]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso15693.c
mod 'hf list' (#881)
[proxmark3-svn] / armsrc / iso15693.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
14
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
21 //
22 // VCD (reader) -> VICC (tag)
23 // 1 out of 256:
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
26 // 1 out of 4:
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
29 //
30 // VICC (tag) -> VCD (reader)
31 // Modulation:
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
40
41
42 // Random Remarks:
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
44
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
52
53 #include "iso15693.h"
54
55 #include "proxmark3.h"
56 #include "util.h"
57 #include "apps.h"
58 #include "string.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
61 #include "cmd.h"
62 #include "BigBuf.h"
63 #include "fpgaloader.h"
64
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
66
67 // Delays in SSP_CLK ticks.
68 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
69 #define DELAY_READER_TO_ARM 8
70 #define DELAY_ARM_TO_READER 0
71 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
72 #define DELAY_TAG_TO_ARM 32
73 #define DELAY_ARM_TO_TAG 16
74
75 static int DEBUG = 0;
76
77
78 // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
79 bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
80 uint32_t duration = timestamp_end - timestamp_start;
81 duration /= 32;
82 timestamp_end = timestamp_start + duration;
83 return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
84 }
85
86
87 ///////////////////////////////////////////////////////////////////////
88 // ISO 15693 Part 2 - Air Interface
89 // This section basically contains transmission and receiving of bits
90 ///////////////////////////////////////////////////////////////////////
91
92 // buffers
93 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
94 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
95 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
96
97 // ---------------------------
98 // Signal Processing
99 // ---------------------------
100
101 // prepare data using "1 out of 4" code for later transmission
102 // resulting data rate is 26.48 kbit/s (fc/512)
103 // cmd ... data
104 // n ... length of data
105 void CodeIso15693AsReader(uint8_t *cmd, int n) {
106
107 ToSendReset();
108
109 // SOF for 1of4
110 ToSend[++ToSendMax] = 0x84; //10000100
111
112 // data
113 for (int i = 0; i < n; i++) {
114 for (int j = 0; j < 8; j += 2) {
115 int these = (cmd[i] >> j) & 0x03;
116 switch(these) {
117 case 0:
118 ToSend[++ToSendMax] = 0x40; //01000000
119 break;
120 case 1:
121 ToSend[++ToSendMax] = 0x10; //00010000
122 break;
123 case 2:
124 ToSend[++ToSendMax] = 0x04; //00000100
125 break;
126 case 3:
127 ToSend[++ToSendMax] = 0x01; //00000001
128 break;
129 }
130 }
131 }
132
133 // EOF
134 ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
135
136 ToSendMax++;
137 }
138
139 // encode data using "1 out of 256" scheme
140 // data rate is 1,66 kbit/s (fc/8192)
141 // is designed for more robust communication over longer distances
142 static void CodeIso15693AsReader256(uint8_t *cmd, int n)
143 {
144 ToSendReset();
145
146 // SOF for 1of256
147 ToSend[++ToSendMax] = 0x81; //10000001
148
149 // data
150 for(int i = 0; i < n; i++) {
151 for (int j = 0; j <= 255; j++) {
152 if (cmd[i] == j) {
153 ToSendStuffBit(0);
154 ToSendStuffBit(1);
155 } else {
156 ToSendStuffBit(0);
157 ToSendStuffBit(0);
158 }
159 }
160 }
161
162 // EOF
163 ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
164
165 ToSendMax++;
166 }
167
168
169 // static uint8_t encode4Bits(const uint8_t b) {
170 // uint8_t c = b & 0xF;
171 // // OTA, the least significant bits first
172 // // The columns are
173 // // 1 - Bit value to send
174 // // 2 - Reversed (big-endian)
175 // // 3 - Manchester Encoded
176 // // 4 - Hex values
177
178 // switch(c){
179 // // 1 2 3 4
180 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
181 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
182 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
183 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
184 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
185 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
186 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
187 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
188 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
189 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
190 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
191 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
192 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
193 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
194 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
195 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
196
197 // }
198 // }
199
200 static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
201
202 void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
203 /*
204 * SOF comprises 3 parts;
205 * * An unmodulated time of 56.64 us
206 * * 24 pulses of 423.75 kHz (fc/32)
207 * * A logic 1, which starts with an unmodulated time of 18.88us
208 * followed by 8 pulses of 423.75kHz (fc/32)
209 *
210 * EOF comprises 3 parts:
211 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
212 * time of 18.88us.
213 * - 24 pulses of fc/32
214 * - An unmodulated time of 56.64 us
215 *
216 * A logic 0 starts with 8 pulses of fc/32
217 * followed by an unmodulated time of 256/fc (~18,88us).
218 *
219 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
220 * 8 pulses of fc/32 (also 18.88us)
221 *
222 * A bit here becomes 8 pulses of fc/32. Therefore:
223 * The SOF can be written as 00011101 = 0x1D
224 * The EOF can be written as 10111000 = 0xb8
225 * A logic 1 is 01
226 * A logic 0 is 10
227 *
228 * */
229
230 ToSendReset();
231
232 // SOF
233 ToSend[++ToSendMax] = 0x1D; // 00011101
234
235 // data
236 for (int i = 0; i < len; i++) {
237 ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
238 ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
239 }
240
241 // EOF
242 ToSend[++ToSendMax] = 0xB8; // 10111000
243
244 ToSendMax++;
245 }
246
247
248 // Transmit the command (to the tag) that was placed in cmd[].
