9+2],
537 BitStream[i*9+3],
538 BitStream[i*9+4],
539 BitStream[i*9+5],
540 BitStream[i*9+6],
541 BitStream[i*9+7],
542 BitStream[i*9+8],
543 bytebits_to_byte(BitStream+i*9,8)
544 );
545 }
546 if (pTest)
547 PrintAndLog("Parity Passed");
548 else
549 PrintAndLog("Parity Failed");
550 }
551 return code;
552 }
553 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
554 * Format:
555 *
556 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
557 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
558 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
559 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
560 * CCCCCCCC <- column parity bits
561 * 0 <- stop bit
562 * LW <- Listen Window
563 *
564 * This pattern repeats for every block of data being transmitted.
565 * Transmission starts with two Listen Windows (LW - a modulated
566 * pattern of 320 cycles each (32/32/128/64/64)).
567 *
568 * Note that this data may or may not be the UID. It is whatever data
569 * is stored in the blocks defined in the control word First and Last
570 * Word Read values. UID is stored in block 32.
571 */
572 //completed by Marshmellow
573 int EM4x50Read(const char *Cmd, bool verbose)
574 {
575 uint8_t fndClk[] = {8,16,32,40,50,64,128};
576 int clk = 0;
577 int invert = 0;
578 int tol = 0;
579 int i, j, startblock, skip, block, start, end, low, high, minClk;
580 bool complete = false;
581 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
582 uint32_t Code[6];
583 char tmp[6];
584 char tmp2[20];
585 int phaseoff;
586 high = low = 0;
587 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
588
589 // get user entry if any
590 sscanf(Cmd, "%i %i", &clk, &invert);
591
592 // first get high and low values
593 for (i = 0; i < GraphTraceLen; i++) {
594 if (GraphBuffer[i] > high)
595 high = GraphBuffer[i];
596 else if (GraphBuffer[i] < low)
597 low = GraphBuffer[i];
598 }
599
600 i = 0;
601 j = 0;
602 minClk = 255;
603 // get to first full low to prime loop and skip incomplete first pulse
604 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
605 ++i;
606 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
607 ++i;
608 skip = i;
609
610 // populate tmpbuff buffer with pulse lengths
611 while (i < GraphTraceLen) {
612 // measure from low to low
613 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
614 ++i;
615 start= i;
616 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
617 ++i;
618 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
619 ++i;
620 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
621 break;
622 }
623 tmpbuff[j++]= i - start;
624 if (i-start < minClk && i < GraphTraceLen) {
625 minClk = i - start;
626 }
627 }
628 // set clock
629 if (!clk) {
630 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
631 tol = fndClk[clkCnt]/8;
632 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
633 clk=fndClk[clkCnt];
634 break;
635 }
636 }
637 if (!clk) return 0;
638 } else tol = clk/8;
639
640 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
641 start = -1;
642 for (i= 0; i < j - 4 ; ++i) {
643 skip += tmpbuff[i];
644 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
645 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
646 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
647 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
648 {
649 start= i + 4;
650 break;
651 }
652 }
653 startblock = i + 4;
654
655 // skip over the remainder of LW
656 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
657 if (tmpbuff[i+3]>clk)
658 phaseoff = tmpbuff[i+3]-clk;
659 else
660 phaseoff = 0;
661 // now do it again to find the end
662 end = skip;
663 for (i += 3; i < j - 4 ; ++i) {
664 end += tmpbuff[i];
665 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
666 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
667 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
668 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
669 {
670 complete= true;
671 break;
672 }
673 }
674 end = i;
675 // report back
676 if (verbose || g_debugMode) {
677 if (start >= 0) {
678 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
679 } else {
680 PrintAndLog("No data found!, clock tried:%d",clk);
681 PrintAndLog("Try again with more samples.");
682 PrintAndLog(" or after a 'data askedge' command to clean up the read");
683 return 0;
684 }
685 } else if (start < 0) return 0;
686 start = skip;
687 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
688 // save GraphBuffer - to restore it later
689 save_restoreGB(GRAPH_SAVE);
690 // get rid of leading crap
691 snprintf(tmp, sizeof(tmp), "%i", skip);
692 CmdLtrim(tmp);
693 bool pTest;
694 bool AllPTest = true;
695 // now work through remaining buffer printing out data blocks
696 block = 0;
697 i = startblock;
698 while (block < 6) {
699 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
700 skip = phaseoff;
701
702 // look for LW before start of next block
703 for ( ; i < j - 4 ; ++i) {
704 skip += tmpbuff[i];
705 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
706 if (tmpbuff[i+1] >= clk-tol)
707 break;
708 }
709 if (i >= j-4) break; //next LW not found
710 skip += clk;
711 if (tmpbuff[i+1]>clk)
712 phaseoff = tmpbuff[i+1]-clk;
713 else
714 phaseoff = 0;
715 i += 2;
