]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Fixed bug in HID clone short format. Added EM4xxx block read/write commands
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18
19 #include <stdarg.h>
20
21 #include "legicrf.h"
22 #include <hitag2.h>
23
24 #ifdef WITH_LCD
25 # include "fonts.h"
26 # include "LCD.h"
27 #endif
28
29 #define abs(x) ( ((x)<0) ? -(x) : (x) )
30
31 //=============================================================================
32 // A buffer where we can queue things up to be sent through the FPGA, for
33 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
34 // is the order in which they go out on the wire.
35 //=============================================================================
36
37 uint8_t ToSend[512];
38 int ToSendMax;
39 static int ToSendBit;
40 struct common_area common_area __attribute__((section(".commonarea")));
41
42 void BufferClear(void)
43 {
44 memset(BigBuf,0,sizeof(BigBuf));
45 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
46 }
47
48 void ToSendReset(void)
49 {
50 ToSendMax = -1;
51 ToSendBit = 8;
52 }
53
54 void ToSendStuffBit(int b)
55 {
56 if(ToSendBit >= 8) {
57 ToSendMax++;
58 ToSend[ToSendMax] = 0;
59 ToSendBit = 0;
60 }
61
62 if(b) {
63 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
64 }
65
66 ToSendBit++;
67
68 if(ToSendBit >= sizeof(ToSend)) {
69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72 }
73
74 //=============================================================================
75 // Debug print functions, to go out over USB, to the usual PC-side client.
76 //=============================================================================
77
78 void DbpString(char *str)
79 {
80 /* this holds up stuff unless we're connected to usb */
81 if (!UsbConnected())
82 return;
83
84 UsbCommand c;
85 c.cmd = CMD_DEBUG_PRINT_STRING;
86 c.arg[0] = strlen(str);
87 if(c.arg[0] > sizeof(c.d.asBytes)) {
88 c.arg[0] = sizeof(c.d.asBytes);
89 }
90 memcpy(c.d.asBytes, str, c.arg[0]);
91
92 UsbSendPacket((uint8_t *)&c, sizeof(c));
93 // TODO fix USB so stupid things like this aren't req'd
94 SpinDelay(50);
95 }
96
97 #if 0
98 void DbpIntegers(int x1, int x2, int x3)
99 {
100 /* this holds up stuff unless we're connected to usb */
101 if (!UsbConnected())
102 return;
103
104 UsbCommand c;
105 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
106 c.arg[0] = x1;
107 c.arg[1] = x2;
108 c.arg[2] = x3;
109
110 UsbSendPacket((uint8_t *)&c, sizeof(c));
111 // XXX
112 SpinDelay(50);
113 }
114 #endif
115
116 void Dbprintf(const char *fmt, ...) {
117 // should probably limit size here; oh well, let's just use a big buffer
118 char output_string[128];
119 va_list ap;
120
121 va_start(ap, fmt);
122 kvsprintf(fmt, output_string, 10, ap);
123 va_end(ap);
124
125 DbpString(output_string);
126 }
127
128 // prints HEX & ASCII
129 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
130 int l=0,i;
131 char ascii[9];
132
133 while (len>0) {
134 if (len>8) l=8;
135 else l=len;
136
137 memcpy(ascii,d,l);
138 ascii[l]=0;
139
140 // filter safe ascii
141 for (i=0;i<l;i++)
142 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
143
144 if (bAsci) {
145 Dbprintf("%-8s %*D",ascii,l,d," ");
146 } else {
147 Dbprintf("%*D",l,d," ");
148 }
149
150 len-=8;
151 d+=8;
152 }
153 }
154
155 //-----------------------------------------------------------------------------
156 // Read an ADC channel and block till it completes, then return the result
157 // in ADC units (0 to 1023). Also a routine to average 32 samples and
158 // return that.