249 void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
250
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
252
253 if (*start_time < DELAY_ARM_TO_TAG) {
254 *start_time = DELAY_ARM_TO_TAG;
255 }
256
257 *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
258
259 if (GetCountSspClk() > *start_time) { // we may miss the intended time
260 *start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
261 }
262
263 while (GetCountSspClk() < *start_time)
264 /* wait */ ;
265
266 LED_B_ON();
267 for (int c = 0; c < len; c++) {
268 uint8_t data = cmd[c];
269 for (int i = 0; i < 8; i++) {
270 uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
271 while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
272 AT91C_BASE_SSC->SSC_THR = send_word;
273 while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
274 AT91C_BASE_SSC->SSC_THR = send_word;
275
276 data <<= 1;
277 }
278 WDT_HIT();
279 }
280 LED_B_OFF();
281
282 *start_time = *start_time + DELAY_ARM_TO_TAG;
283
284 }
285
286
287 //-----------------------------------------------------------------------------
288 // Transmit the tag response (to the reader) that was placed in cmd[].
289 //-----------------------------------------------------------------------------
290 void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
291 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
292 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
293
294 uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
295
296 while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
297 if (slot_time) {
298 modulation_start_time += slot_time; // use next available slot
299 } else {
300 modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
301 }
302 }
303
304 while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
305 /* wait */ ;
306
307 uint8_t shift_delay = modulation_start_time & 0x00000007;
308
309 *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
310
311 LED_C_ON();
312 uint8_t bits_to_shift = 0x00;
313 uint8_t bits_to_send = 0x00;
314 for (size_t c = 0; c < len; c++) {
315 for (int i = (c==0?4:7); i >= 0; i--) {
316 uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
317 for (int j = 0; j < (slow?4:1); ) {
318 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
319 bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
320 AT91C_BASE_SSC->SSC_THR = bits_to_send;
321 bits_to_shift = cmd_bits;
322 j++;
323 }
324 }
325 }
326 WDT_HIT();
327 }
328 // send the remaining bits, padded with 0:
329 bits_to_send = bits_to_shift << (8 - shift_delay);
330 for ( ; ; ) {
331 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
332 AT91C_BASE_SSC->SSC_THR = bits_to_send;
333 break;
334 }
335 }
336 LED_C_OFF();
337 }
338
339
340 //=============================================================================
341 // An ISO 15693 decoder for tag responses (one subcarrier only).
342 // Uses cross correlation to identify each bit and EOF.
343 // This function is called 8 times per bit (every 2 subcarrier cycles).
344 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
345 // i.e. function is called every 4,72us
346 // LED handling:
347 // LED C -> ON once we have received the SOF and are expecting the rest.
348 // LED C -> OFF once we have received EOF or are unsynced
349 //
350 // Returns: true if we received a EOF
351 // false if we are still waiting for some more
352 //=============================================================================
353
354 #define NOISE_THRESHOLD 160 // don't try to correlate noise
355 #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
356
357 typedef struct DecodeTag {
358 enum {
359 STATE_TAG_SOF_LOW,
360 STATE_TAG_SOF_RISING_EDGE,
361 STATE_TAG_SOF_HIGH,
362 STATE_TAG_SOF_HIGH_END,
363 STATE_TAG_RECEIVING_DATA,
364 STATE_TAG_EOF,
365 STATE_TAG_EOF_TAIL
366 } state;
367 int bitCount;
368 int posCount;
369 enum {
370 LOGIC0,
371 LOGIC1,
372 SOF_PART1,
373 SOF_PART2
374 } lastBit;
375 uint16_t shiftReg;
376 uint16_t max_len;
377 uint8_t *output;
378 int len;
379 int sum1, sum2;
380 int threshold_sof;
381 int threshold_half;
382 uint16_t previous_amplitude;
383 } DecodeTag_t;
384
385
386 static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag)
387 {
388 switch(DecodeTag->state) {
389 case STATE_TAG_SOF_LOW:
390 // waiting for a rising edge
391 if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
392 if (DecodeTag->posCount > 10) {
393 DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude;
394 DecodeTag->threshold_half = 0;
395 DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
396 } else {
397 DecodeTag->posCount = 0;
398 }
399 } else {
400 DecodeTag->posCount++;
401 DecodeTag->previous_amplitude = amplitude;
402 }
403 break;
404
405 case STATE_TAG_SOF_RISING_EDGE:
406 if (amplitude - DecodeTag->previous_amplitude > DecodeTag->threshold_sof) { // edge still rising
407 if (amplitude - DecodeTag->threshold_sof > DecodeTag->threshold_sof) { // steeper edge, take this as time reference
408 DecodeTag->posCount = 1;
409 } else {
410 DecodeTag->posCount = 2;
411 }
412 DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
413 } else {
414 DecodeTag->posCount = 2;
415 DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
416 }
417 // DecodeTag->posCount = 2;
418 DecodeTag->state = STATE_TAG_SOF_HIGH;
419 break;
420
421 case STATE_TAG_SOF_HIGH:
422 // waiting for 10 times high. Take average over the last 8
423 if (amplitude > DecodeTag->threshold_sof) {
424 DecodeTag->posCount++;
425 if (DecodeTag->posCount > 2) {
426 DecodeTag->threshold_half += amplitude; // keep track of average high value
427 }
428 if (DecodeTag->posCount == 10) {
429 DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
430 DecodeTag->state = STATE_TAG_SOF_HIGH_END;
431 }
432 } else { // high phase was too short