716 if (ASKDemod(tmp2, false, false, 1) < 1) {
717 save_restoreGB(GRAPH_RESTORE);
718 return 0;
719 }
720 //set DemodBufferLen to just one block
721 DemodBufferLen = skip/clk;
722 //test parities
723 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
724 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
725 AllPTest &= pTest;
726 //get output
727 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
728 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
729 //skip to start of next block
730 snprintf(tmp,sizeof(tmp),"%i",skip);
731 CmdLtrim(tmp);
732 block++;
733 if (i >= end) break; //in case chip doesn't output 6 blocks
734 }
735 //print full code:
736 if (verbose || g_debugMode || AllPTest){
737 if (!complete) {
738 PrintAndLog("*** Warning!");
739 PrintAndLog("Partial data - no end found!");
740 PrintAndLog("Try again with more samples.");
741 }
742 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
743 end = block;
744 for (block=0; block < end; block++){
745 PrintAndLog("Block %d: %08x",block,Code[block]);
746 }
747 if (AllPTest) {
748 PrintAndLog("Parities Passed");
749 } else {
750 PrintAndLog("Parities Failed");
751 PrintAndLog("Try cleaning the read samples with 'data askedge'");
752 }
753 }
754
755 //restore GraphBuffer
756 save_restoreGB(GRAPH_RESTORE);
757 return (int)AllPTest;
758 }
759
760 int CmdEM4x50Read(const char *Cmd)
761 {
762 return EM4x50Read(Cmd, true);
763 }
764
765 //**************** Start of EM4x05/EM4x69 Code ************************
766 int usage_lf_em_read(void) {
767 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
768 PrintAndLog("");
769 PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
770 PrintAndLog("Options:");
771 PrintAndLog(" h - this help");
772 PrintAndLog(" address - memory address to read. (0-15)");
773 PrintAndLog(" pwd - password (hex) (optional)");
774 PrintAndLog("samples:");
775 PrintAndLog(" lf em 4x05readword 1");
776 PrintAndLog(" lf em 4x05readword 1 11223344");
777 return 0;
778 }
779
780 // for command responses from em4x05 or em4x69
781 // download samples from device and copy them to the Graphbuffer
782 bool downloadSamplesEM() {
783 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
784 uint8_t got[6000];
785 GetFromBigBuf(got, sizeof(got), 0);
786 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
787 PrintAndLog("command execution time out");
788 return false;
789 }
790 setGraphBuf(got, sizeof(got));
791 return true;
792 }
793
794 bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
795 // em4x05/em4x69 command response preamble is 00001010
796 // skip first two 0 bits as they might have been missed in the demod
797 uint8_t preamble[] = {0,0,1,0,1,0};
798 size_t startIdx = 0;
799
800 // set size to 20 to only test first 14 positions for the preamble or less if not a read command
801 size_t size = (readCmd) ? 20 : 11;
802 // sanity check
803 size = (size > DemodBufferLen) ? DemodBufferLen : size;
804 // test preamble
805 if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
806 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
807 return false;
808 }
809 // if this is a readword command, get the read bytes and test the parities
810 if (readCmd) {
811 if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
812 if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
813 return false;
814 }
815 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
816 if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
817 if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
818 return false;
819 }
820
821 setDemodBuf(DemodBuffer, 32, 0);
822 //setClockGrid(0,0);
823
824 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
825 }
826 return true;
827 }
828
829 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
830 // should cover 90% of known used configs
831 // the rest will need to be manually demoded for now...
832 int demodEM4x05resp(uint32_t *word, bool readCmd) {
833 int ans = 0;
834
835 // test for FSK wave (easiest to 99% ID)
836 if (GetFskClock("", false, false)) {
837 //valid fsk clocks found
838 ans = FSKrawDemod("0 0", false);
839 if (!ans) {
840 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
841 } else {
842 if (EM4x05testDemodReadData(word, readCmd)) {
843 return 1;
844 }
845 }
846 }
847 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
848 ans = GetPskClock("", false, false);
849 if (ans>0) {
850 //try psk1
851 ans = PSKDemod("0 0 6", false);
852 if (!ans) {
853 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
854 } else {
855 if (EM4x05testDemodReadData(word, readCmd)) {
856 return 1;
857 } else {
858 //try psk2
859 psk1TOpsk2(DemodBuffer, DemodBufferLen);
860 if (EM4x05testDemodReadData(word, readCmd)) {
861 return 1;
862 }
863 }
864 //try psk1 inverted
865 ans = PSKDemod("0 1 6", false);
866 if (!ans) {
867 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
868 } else {
869 if (EM4x05testDemodReadData(word, readCmd)) {
870 return 1;
871 } else {
872 //try psk2
873 psk1TOpsk2(DemodBuffer, DemodBufferLen);
874 if (EM4x05testDemodReadData(word, readCmd)) {
875 return 1;
876 }
877 }
878 }
879 }
880 }
881
882 // manchester is more common than biphase... try first
883 bool stcheck = false;
884 // try manchester - NOTE: ST only applies to T55x7 tags.