159 //-----------------------------------------------------------------------------
160 static int ReadAdc(int ch)
161 {
162 uint32_t d;
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
165 AT91C_BASE_ADC->ADC_MR =
166 ADC_MODE_PRESCALE(32) |
167 ADC_MODE_STARTUP_TIME(16) |
168 ADC_MODE_SAMPLE_HOLD_TIME(8);
169 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
170
171 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
172 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
173 ;
174 d = AT91C_BASE_ADC->ADC_CDR[ch];
175
176 return d;
177 }
178
179 int AvgAdc(int ch) // was static - merlok
180 {
181 int i;
182 int a = 0;
183
184 for(i = 0; i < 32; i++) {
185 a += ReadAdc(ch);
186 }
187
188 return (a + 15) >> 5;
189 }
190
191 void MeasureAntennaTuning(void)
192 {
193 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
194 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
195 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
196
197 UsbCommand c;
198
199 LED_B_ON();
200 DbpString("Measuring antenna characteristics, please wait...");
201 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
202
203 /*
204 * Sweeps the useful LF range of the proxmark from
205 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
206 * read the voltage in the antenna, the result left
207 * in the buffer is a graph which should clearly show
208 * the resonating frequency of your LF antenna
209 * ( hopefully around 95 if it is tuned to 125kHz!)
210 */
211
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
213 for (i=255; i>19; i--) {
214 WDT_HIT();
215 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
216 SpinDelay(20);
217 // Vref = 3.3V, and a 10000:240 voltage divider on the input
218 // can measure voltages up to 137500 mV
219 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
220 if (i==95) vLf125 = adcval; // voltage at 125Khz
221 if (i==89) vLf134 = adcval; // voltage at 134Khz
222
223 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
224 if(dest[i] > peak) {
225 peakv = adcval;
226 peak = dest[i];
227 peakf = i;
228 //ptr = i;
229 }
230 }
231
232 LED_A_ON();
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
235 SpinDelay(20);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
239
240 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
241 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
242 c.arg[1] = vHf;
243 c.arg[2] = peakf | (peakv << 16);
244
245 DbpString("Measuring complete, sending report back to host");
246
247 UsbSendPacket((uint8_t *)&c, sizeof(c));
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249 LED_A_OFF();
250 LED_B_OFF();
251 return;
252 }
253
254 void MeasureAntennaTuningHf(void)
255 {
256 int vHf = 0; // in mV
257
258 DbpString("Measuring HF antenna, press button to exit");
259
260 for (;;) {
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
263 SpinDelay(20);
264 // Vref = 3300mV, and an 10:1 voltage divider on the input
265 // can measure voltages up to 33000 mV
266 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
267
268 Dbprintf("%d mV",vHf);
269 if (BUTTON_PRESS()) break;
270 }
271 DbpString("cancelled");
272 }
273
274
275 void SimulateTagHfListen(void)
276 {
277 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
278 uint8_t v = 0;
279 int i;
280 int p = 0;
281
282 // We're using this mode just so that I can test it out; the simulated
283 // tag mode would work just as well and be simpler.
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
285
286 // We need to listen to the high-frequency, peak-detected path.
287 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
288
289 FpgaSetupSsc();
290
291 i = 0;
292 for(;;) {
293 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
294 AT91C_BASE_SSC->SSC_THR = 0xff;
295 }
296 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
297 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
298
299 v <<= 1;
300 if(r & 1) {
301 v |= 1;
302 }
303 p++;
304
305 if(p >= 8) {
306 dest[i] = v;
307 v = 0;
308 p = 0;
309 i++;
310
311 if(i >= FREE_BUFFER_SIZE) {
312 break;
313 }
314 }
315 }
316 }
317 DbpString("simulate tag (now type bitsamples)");
318 }
319
320 void ReadMem(int addr)
321 {
322 const uint8_t *data = ((uint8_t *)addr);
323
324 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
325 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
326 }
327
328 /* osimage version information is linked in */
329 extern struct version_information version_information;
330 /* bootrom version information is pointed to from _bootphase1_version_pointer */
331 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
332 void SendVersion(void)
333 {
334 char temp[48]; /* Limited data payload in USB packets */
335 DbpString("Prox/RFID mark3 RFID instrument");
336
337 /* Try to find the bootrom version information. Expect to find a pointer at
338 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
339 * pointer, then use it.