433 DecodeTag->posCount = 1;
434 DecodeTag->previous_amplitude = amplitude;
435 DecodeTag->state = STATE_TAG_SOF_LOW;
436 }
437 break;
438
439 case STATE_TAG_SOF_HIGH_END:
440 // check for falling edge
441 if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
442 DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
443 DecodeTag->shiftReg = 0;
444 DecodeTag->bitCount = 0;
445 DecodeTag->len = 0;
446 DecodeTag->sum1 = amplitude;
447 DecodeTag->sum2 = 0;
448 DecodeTag->posCount = 2;
449 DecodeTag->state = STATE_TAG_RECEIVING_DATA;
450 FpgaDisableTracing(); // DEBUGGING
451 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
452 // amplitude,
453 // DecodeTag->threshold_sof,
454 // DecodeTag->threshold_half/4,
455 // DecodeTag->previous_amplitude); // DEBUGGING
456 LED_C_ON();
457 } else {
458 DecodeTag->posCount++;
459 if (DecodeTag->posCount > 13) { // high phase too long
460 DecodeTag->posCount = 0;
461 DecodeTag->previous_amplitude = amplitude;
462 DecodeTag->state = STATE_TAG_SOF_LOW;
463 LED_C_OFF();
464 }
465 }
466 break;
467
468 case STATE_TAG_RECEIVING_DATA:
469 if (DecodeTag->posCount == 1) {
470 DecodeTag->sum1 = 0;
471 DecodeTag->sum2 = 0;
472 }
473 if (DecodeTag->posCount <= 4) {
474 DecodeTag->sum1 += amplitude;
475 } else {
476 DecodeTag->sum2 += amplitude;
477 }
478 if (DecodeTag->posCount == 8) {
479 if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
480 if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
481 DecodeTag->state = STATE_TAG_EOF;
482 } else {
483 DecodeTag->posCount = 0;
484 DecodeTag->previous_amplitude = amplitude;
485 DecodeTag->state = STATE_TAG_SOF_LOW;
486 LED_C_OFF();
487 }
488 } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
489 // logic 1
490 if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
491 DecodeTag->lastBit = SOF_PART2; // SOF completed
492 } else {
493 DecodeTag->lastBit = LOGIC1;
494 DecodeTag->shiftReg >>= 1;
495 DecodeTag->shiftReg |= 0x80;
496 DecodeTag->bitCount++;
497 if (DecodeTag->bitCount == 8) {
498 DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
499 DecodeTag->len++;
500 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
501 if (DecodeTag->len > DecodeTag->max_len) {
502 // buffer overflow, give up
503 LED_C_OFF();
504 return true;
505 }
506 DecodeTag->bitCount = 0;
507 DecodeTag->shiftReg = 0;
508 }
509 }
510 } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
511 // logic 0
512 if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
513 DecodeTag->posCount = 0;
514 DecodeTag->previous_amplitude = amplitude;
515 DecodeTag->state = STATE_TAG_SOF_LOW;
516 LED_C_OFF();
517 } else {
518 DecodeTag->lastBit = LOGIC0;
519 DecodeTag->shiftReg >>= 1;
520 DecodeTag->bitCount++;
521 if (DecodeTag->bitCount == 8) {
522 DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
523 DecodeTag->len++;
524 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
525 if (DecodeTag->len > DecodeTag->max_len) {
526 // buffer overflow, give up
527 DecodeTag->posCount = 0;
528 DecodeTag->previous_amplitude = amplitude;
529 DecodeTag->state = STATE_TAG_SOF_LOW;
530 LED_C_OFF();
531 }
532 DecodeTag->bitCount = 0;
533 DecodeTag->shiftReg = 0;
534 }
535 }
536 } else { // no modulation
537 if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
538 LED_C_OFF();
539 return true;
540 } else {
541 DecodeTag->posCount = 0;
542 DecodeTag->state = STATE_TAG_SOF_LOW;
543 LED_C_OFF();
544 }
545 }
546 DecodeTag->posCount = 0;
547 }
548 DecodeTag->posCount++;
549 break;
550
551 case STATE_TAG_EOF:
552 if (DecodeTag->posCount == 1) {
553 DecodeTag->sum1 = 0;
554 DecodeTag->sum2 = 0;
555 }
556 if (DecodeTag->posCount <= 4) {
557 DecodeTag->sum1 += amplitude;
558 } else {
559 DecodeTag->sum2 += amplitude;
560 }
561 if (DecodeTag->posCount == 8) {
562 if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
563 DecodeTag->posCount = 0;
564 DecodeTag->state = STATE_TAG_EOF_TAIL;
565 } else {
566 DecodeTag->posCount = 0;
567 DecodeTag->previous_amplitude = amplitude;
568 DecodeTag->state = STATE_TAG_SOF_LOW;
569 LED_C_OFF();
570 }
571 }
572 DecodeTag->posCount++;
573 break;
574
575 case STATE_TAG_EOF_TAIL:
576 if (DecodeTag->posCount == 1) {
577 DecodeTag->sum1 = 0;
578 DecodeTag->sum2 = 0;
579 }
580 if (DecodeTag->posCount <= 4) {
581 DecodeTag->sum1 += amplitude;
582 } else {
583 DecodeTag->sum2 += amplitude;
584 }
585 if (DecodeTag->posCount == 8) {
586 if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
587 LED_C_OFF();
588 return true;
589 } else {
590 DecodeTag->posCount = 0;
591 DecodeTag->previous_amplitude = amplitude;
592 DecodeTag->state = STATE_TAG_SOF_LOW;
593 LED_C_OFF();
594 }
595 }
596 DecodeTag->posCount++;
597 break;
598 }
599
600 return false;
601 }
602
603
604 static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) {
605 DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
606 DecodeTag->posCount = 0;
607 DecodeTag->state = STATE_TAG_SOF_LOW;
608 DecodeTag->output = data;
609 DecodeTag->max_len = max_len;
610 }
611
612
613 static void DecodeTagReset(DecodeTag_t *DecodeTag) {
614 DecodeTag->posCount = 0;
615 DecodeTag->state = STATE_TAG_SOF_LOW;
616 DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
617 }
618
619
620 /*
621 * Receive and decode the tag response, also log to tracebuffer
622 */
623 int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
624
625 int samples = 0;
626 int ret = 0;
627
628 uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
629
630 // the Decoder data structure
631 DecodeTag_t DecodeTag = { 0 };
632 DecodeTagInit(&DecodeTag, response, max_len);
633
634 // wait for last transfer to complete
635 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
636
637 // And put the FPGA in the appropriate mode
638 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
639
640 // Setup and start DMA.