885 ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
886 if (!ans) {
887 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
888 } else {
889 if (EM4x05testDemodReadData(word, readCmd)) {
890 return 1;
891 }
892 }
893
894 //try biphase
895 ans = ASKbiphaseDemod("0 0 1", false);
896 if (!ans) {
897 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
898 } else {
899 if (EM4x05testDemodReadData(word, readCmd)) {
900 return 1;
901 }
902 }
903
904 //try diphase (differential biphase or inverted)
905 ans = ASKbiphaseDemod("0 1 1", false);
906 if (!ans) {
907 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
908 } else {
909 if (EM4x05testDemodReadData(word, readCmd)) {
910 return 1;
911 }
912 }
913
914 return -1;
915 }
916
917 int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
918 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
919 clearCommandBuffer();
920 SendCommand(&c);
921 UsbCommand resp;
922 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
923 PrintAndLog("Command timed out");
924 return -1;
925 }
926 if ( !downloadSamplesEM() ) {
927 return -1;
928 }
929 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
930 if (graphJustNoise(GraphBuffer, testLen)) {
931 PrintAndLog("no tag not found");
932 return -1;
933 }
934 //attempt demod:
935 return demodEM4x05resp(wordData, true);
936 }
937
938 int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
939 uint32_t wordData = 0;
940 int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
941 if (success == 1)
942 PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
943 else
944 PrintAndLog("Read Address %02d | failed",addr);
945
946 return success;
947 }
948
949 int CmdEM4x05ReadWord(const char *Cmd) {
950 uint8_t addr;
951 uint32_t pwd;
952 bool usePwd = false;
953 uint8_t ctmp = param_getchar(Cmd, 0);
954 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
955
956 addr = param_get8ex(Cmd, 0, 50, 10);
957 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
958 pwd = param_get32ex(Cmd, 1, 1, 16);
959
960 if ( (addr > 15) ) {
961 PrintAndLog("Address must be between 0 and 15");
962 return 1;
963 }
964 if ( pwd == 1 ) {
965 PrintAndLog("Reading address %02u", addr);
966 } else {
967 usePwd = true;
968 PrintAndLog("Reading address %02u | password %08X", addr, pwd);
969 }
970
971 return EM4x05ReadWord(addr, pwd, usePwd);
972 }
973
974 int usage_lf_em_dump(void) {
975 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
976 PrintAndLog("");
977 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
978 PrintAndLog("Options:");
979 PrintAndLog(" h - this help");
980 PrintAndLog(" pwd - password (hex) (optional)");
981 PrintAndLog("samples:");
982 PrintAndLog(" lf em 4x05dump");
983 PrintAndLog(" lf em 4x05dump 11223344");
984 return 0;
985 }
986
987 int CmdEM4x05dump(const char *Cmd) {
988 uint8_t addr = 0;
989 uint32_t pwd;
990 bool usePwd = false;
991 uint8_t ctmp = param_getchar(Cmd, 0);
992 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
993
994 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
995 pwd = param_get32ex(Cmd, 0, 1, 16);
996
997 if ( pwd != 1 ) {
998 usePwd = true;
999 }
1000 int success = 1;
1001 for (; addr < 16; addr++) {
1002 if (addr == 2) {
1003 if (usePwd) {
1004 PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
1005 } else {
1006 PrintAndLog(" PWD Address 02 | cannot read");
1007 }
1008 } else {
1009 success &= EM4x05ReadWord(addr, pwd, usePwd);
1010 }
1011 }
1012
1013 return success;
1014 }
1015
1016
1017 int usage_lf_em_write(void) {
1018 PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
1019 PrintAndLog("");
1020 PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]");
1021 PrintAndLog("Options:");
1022 PrintAndLog(" h - this help");
1023 PrintAndLog(" a <address> - memory address to write to. (0-15)");
1024 PrintAndLog(" d <data> - data to write (hex)");
1025 PrintAndLog(" p <pwd> - password (hex) (optional)");
1026 PrintAndLog(" s - swap the data bit order before write");
1027 PrintAndLog(" i - invert the data bits before write");
1028 PrintAndLog("samples:");
1029 PrintAndLog(" lf em 4x05writeword a 5 d 11223344");
1030 PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i");
1031 return 0;
1032 }
1033
1034 // note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing
1035 // it if invertion is needed. (example FSK2a vs FSK)
1036 // also em4x05 requires swapping word data when compared to the data used for t55xx chips.