340 */
341 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
342 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
343 DbpString("bootrom version information appears invalid");
344 } else {
345 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
346 DbpString(temp);
347 }
348
349 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
350 DbpString(temp);
351
352 FpgaGatherVersion(temp, sizeof(temp));
353 DbpString(temp);
354 }
355
356 #ifdef WITH_LF
357 // samy's sniff and repeat routine
358 void SamyRun()
359 {
360 DbpString("Stand-alone mode! No PC necessary.");
361
362 // 3 possible options? no just 2 for now
363 #define OPTS 2
364
365 int high[OPTS], low[OPTS];
366
367 // Oooh pretty -- notify user we're in elite samy mode now
368 LED(LED_RED, 200);
369 LED(LED_ORANGE, 200);
370 LED(LED_GREEN, 200);
371 LED(LED_ORANGE, 200);
372 LED(LED_RED, 200);
373 LED(LED_ORANGE, 200);
374 LED(LED_GREEN, 200);
375 LED(LED_ORANGE, 200);
376 LED(LED_RED, 200);
377
378 int selected = 0;
379 int playing = 0;
380
381 // Turn on selected LED
382 LED(selected + 1, 0);
383
384 for (;;)
385 {
386 UsbPoll(FALSE);
387 WDT_HIT();
388
389 // Was our button held down or pressed?
390 int button_pressed = BUTTON_HELD(1000);
391 SpinDelay(300);
392
393 // Button was held for a second, begin recording
394 if (button_pressed > 0)
395 {
396 LEDsoff();
397 LED(selected + 1, 0);
398 LED(LED_RED2, 0);
399
400 // record
401 DbpString("Starting recording");
402
403 // wait for button to be released
404 while(BUTTON_PRESS())
405 WDT_HIT();
406
407 /* need this delay to prevent catching some weird data */
408 SpinDelay(500);
409
410 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
411 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
412
413 LEDsoff();
414 LED(selected + 1, 0);
415 // Finished recording
416
417 // If we were previously playing, set playing off
418 // so next button push begins playing what we recorded
419 playing = 0;
420 }
421
422 // Change where to record (or begin playing)
423 else if (button_pressed)
424 {
425 // Next option if we were previously playing
426 if (playing)
427 selected = (selected + 1) % OPTS;
428 playing = !playing;
429
430 LEDsoff();
431 LED(selected + 1, 0);
432
433 // Begin transmitting
434 if (playing)
435 {
436 LED(LED_GREEN, 0);
437 DbpString("Playing");
438 // wait for button to be released
439 while(BUTTON_PRESS())
440 WDT_HIT();
441 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
442 CmdHIDsimTAG(high[selected], low[selected], 0);
443 DbpString("Done playing");
444 if (BUTTON_HELD(1000) > 0)
445 {
446 DbpString("Exiting");
447 LEDsoff();
448 return;
449 }
450
451 /* We pressed a button so ignore it here with a delay */
452 SpinDelay(300);
453
454 // when done, we're done playing, move to next option
455 selected = (selected + 1) % OPTS;
456 playing = !playing;
457 LEDsoff();
458 LED(selected + 1, 0);
459 }
460 else
461 while(BUTTON_PRESS())
462 WDT_HIT();
463 }
464 }
465 }
466 #endif
467
468 /*
469 OBJECTIVE
470 Listen and detect an external reader. Determine the best location
471 for the antenna.
472
473 INSTRUCTIONS:
474 Inside the ListenReaderField() function, there is two mode.
475 By default, when you call the function, you will enter mode 1.
476 If you press the PM3 button one time, you will enter mode 2.
477 If you press the PM3 button a second time, you will exit the function.
478
479 DESCRIPTION OF MODE 1:
480 This mode just listens for an external reader field and lights up green
481 for HF and/or red for LF. This is the original mode of the detectreader
482 function.