641 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
642 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
643 uint32_t dma_start_time = 0;
644 uint16_t *upTo = dmaBuf;
645
646 for(;;) {
647 uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
648
649 if (behindBy == 0) continue;
650
651 samples++;
652 if (samples == 1) {
653 // DMA has transferred the very first data
654 dma_start_time = GetCountSspClk() & 0xfffffff0;
655 }
656
657 uint16_t tagdata = *upTo++;
658
659 if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
660 upTo = dmaBuf; // start reading the circular buffer from the beginning
661 if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
662 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
663 ret = -1;
664 break;
665 }
666 }
667 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
668 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
669 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
670 }
671
672 if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
673 *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
674 if (DecodeTag.lastBit == SOF_PART2) {
675 *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
676 }
677 if (DecodeTag.len > DecodeTag.max_len) {
678 ret = -2; // buffer overflow
679 }
680 break;
681 }
682
683 if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
684 ret = -1; // timeout
685 break;
686 }
687
688 }
689
690 FpgaDisableSscDma();
691
692 if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
693 samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
694
695 if (ret < 0) {
696 return ret;
697 }
698
699 uint32_t sof_time = *eof_time
700 - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
701 - 32 * 16 // time for SOF transfer
702 - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
703
704 if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
705
706 LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
707
708 return DecodeTag.len;
709 }
710
711
712 //=============================================================================
713 // An ISO15693 decoder for reader commands.
714 //
715 // This function is called 4 times per bit (every 2 subcarrier cycles).
716 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
717 // LED handling:
718 // LED B -> ON once we have received the SOF and are expecting the rest.
719 // LED B -> OFF once we have received EOF or are in error state or unsynced
720 //
721 // Returns: true if we received a EOF
722 // false if we are still waiting for some more
723 //=============================================================================
724
725 typedef struct DecodeReader {
726 enum {
727 STATE_READER_UNSYNCD,
728 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF,
729 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
730 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
731 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
732 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
733 STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
734 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
735 } state;
736 enum {
737 CODING_1_OUT_OF_4,
738 CODING_1_OUT_OF_256
739 } Coding;
740 uint8_t shiftReg;
741 uint8_t bitCount;
742 int byteCount;
743 int byteCountMax;
744 int posCount;
745 int sum1, sum2;
746 uint8_t *output;
747 } DecodeReader_t;
748
749
750 static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len)
751 {
752 DecodeReader->output = data;
753 DecodeReader->byteCountMax = max_len;
754 DecodeReader->state = STATE_READER_UNSYNCD;
755 DecodeReader->byteCount = 0;
756 DecodeReader->bitCount = 0;
757 DecodeReader->posCount = 1;
758 DecodeReader->shiftReg = 0;
759 }
760
761
762 static void DecodeReaderReset(DecodeReader_t* DecodeReader)
763 {
764 DecodeReader->state = STATE_READER_UNSYNCD;
765 }
766
767
768 static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
769 {
770 switch (DecodeReader->state) {
771 case STATE_READER_UNSYNCD:
772 // wait for unmodulated carrier
773 if (bit) {
774 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
775 }
776 break;
777
778 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF:
779 if (!bit) {
780 // we went low, so this could be the beginning of a SOF
781 DecodeReader->posCount = 1;
782 DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
783 }
784 break;
785
786 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
787 DecodeReader->posCount++;
788 if (bit) { // detected rising edge
789 if (DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
790 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
791 } else { // SOF
792 DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
793 }
794 } else {
795 if (DecodeReader->posCount > 5) { // stayed low for too long
796 DecodeReaderReset(DecodeReader);
797 } else {
798 // do nothing, keep waiting
799 }
800 }
801 break;
802
803 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
804 DecodeReader->posCount++;
805 if (!bit) { // detected a falling edge
806 if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
807 DecodeReaderReset(DecodeReader);
808 } else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
809 DecodeReader->Coding = CODING_1_OUT_OF_4;
810 DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
811 } else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
812 DecodeReaderReset(DecodeReader);
813 } else { // SOF for 1 out of 256 coding
814 DecodeReader->Coding = CODING_1_OUT_OF_256;
815 DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
816 }
817 } else {
818 if (DecodeReader->posCount > 29) { // stayed high for too long
819 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
820 } else {
821 // do nothing, keep waiting
822 }
823 }
824 break;
825
826 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
827 DecodeReader->posCount++;
828 if (bit) { // detected rising edge
829 if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
830 if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
831 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
832 } else {
833 DecodeReader->posCount = 1;
834 DecodeReader->bitCount = 0;
835 DecodeReader->byteCount = 0;
836 DecodeReader->sum1 = 1;
837 DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
838 LED_B_ON();
839 }
840 } else { // CODING_1_OUT_OF_4
841 if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
842 DecodeReader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF;
843 } else {
844 DecodeReader->posCount = 1;
845 DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
846 }