1037 int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) {
1038 if (swap) data = SwapBits(data, 32);
1039
1040 if (invert) data ^= 0xFFFFFFFF;
1041
1042 if ( (addr > 15) ) {
1043 PrintAndLog("Address must be between 0 and 15");
1044 return -1;
1045 }
1046 if ( !usePwd ) {
1047 PrintAndLog("Writing address %d data %08X", addr, data);
1048 } else {
1049 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
1050 }
1051
1052 uint16_t flag = (addr << 8 ) | usePwd;
1053
1054 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
1055 clearCommandBuffer();
1056 SendCommand(&c);
1057 UsbCommand resp;
1058 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
1059 PrintAndLog("Error occurred, device did not respond during write operation.");
1060 return -1;
1061 }
1062 if ( !downloadSamplesEM() ) {
1063 return -1;
1064 }
1065 //check response for 00001010 for write confirmation!
1066 //attempt demod:
1067 uint32_t dummy = 0;
1068 int result = demodEM4x05resp(&dummy,false);
1069 if (result == 1) {
1070 PrintAndLog("Write Verified");
1071 } else {
1072 PrintAndLog("Write could not be verified");
1073 }
1074 return result;
1075 }
1076
1077 int CmdEM4x05WriteWord(const char *Cmd) {
1078 bool errors = false;
1079 bool usePwd = false;
1080 uint32_t data = 0xFFFFFFFF;
1081 uint32_t pwd = 0xFFFFFFFF;
1082 bool swap = false;
1083 bool invert = false;
1084 uint8_t addr = 16; // default to invalid address
1085 bool gotData = false;
1086 char cmdp = 0;
1087 while(param_getchar(Cmd, cmdp) != 0x00)
1088 {
1089 switch(param_getchar(Cmd, cmdp))
1090 {
1091 case 'h':
1092 case 'H':
1093 return usage_lf_em_write();
1094 case 'a':
1095 case 'A':
1096 addr = param_get8ex(Cmd, cmdp+1, 16, 10);
1097 cmdp += 2;
1098 break;
1099 case 'd':
1100 case 'D':
1101 data = param_get32ex(Cmd, cmdp+1, 0, 16);
1102 gotData = true;
1103 cmdp += 2;
1104 break;
1105 case 'i':
1106 case 'I':
1107 invert = true;
1108 cmdp++;
1109 break;
1110 case 'p':
1111 case 'P':
1112 pwd = param_get32ex(Cmd, cmdp+1, 1, 16);
1113 if (pwd == 1) {
1114 PrintAndLog("invalid pwd");
1115 errors = true;
1116 }
1117 usePwd = true;
1118 cmdp += 2;
1119 break;
1120 case 's':
1121 case 'S':
1122 swap = true;
1123 cmdp++;
1124 break;
1125 default:
1126 PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
1127 errors = true;
1128 break;
1129 }
1130 if(errors) break;
1131 }
1132 //Validations
1133 if(errors) return usage_lf_em_write();
1134
1135 if ( strlen(Cmd) == 0 ) return usage_lf_em_write();
1136
1137 if (!gotData) {
1138 PrintAndLog("You must enter the data you want to write");
1139 return usage_lf_em_write();
1140 }
1141 return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert);
1142 }
1143
1144 void printEM4x05config(uint32_t wordData) {
1145 uint16_t datarate = EM4x05_GET_BITRATE(wordData);
1146 uint8_t encoder = ((wordData >> 6) & 0xF);
1147 char enc[14];
1148 memset(enc,0,sizeof(enc));
1149
1150 uint8_t PSKcf = (wordData >> 10) & 0x3;
1151 char cf[10];
1152 memset(cf,0,sizeof(cf));
1153 uint8_t delay = (wordData >> 12) & 0x3;
1154 char cdelay[33];
1155 memset(cdelay,0,sizeof(cdelay));
1156 uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData);
1157 uint8_t LWR = numblks+5-1; //last word read
1158 switch (encoder) {
1159 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
1160 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
1161 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
1162 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
1163 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
1164 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
1165 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
1166 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
1167 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
1168 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
1169 default: snprintf(enc,sizeof(enc),"Unknown"); break;
1170 }
1171
1172 switch (PSKcf) {
1173 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
1174 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
1175 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
1176 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
1177 }
1178
1179 switch (delay) {
1180 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1181 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
1182 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
1183 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
1184 }
1185 uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18;
1186 uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19;
1187 uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20;
1188 uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21;
1189 uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22;
1190 uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23;
1191 uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24;
1192 uint8_t pigeon = (wordData & (1<<26))>>26;
1193 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
1194 PrintAndLog("Config Breakdown:");