483
484 DESCRIPTION OF MODE 2:
485 This mode will visually represent, using the LEDs, the actual strength of the
486 current compared to the maximum current detected. Basically, once you know
487 what kind of external reader is present, it will help you spot the best location to place
488 your antenna. You will probably not get some good results if there is a LF and a HF reader
489 at the same place! :-)
490
491 LIGHT SCHEME USED:
492 */
493 static const char LIGHT_SCHEME[] = {
494 0x0, /* ---- | No field detected */
495 0x1, /* X--- | 14% of maximum current detected */
496 0x2, /* -X-- | 29% of maximum current detected */
497 0x4, /* --X- | 43% of maximum current detected */
498 0x8, /* ---X | 57% of maximum current detected */
499 0xC, /* --XX | 71% of maximum current detected */
500 0xE, /* -XXX | 86% of maximum current detected */
501 0xF, /* XXXX | 100% of maximum current detected */
502 };
503 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
504
505 void ListenReaderField(int limit)
506 {
507 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
508 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
509 int mode=1, display_val, display_max, i;
510
511 #define LF_ONLY 1
512 #define HF_ONLY 2
513
514 LEDsoff();
515
516 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
517
518 if(limit != HF_ONLY) {
519 Dbprintf("LF 125/134 Baseline: %d", lf_av);
520 lf_baseline = lf_av;
521 }
522
523 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
524
525 if (limit != LF_ONLY) {
526 Dbprintf("HF 13.56 Baseline: %d", hf_av);
527 hf_baseline = hf_av;
528 }
529
530 for(;;) {
531 if (BUTTON_PRESS()) {
532 SpinDelay(500);
533 switch (mode) {
534 case 1:
535 mode=2;
536 DbpString("Signal Strength Mode");
537 break;
538 case 2:
539 default:
540 DbpString("Stopped");
541 LEDsoff();
542 return;
543 break;
544 }
545 }
546 WDT_HIT();
547
548 if (limit != HF_ONLY) {
549 if(mode==1) {
550 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
551 else LED_D_OFF();
552 }
553
554 ++lf_count;
555 lf_av_new= ReadAdc(ADC_CHAN_LF);
556 // see if there's a significant change
557 if(abs(lf_av - lf_av_new) > 10) {
558 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
559 lf_av = lf_av_new;
560 if (lf_av > lf_max)
561 lf_max = lf_av;
562 lf_count= 0;
563 }
564 }
565
566 if (limit != LF_ONLY) {
567 if (mode == 1){
568 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
569 else LED_B_OFF();
570 }
571
572 ++hf_count;
573 hf_av_new= ReadAdc(ADC_CHAN_HF);
574 // see if there's a significant change
575 if(abs(hf_av - hf_av_new) > 10) {
576 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
577 hf_av = hf_av_new;
578 if (hf_av > hf_max)
579 hf_max = hf_av;
580 hf_count= 0;
581 }
582 }
583
584 if(mode == 2) {
585 if (limit == LF_ONLY) {
586 display_val = lf_av;
587 display_max = lf_max;
588 } else if (limit == HF_ONLY) {
589 display_val = hf_av;
590 display_max = hf_max;
591 } else { /* Pick one at random */
592 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
593 display_val = hf_av;
594 display_max = hf_max;
595 } else {
596 display_val = lf_av;
597 display_max = lf_max;
598 }
599 }
600 for (i=0; i<LIGHT_LEN; i++) {
601 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
602 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
603 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
604 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
605 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
606 break;
607 }
608 }
609 }
610 }
611 }
612
613 void UsbPacketReceived(uint8_t *packet, int len)
614 {
615 UsbCommand *c = (UsbCommand *)packet;
616 UsbCommand ack;
617 ack.cmd = CMD_ACK;
618
619 switch(c->cmd) {
620 #ifdef WITH_LF
621 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
622 AcquireRawAdcSamples125k(c->arg[0]);
623 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
624 break;
625 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
626 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
627 break;
628 case CMD_HID_DEMOD_FSK:
629 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
630 break;
631 case CMD_HID_SIM_TAG:
632 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
633 break;
634 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
635 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
636 break;
637 case CMD_EM410X_WRITE_TAG:
638 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
639 break;
640 case CMD_READ_TI_TYPE:
641 ReadTItag();
642 break;
643 case CMD_WRITE_TI_TYPE:
644 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
645 break;
646 case CMD_SIMULATE_TAG_125K:
647 LED_A_ON();
648 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
649 LED_A_OFF();
650 break;
651 case CMD_LF_SIMULATE_BIDIR:
652 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
653 break;
654 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
655 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
656 break;
657 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