847 }
848 } else {
849 if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
850 if (DecodeReader->posCount > 34) { // signal stayed low for too long
851 DecodeReaderReset(DecodeReader);
852 } else {
853 // do nothing, keep waiting
854 }
855 } else { // CODING_1_OUT_OF_4
856 if (DecodeReader->posCount > 26) { // signal stayed low for too long
857 DecodeReaderReset(DecodeReader);
858 } else {
859 // do nothing, keep waiting
860 }
861 }
862 }
863 break;
864
865 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
866 DecodeReader->posCount++;
867 if (bit) {
868 if (DecodeReader->posCount == 9) {
869 DecodeReader->posCount = 1;
870 DecodeReader->bitCount = 0;
871 DecodeReader->byteCount = 0;
872 DecodeReader->sum1 = 1;
873 DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
874 LED_B_ON();
875 } else {
876 // do nothing, keep waiting
877 }
878 } else { // unexpected falling edge
879 DecodeReaderReset(DecodeReader);
880 }
881 break;
882
883 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
884 bit = !!bit;
885 DecodeReader->posCount++;
886 if (DecodeReader->posCount == 1) {
887 DecodeReader->sum1 = bit;
888 } else if (DecodeReader->posCount <= 4) {
889 DecodeReader->sum1 += bit;
890 } else if (DecodeReader->posCount == 5) {
891 DecodeReader->sum2 = bit;
892 } else {
893 DecodeReader->sum2 += bit;
894 }
895 if (DecodeReader->posCount == 8) {
896 DecodeReader->posCount = 0;
897 if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
898 LED_B_OFF(); // Finished receiving
899 DecodeReaderReset(DecodeReader);
900 if (DecodeReader->byteCount != 0) {
901 return true;
902 }
903 }
904 if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
905 DecodeReader->shiftReg >>= 2;
906 DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
907 }
908 if (DecodeReader->bitCount == 15) { // we have a full byte
909 DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
910 if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
911 // buffer overflow, give up
912 LED_B_OFF();
913 DecodeReaderReset(DecodeReader);
914 }
915 DecodeReader->bitCount = 0;
916 DecodeReader->shiftReg = 0;
917 } else {
918 DecodeReader->bitCount++;
919 }
920 }
921 break;
922
923 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
924 bit = !!bit;
925 DecodeReader->posCount++;
926 if (DecodeReader->posCount == 1) {
927 DecodeReader->sum1 = bit;
928 } else if (DecodeReader->posCount <= 4) {
929 DecodeReader->sum1 += bit;
930 } else if (DecodeReader->posCount == 5) {
931 DecodeReader->sum2 = bit;
932 } else {
933 DecodeReader->sum2 += bit;
934 }
935 if (DecodeReader->posCount == 8) {
936 DecodeReader->posCount = 0;
937 if (DecodeReader->sum1 <= 1 && DecodeReader->sum2 >= 3) { // EOF
938 LED_B_OFF(); // Finished receiving
939 DecodeReaderReset(DecodeReader);
940 if (DecodeReader->byteCount != 0) {
941 return true;
942 }
943 }
944 if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
945 DecodeReader->shiftReg = DecodeReader->bitCount;
946 }
947 if (DecodeReader->bitCount == 255) { // we have a full byte
948 DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
949 if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
950 // buffer overflow, give up
951 LED_B_OFF();
952 DecodeReaderReset(DecodeReader);
953 }
954 }
955 DecodeReader->bitCount++;
956 }
957 break;
958
959 default:
960 LED_B_OFF();
961 DecodeReaderReset(DecodeReader);
962 break;
963 }
964
965 return false;
966 }
967
968
969 //-----------------------------------------------------------------------------
970 // Receive a command (from the reader to us, where we are the simulated tag),
971 // and store it in the given buffer, up to the given maximum length. Keeps
972 // spinning, waiting for a well-framed command, until either we get one
973 // (returns len) or someone presses the pushbutton on the board (returns -1).
974 //
975 // Assume that we're called with the SSC (to the FPGA) and ADC path set
976 // correctly.
977 //-----------------------------------------------------------------------------
978
979 int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) {
980 int samples = 0;
981 bool gotFrame = false;
982 uint8_t b;
983
984 uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
985
986 // the decoder data structure
987 DecodeReader_t DecodeReader = {0};
988 DecodeReaderInit(&DecodeReader, received, max_len);
989
990 // wait for last transfer to complete
991 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
992
993 LED_D_OFF();
994 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
995
996 // clear receive register and wait for next transfer
997 uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
998 (void) temp;
999 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
1000
1001 uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
1002
1003 // Setup and start DMA.
1004 FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1005 uint8_t *upTo = dmaBuf;
1006
1007 for (;;) {
1008 uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
1009
1010 if (behindBy == 0) continue;
1011
1012 b = *upTo++;
1013 if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
1014 upTo = dmaBuf; // start reading the circular buffer from the beginning
1015 if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
1016 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
1017 break;
1018 }
1019 }
1020 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
1021 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
1022 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
1023 }
1024
1025 for (int i = 7; i >= 0; i--) {
1026 if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
1027 *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
1028 gotFrame = true;
1029 break;
1030 }
1031 samples++;
1032 }
1033
1034 if (gotFrame) {
1035 break;
1036 }
1037
1038 if (BUTTON_PRESS()) {
1039 DecodeReader.byteCount = -1;
1040 break;
1041 }
1042
1043 WDT_HIT();
1044 }
1045
1046 FpgaDisableSscDma();
1047
1048 if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1049 samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
1050
1051 if (DecodeReader.byteCount > 0) {
1052 uint32_t sof_time = *eof_time
1053 - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
1054 - 32 // time for SOF transfer
1055 - 16; // time for EOF transfer
1056 LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
1057 }
1058
1059 return DecodeReader.byteCount;
1060 }
1061
1062
1063 // Encode (into the ToSend buffers) an identify request, which is the first
1064 // thing that you must send to a tag to get a response.