1195 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
1196 PrintAndLog(" Encoder: %u | %s", encoder, enc);
1197 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
1198 PrintAndLog(" Delay: %u | %s", delay, cdelay);
1199 PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks);
1200 PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required");
1201 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required");
1202 PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required");
1203 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required");
1204 PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off");
1205 PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted");
1206 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled");
1207 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled");
1208 }
1209
1210 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
1211 switch (chipType) {
1212 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
1213 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
1214 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
1215 //add more here when known
1216 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
1217 }
1218
1219 switch (cap) {
1220 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
1221 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
1222 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
1223 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
1224 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
1225 }
1226
1227 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1228 if (serial != 0) {
1229 PrintAndLog("\n Serial #: %08X\n", serial);
1230 }
1231 }
1232
1233 void printEM4x05ProtectionBits(uint32_t wordData) {
1234 for (uint8_t i = 0; i < 15; i++) {
1235 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1236 if (i==14) {
1237 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1238 }
1239 }
1240 }
1241
1242 //quick test for EM4x05/EM4x69 tag
1243 bool EM4x05Block0Test(uint32_t *wordData) {
1244 if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
1245 return true;
1246 }
1247 return false;
1248 }
1249
1250 int CmdEM4x05info(const char *Cmd) {
1251 //uint8_t addr = 0;
1252 uint32_t pwd;
1253 uint32_t wordData = 0;
1254 bool usePwd = false;
1255 uint8_t ctmp = param_getchar(Cmd, 0);
1256 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
1257
1258 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1259 pwd = param_get32ex(Cmd, 0, 1, 16);
1260
1261 if ( pwd != 1 ) {
1262 usePwd = true;
1263 }
1264
1265 // read word 0 (chip info)
1266 // block 0 can be read even without a password.
1267 if ( !EM4x05Block0Test(&wordData) )
1268 return -1;
1269
1270 uint8_t chipType = (wordData >> 1) & 0xF;
1271 uint8_t cap = (wordData >> 5) & 3;
1272 uint16_t custCode = (wordData >> 9) & 0x3FF;
1273
1274 // read word 1 (serial #) doesn't need pwd
1275 wordData = 0;
1276 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
1277 //failed, but continue anyway...
1278 }
1279 printEM4x05info(chipType, cap, custCode, wordData);
1280
1281 // read word 4 (config block)
1282 // needs password if one is set
1283 wordData = 0;
1284 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
1285 //failed
1286 PrintAndLog("Config block read failed - might be password protected.");
1287 return 0;
1288 }
1289 printEM4x05config(wordData);
1290
1291 // read word 14 and 15 to see which is being used for the protection bits
1292 wordData = 0;
1293 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
1294 //failed
1295 return 0;
1296 }
1297 // if status bit says this is not the used protection word
1298 if (!(wordData & 0x8000)) {
1299 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
1300 //failed
1301 return 0;
1302 }
1303 }
1304 if (!(wordData & 0x8000)) {
1305 //something went wrong
1306 return 0;
1307 }
1308 printEM4x05ProtectionBits(wordData);
1309
1310 return 1;
1311 }
1312
1313
1314 static command_t CommandTable[] =
1315 {
1316 {"help", CmdHelp, 1, "This help"},
1317 {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1318 {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
1319 {"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
1320 {"410xbrute", CmdEM410xBrute, 0, "ids.txt [clock rate] -- Bruteforcing by simulating EM410x tags (1 UID/s)"},
1321 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1322 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1323 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1324 {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
1325 {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
1326 {"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
1327 {"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
1328 {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
1329 {NULL, NULL, 0, NULL}
1330 };
1331
1332 int CmdLFEM4X(const char *Cmd)
1333 {
1334 CmdsParse(CommandTable, Cmd);
1335 return 0;
1336 }
1337
1338 int CmdHelp(const char *Cmd)
1339 {
1340 CmdsHelp(CommandTable);
1341 return 0;
1342 }
Impressum, Datenschutz