658 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
659 break;
660 case CMD_T55XX_READ_BLOCK:
661 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
662 break;
663 case CMD_T55XX_WRITE_BLOCK:
664 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
665 break;
666 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
667 T55xxReadTrace();
668 break;
669 case CMD_PCF7931_READ: // Read PCF7931 tag
670 ReadPCF7931();
671 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
672 break;
673 case CMD_EM4X_READ_WORD:
674 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
675 break;
676 case CMD_EM4X_WRITE_WORD:
677 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
678 break;
679 #endif
680
681 #ifdef WITH_HITAG
682 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
683 SnoopHitag(c->arg[0]);
684 break;
685 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
686 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
687 break;
688 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
689 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
690 break;
691 #endif
692
693 #ifdef WITH_ISO15693
694 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
695 AcquireRawAdcSamplesIso15693();
696 break;
697 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
698 RecordRawAdcSamplesIso15693();
699 break;
700
701 case CMD_ISO_15693_COMMAND:
702 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
703 break;
704
705 case CMD_ISO_15693_FIND_AFI:
706 BruteforceIso15693Afi(c->arg[0]);
707 break;
708
709 case CMD_ISO_15693_DEBUG:
710 SetDebugIso15693(c->arg[0]);
711 break;
712
713 case CMD_READER_ISO_15693:
714 ReaderIso15693(c->arg[0]);
715 break;
716 case CMD_SIMTAG_ISO_15693:
717 SimTagIso15693(c->arg[0]);
718 break;
719 #endif
720
721 #ifdef WITH_LEGICRF
722 case CMD_SIMULATE_TAG_LEGIC_RF:
723 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
724 break;
725
726 case CMD_WRITER_LEGIC_RF:
727 LegicRfWriter(c->arg[1], c->arg[0]);
728 break;
729
730 case CMD_READER_LEGIC_RF:
731 LegicRfReader(c->arg[0], c->arg[1]);
732 break;
733 #endif
734
735 #ifdef WITH_ISO14443b
736 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
737 AcquireRawAdcSamplesIso14443(c->arg[0]);
738 break;
739 case CMD_READ_SRI512_TAG:
740 ReadSRI512Iso14443(c->arg[0]);
741 break;
742 case CMD_READ_SRIX4K_TAG:
743 ReadSRIX4KIso14443(c->arg[0]);
744 break;
745 case CMD_SNOOP_ISO_14443:
746 SnoopIso14443();
747 break;
748 case CMD_SIMULATE_TAG_ISO_14443:
749 SimulateIso14443Tag();
750 break;
751 #endif
752
753 #ifdef WITH_ISO14443a
754 case CMD_SNOOP_ISO_14443a:
755 SnoopIso14443a(c->arg[0]);
756 break;
757 case CMD_READER_ISO_14443a:
758 ReaderIso14443a(c, &ack);
759 break;
760 case CMD_SIMULATE_TAG_ISO_14443a:
761 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID
762 break;
763 case CMD_EPA_PACE_COLLECT_NONCE:
764 EPA_PACE_Collect_Nonce(c, &ack);
765 break;
766
767 case CMD_READER_MIFARE:
768 ReaderMifare(c->arg[0]);
769 break;
770 case CMD_MIFARE_READBL:
771 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
772 break;
773 case CMD_MIFARE_READSC:
774 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
775 break;
776 case CMD_MIFARE_WRITEBL:
777 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
778 break;
779 case CMD_MIFARE_NESTED:
780 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
781 break;
782 case CMD_MIFARE_CHKKEYS:
783 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
784 break;
785 case CMD_SIMULATE_MIFARE_CARD:
786 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
787 break;
788
789 // emulator
790 case CMD_MIFARE_SET_DBGMODE:
791 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
792 break;
793 case CMD_MIFARE_EML_MEMCLR:
794 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
795 break;
796 case CMD_MIFARE_EML_MEMSET:
797 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
798 break;
799 case CMD_MIFARE_EML_MEMGET:
800 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
801 break;
802 case CMD_MIFARE_EML_CARDLOAD:
803 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
804 break;
805
806 // Work with "magic Chinese" card
807 case CMD_MIFARE_EML_CSETBLOCK:
808 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
809 break;
810 case CMD_MIFARE_EML_CGETBLOCK:
811 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
812 break;
813
814 // mifare sniffer
815 case CMD_MIFARE_SNIFFER:
816 SniffMifare(c->arg[0]);
817 break;
818 #endif
819
820 #ifdef WITH_ICLASS
821 // Makes use of ISO14443a FPGA Firmware
822 case CMD_SNOOP_ICLASS:
823 SnoopIClass();
824 break;
825 case CMD_SIMULATE_TAG_ICLASS:
826 SimulateIClass(c->arg[0], c->d.asBytes);
827 break;
828 case CMD_READER_ICLASS:
829 ReaderIClass(c->arg[0]);
830 break;
831 #endif
832
833 case CMD_SIMULATE_TAG_HF_LISTEN:
834 SimulateTagHfListen();
835 break;
836
837 case CMD_BUFF_CLEAR:
838 BufferClear();
839 break;
840
841 case CMD_MEASURE_ANTENNA_TUNING:
842 MeasureAntennaTuning();