1065 static void BuildIdentifyRequest(void)
1066 {
1067 uint8_t cmd[5];
1068
1069 uint16_t crc;
1070 // one sub-carrier, inventory, 1 slot, fast rate
1071 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1072 cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
1073 // inventory command code
1074 cmd[1] = 0x01;
1075 // no mask
1076 cmd[2] = 0x00;
1077 //Now the CRC
1078 crc = Iso15693Crc(cmd, 3);
1079 cmd[3] = crc & 0xff;
1080 cmd[4] = crc >> 8;
1081
1082 CodeIso15693AsReader(cmd, sizeof(cmd));
1083 }
1084
1085
1086 //-----------------------------------------------------------------------------
1087 // Start to read an ISO 15693 tag. We send an identify request, then wait
1088 // for the response. The response is not demodulated, just left in the buffer
1089 // so that it can be downloaded to a PC and processed there.
1090 //-----------------------------------------------------------------------------
1091 void AcquireRawAdcSamplesIso15693(void)
1092 {
1093 LED_A_ON();
1094
1095 uint8_t *dest = BigBuf_get_addr();
1096
1097 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1098 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1099 LED_D_ON();
1100 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1101 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1102
1103 BuildIdentifyRequest();
1104
1105 // Give the tags time to energize
1106 SpinDelay(100);
1107
1108 // Now send the command
1109 uint32_t start_time = 0;
1110 TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
1111
1112 // wait for last transfer to complete
1113 while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
1114
1115 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
1116
1117 for(int c = 0; c < 4000; ) {
1118 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1119 uint16_t r = AT91C_BASE_SSC->SSC_RHR;
1120 dest[c++] = r >> 5;
1121 }
1122 }
1123
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1125 LEDsoff();
1126 }
1127
1128
1129 void SnoopIso15693(void)
1130 {
1131 LED_A_ON();
1132
1133 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1134 BigBuf_free();
1135
1136 clear_trace();
1137 set_tracing(true);
1138
1139 // The DMA buffer, used to stream samples from the FPGA
1140 uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
1141 uint16_t *upTo;
1142
1143 // Count of samples received so far, so that we can include timing
1144 // information in the trace buffer.
1145 int samples = 0;
1146
1147 DecodeTag_t DecodeTag = {0};
1148 uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
1149 DecodeTagInit(&DecodeTag, response, sizeof(response));
1150
1151 DecodeReader_t DecodeReader = {0};;
1152 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
1153 DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd));
1154
1155 // Print some debug information about the buffer sizes
1156 if (DEBUG) {
1157 Dbprintf("Snooping buffers initialized:");
1158 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1159 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH);
1160 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH);
1161 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE * sizeof(uint16_t));
1162 }
1163 Dbprintf("Snoop started. Press PM3 Button to stop.");
1164
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
1166 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1167
1168 // Setup for the DMA.
1169 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1170 upTo = dmaBuf;
1171 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1172
1173 bool TagIsActive = false;
1174 bool ReaderIsActive = false;
1175 bool ExpectTagAnswer = false;
1176
1177 // And now we loop, receiving samples.
1178 for(;;) {
1179 uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
1180
1181 if (behindBy == 0) continue;
1182
1183 uint16_t snoopdata = *upTo++;
1184
1185 if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
1186 upTo = dmaBuf; // start reading the circular buffer from the beginning
1187 if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
1188 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
1189 break;
1190 }
1191 if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
1192 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
1193 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
1194 WDT_HIT();
1195 if(BUTTON_PRESS()) {
1196 DbpString("Snoop stopped.");
1197 break;
1198 }
1199 }
1200 }
1201 samples++;
1202
1203 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
1204 if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
1205 FpgaDisableSscDma();
1206 ExpectTagAnswer = true;
1207 LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
1208 /* And ready to receive another command. */
1209 DecodeReaderReset(&DecodeReader);
1210 /* And also reset the demod code, which might have been */
1211 /* false-triggered by the commands from the reader. */
1212 DecodeTagReset(&DecodeTag);
1213 upTo = dmaBuf;
1214 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1215 }
1216 if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
1217 FpgaDisableSscDma();
1218 ExpectTagAnswer = true;
1219 LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, samples*64, samples*64, NULL, true);
1220 /* And ready to receive another command. */
1221 DecodeReaderReset(&DecodeReader);
1222 /* And also reset the demod code, which might have been */
1223 /* false-triggered by the commands from the reader. */
1224 DecodeTagReset(&DecodeTag);
1225 upTo = dmaBuf;
1226 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1227 }
1228 ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF);
1229 }
1230
1231 if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1232 if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
1233 FpgaDisableSscDma();
1234 //Use samples as a time measurement
1235 LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, samples*64, samples*64, NULL, false);
1236 // And ready to receive another response.
1237 DecodeTagReset(&DecodeTag);
1238 DecodeReaderReset(&DecodeReader);
1239 ExpectTagAnswer = false;
1240 upTo = dmaBuf;
1241 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1242 }
1243 TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
1244 }
1245
1246 }
1247
1248 FpgaDisableSscDma();
1249 BigBuf_free();
1250
1251 LEDsoff();
1252
1253 DbpString("Snoop statistics:");
1254 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer);
1255 Dbprintf(" DecodeTag State: %d", DecodeTag.state);
1256 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len);
1257 Dbprintf(" DecodeReader State: %d", DecodeReader.state);
1258 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount);
1259 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1260 }
1261
1262
1263 // Initialize the proxmark as iso15k reader
1264 void Iso15693InitReader() {
1265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1266
1267 // Start from off (no field generated)
1268 LED_D_OFF();
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1270 SpinDelay(10);
1271
1272 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1273 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1274
1275 // Give the tags time to energize
1276 LED_D_ON();
1277 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1278 SpinDelay(250);
1279 }
1280
1281 ///////////////////////////////////////////////////////////////////////
1282 // ISO 15693 Part 3 - Air Interface
1283 // This section basically contains transmission and receiving of bits
1284 ///////////////////////////////////////////////////////////////////////
1285
1286
1287 // uid is in transmission order (which is reverse of display order)
1288 static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
1289 {
1290 uint8_t cmd[13];
1291
1292 uint16_t crc;
1293 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1294 // followed by the block data
1295 cmd[0] = ISO15693_REQ_OPTION | ISO15693_REQ_ADDRESS | ISO15693_REQ_DATARATE_HIGH;
1296 // READ BLOCK command code
1297 cmd[1] = ISO15693_READBLOCK;
1298 // UID may be optionally specified here
1299 // 64-bit UID
1300 cmd[2] = uid[0];
1301 cmd[3] = uid[1];
1302 cmd[4] = uid[2];
1303 cmd[5] = uid[3];
1304 cmd[6] = uid[4];
1305 cmd[7] = uid[5];
1306 cmd[8] = uid[6];
1307 cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
1308 // Block number to read
1309 cmd[10] = blockNumber;
1310 //Now the CRC
1311 crc = Iso15693Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
1312 cmd[11] = crc & 0xff;
1313 cmd[12] = crc >> 8;
1314
1315 CodeIso15693AsReader(cmd, sizeof(cmd));
1316 }
1317
1318
1319 // Now the VICC>VCD responses when we are simulating a tag
1320 static void BuildInventoryResponse(uint8_t *uid)
1321 {
1322 uint8_t cmd[12];
1323
1324 uint16_t crc;
1325
1326 cmd[0] = 0; // No error, no protocol format extension
1327 cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1328 // 64-bit UID
1329 cmd[2] = uid[7]; //0x32;
1330 cmd[3] = uid[6]; //0x4b;
1331 cmd[4] = uid[5]; //0x03;
1332 cmd[5] = uid[4]; //0x01;
1333 cmd[6] = uid[3]; //0x00;
1334 cmd[7] = uid[2]; //0x10;
1335 cmd[8] = uid[1]; //0x05;
1336 cmd[9] = uid[0]; //0xe0;
1337 //Now the CRC
1338 crc = Iso15693Crc(cmd, 10);
1339 cmd[10] = crc & 0xff;
1340 cmd[11] = crc >> 8;
1341
1342 CodeIso15693AsTag(cmd, sizeof(cmd));
1343 }
1344
1345 // Universal Method for sending to and recv bytes from a tag
1346 // init ... should we initialize the reader?
1347 // speed ... 0 low speed, 1 hi speed
1348 // *recv will contain the tag's answer
1349 // return: length of received data, or -1 for timeout
1350 int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint32_t *eof_time) {
1351
1352 if (init) {
1353 Iso15693InitReader();
1354 StartCountSspClk();
1355 }
1356
1357 int answerLen = 0;
1358
1359 if (!speed) {
1360 // low speed (1 out of 256)
1361 CodeIso15693AsReader256(send, sendlen);
1362 } else {
1363 // high speed (1 out of 4)
1364 CodeIso15693AsReader(send, sendlen);
1365 }
1366
1367 TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
1368
1369 // Now wait for a response
1370 if (recv != NULL) {
1371 answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, ISO15693_READER_TIMEOUT, eof_time);
1372 }
1373
1374 return answerLen;
1375 }
1376
1377
1378 // --------------------------------------------------------------------
1379 // Debug Functions
1380 // --------------------------------------------------------------------
1381
1382 // Decodes a message from a tag and displays its metadata and content
1383 #define DBD15STATLEN 48
1384 void DbdecodeIso15693Answer(int len, uint8_t *d) {
1385 char status[DBD15STATLEN+1]={0};
1386 uint16_t crc;
1387
1388 if (len > 3) {
1389 if (d[0] & ISO15693_RES_EXT)
1390 strncat(status,"ProtExt ", DBD15STATLEN);
1391 if (d[0] & ISO15693_RES_ERROR) {
1392 // error
1393 strncat(status,"Error ", DBD15STATLEN);
1394 switch (d[1]) {
1395 case 0x01:
1396 strncat(status,"01:notSupp", DBD15STATLEN);
1397 break;
1398 case 0x02:
1399 strncat(status,"02:notRecog", DBD15STATLEN);
1400 break;
1401 case 0x03:
1402 strncat(status,"03:optNotSupp", DBD15STATLEN);
1403 break;
1404 case 0x0f:
1405 strncat(status,"0f:noInfo", DBD15STATLEN);
1406 break;
1407 case 0x10:
1408 strncat(status,"10:doesn'tExist", DBD15STATLEN);
1409 break;
1410 case 0x11:
1411 strncat(status,"11:lockAgain", DBD15STATLEN);
1412 break;
1413 case 0x12:
1414 strncat(status,"12:locked", DBD15STATLEN);
1415 break;
1416 case 0x13:
1417 strncat(status,"13:progErr", DBD15STATLEN);
1418 break;
1419 case 0x14:
1420 strncat(status,"14:lockErr", DBD15STATLEN);
1421 break;
1422 default:
1423 strncat(status,"unknownErr", DBD15STATLEN);
1424 }
1425 strncat(status," ", DBD15STATLEN);
1426 } else {
1427 strncat(status,"NoErr ", DBD15STATLEN);
1428 }
1429
1430 crc=Iso15693Crc(d,len-2);
1431 if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
1432 strncat(status,"CrcOK",DBD15STATLEN);
1433 else
1434 strncat(status,"CrcFail!",DBD15STATLEN);
1435
1436 Dbprintf("%s",status);
1437 }
1438 }
1439
1440
1441
1442 ///////////////////////////////////////////////////////////////////////
1443 // Functions called via USB/Client
1444 ///////////////////////////////////////////////////////////////////////
1445
1446 void SetDebugIso15693(uint32_t debug) {
1447 DEBUG=debug;
1448 Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