843 break;
844
845 case CMD_MEASURE_ANTENNA_TUNING_HF:
846 MeasureAntennaTuningHf();
847 break;
848
849 case CMD_LISTEN_READER_FIELD:
850 ListenReaderField(c->arg[0]);
851 break;
852
853 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
854 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
855 SpinDelay(200);
856 LED_D_OFF(); // LED D indicates field ON or OFF
857 break;
858
859 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
860 UsbCommand n;
861 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
862 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
863 } else {
864 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
865 }
866 n.arg[0] = c->arg[0];
867 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t));
868 LED_B_ON();
869 UsbSendPacket((uint8_t *)&n, sizeof(n));
870 LED_B_OFF();
871 } break;
872
873 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
874 uint8_t *b = (uint8_t *)BigBuf;
875 memcpy(b+c->arg[0], c->d.asBytes, 48);
876 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
877 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
878 } break;
879
880 case CMD_READ_MEM:
881 ReadMem(c->arg[0]);
882 break;
883
884 case CMD_SET_LF_DIVISOR:
885 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
886 break;
887
888 case CMD_SET_ADC_MUX:
889 switch(c->arg[0]) {
890 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
891 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
892 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
893 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
894 }
895 break;
896
897 case CMD_VERSION:
898 SendVersion();
899 break;
900
901 #ifdef WITH_LCD
902 case CMD_LCD_RESET:
903 LCDReset();
904 break;
905 case CMD_LCD:
906 LCDSend(c->arg[0]);
907 break;
908 #endif
909 case CMD_SETUP_WRITE:
910 case CMD_FINISH_WRITE:
911 case CMD_HARDWARE_RESET: {
912 USB_D_PLUS_PULLUP_OFF();
913 SpinDelay(1000);
914 SpinDelay(1000);
915 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
916 for(;;) {
917 // We're going to reset, and the bootrom will take control.
918 }
919 } break;
920
921 case CMD_START_FLASH: {
922 if(common_area.flags.bootrom_present) {
923 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
924 }
925 USB_D_PLUS_PULLUP_OFF();
926 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
927 for(;;);
928 } break;
929
930 case CMD_DEVICE_INFO: {
931 UsbCommand c;
932 c.cmd = CMD_DEVICE_INFO;
933 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
934 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
935 UsbSendPacket((uint8_t*)&c, sizeof(c));
936 } break;
937
938 default: {
939 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
940 } break;
941 }
942 }
943
944 void __attribute__((noreturn)) AppMain(void)
945 {
946 SpinDelay(100);
947
948 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
949 /* Initialize common area */
950 memset(&common_area, 0, sizeof(common_area));
951 common_area.magic = COMMON_AREA_MAGIC;
952 common_area.version = 1;
953 }
954 common_area.flags.osimage_present = 1;
955
956 LED_D_OFF();
957 LED_C_OFF();
958 LED_B_OFF();
959 LED_A_OFF();
960
961 UsbStart();
962
963 // The FPGA gets its clock from us from PCK0 output, so set that up.
964 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
965 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
966 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
967 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
968 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
969 AT91C_PMC_PRES_CLK_4;
970 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
971
972 // Reset SPI
973 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
974 // Reset SSC
975 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
976
977 // Load the FPGA image, which we have stored in our flash.
978 FpgaDownloadAndGo();
979
980 StartTickCount();
981
982 #ifdef WITH_LCD
983
984 LCDInit();
985
986 // test text on different colored backgrounds
987 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
988 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
989 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
990 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
991 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
992 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
993 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
994 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
995
996 // color bands
997 LCDFill(0, 1+8* 8, 132, 8, BLACK);
998 LCDFill(0, 1+8* 9, 132, 8, WHITE);
999 LCDFill(0, 1+8*10, 132, 8, RED);
1000 LCDFill(0, 1+8*11, 132, 8, GREEN);
1001 LCDFill(0, 1+8*12, 132, 8, BLUE);
1002 LCDFill(0, 1+8*13, 132, 8, YELLOW);
1003 LCDFill(0, 1+8*14, 132, 8, CYAN);
1004 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
1005
1006 #endif
1007
1008 for(;;) {
1009 UsbPoll(FALSE);
1010 WDT_HIT();
1011
1012 #ifdef WITH_LF
1013 if (BUTTON_HELD(1000) > 0)
1014 SamyRun();
1015 #endif
1016 }
1017 }
Impressum, Datenschutz