1449 return;
1450 }
1451
1452
1453 //---------------------------------------------------------------------------------------
1454 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1455 // all demodulation performed in arm rather than host. - greg
1456 //---------------------------------------------------------------------------------------
1457 void ReaderIso15693(uint32_t parameter) {
1458
1459 LED_A_ON();
1460
1461 set_tracing(true);
1462
1463 int answerLen = 0;
1464 uint8_t TagUID[8] = {0x00};
1465
1466 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1467
1468 uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
1469
1470 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1471 // Setup SSC
1472 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
1473
1474 // Start from off (no field generated)
1475 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1476 SpinDelay(200);
1477
1478 // Give the tags time to energize
1479 LED_D_ON();
1480 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
1481 SpinDelay(200);
1482 StartCountSspClk();
1483
1484
1485 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1486 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1487
1488 // Now send the IDENTIFY command
1489 BuildIdentifyRequest();
1490 uint32_t start_time = 0;
1491 TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
1492
1493 // Now wait for a response
1494 uint32_t eof_time;
1495 answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time) ;
1496 start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
1497
1498 if (answerLen >=12) // we should do a better check than this
1499 {
1500 TagUID[0] = answer[2];
1501 TagUID[1] = answer[3];
1502 TagUID[2] = answer[4];
1503 TagUID[3] = answer[5];
1504 TagUID[4] = answer[6];
1505 TagUID[5] = answer[7];
1506 TagUID[6] = answer[8]; // IC Manufacturer code
1507 TagUID[7] = answer[9]; // always E0
1508
1509 }
1510
1511 Dbprintf("%d octets read from IDENTIFY request:", answerLen);
1512 DbdecodeIso15693Answer(answerLen, answer);
1513 Dbhexdump(answerLen, answer, false);
1514
1515 // UID is reverse
1516 if (answerLen >= 12)
1517 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1518 TagUID[7],TagUID[6],TagUID[5],TagUID[4],
1519 TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
1520
1521
1522 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1523 // DbdecodeIso15693Answer(answerLen2,answer2);
1524 // Dbhexdump(answerLen2,answer2,true);
1525
1526 // Dbprintf("%d octets read from XXX request:", answerLen3);
1527 // DbdecodeIso15693Answer(answerLen3,answer3);
1528 // Dbhexdump(answerLen3,answer3,true);
1529
1530 // read all pages
1531 if (answerLen >= 12 && DEBUG) {
1532 for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
1533 BuildReadBlockRequest(TagUID, i);
1534 TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
1535 int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2, &eof_time);
1536 start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
1537 if (answerLen > 0) {
1538 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
1539 DbdecodeIso15693Answer(answerLen, answer);
1540 Dbhexdump(answerLen, answer, false);
1541 if ( *((uint32_t*) answer) == 0x07160101 ) break; // exit on NoPageErr
1542 }
1543 }
1544 }
1545
1546 // for the time being, switch field off to protect rdv4.0
1547 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1549 LED_D_OFF();
1550
1551 LED_A_OFF();
1552 }
1553
1554
1555 // Simulate an ISO15693 TAG.
1556 // For Inventory command: print command and send Inventory Response with given UID
1557 // TODO: interpret other reader commands and send appropriate response
1558 void SimTagIso15693(uint32_t parameter, uint8_t *uid) {
1559
1560 LED_A_ON();
1561
1562 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1563 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1564 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
1565 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
1566
1567 StartCountSspClk();
1568
1569 uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
1570
1571 // Build a suitable response to the reader INVENTORY command
1572 BuildInventoryResponse(uid);
1573
1574 // Listen to reader
1575 while (!BUTTON_PRESS()) {
1576 uint32_t eof_time = 0, start_time = 0;
1577 int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
1578
1579 if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
1580 bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
1581 start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
1582 TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
1583 }
1584
1585 Dbprintf("%d bytes read from reader:", cmd_len);
1586 Dbhexdump(cmd_len, cmd, false);
1587 }
1588
1589 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1590 LED_D_OFF();
1591 LED_A_OFF();
1592 }
1593
1594
1595 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1596 // (some manufactures offer a way to read the AFI, though)
1597 void BruteforceIso15693Afi(uint32_t speed)
1598 {
1599 LED_A_ON();
1600
1601 uint8_t data[6];
1602 uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
1603 int datalen = 0, recvlen = 0;
1604 uint32_t eof_time;
1605
1606 // first without AFI
1607 // Tags should respond without AFI and with AFI=0 even when AFI is active
1608
1609 data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
1610 data[1] = ISO15693_INVENTORY;
1611 data[2] = 0; // mask length
1612 datalen = Iso15693AddCrc(data,3);
1613 uint32_t start_time = GetCountSspClk();
1614 recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, &eof_time);
1615 start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
1616 WDT_HIT();
1617 if (recvlen>=12) {
1618 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
1619 }
1620
1621 // now with AFI
1622
1623 data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
1624 data[1] = ISO15693_INVENTORY;
1625 data[2] = 0; // AFI
1626 data[3] = 0; // mask length
1627
1628 for (int i = 0; i < 256; i++) {
1629 data[2] = i & 0xFF;
1630 datalen = Iso15693AddCrc(data,4);
1631 recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, &eof_time);
1632 start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
1633 WDT_HIT();
1634 if (recvlen >= 12) {
1635 Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
1636 }
1637 }
1638 Dbprintf("AFI Bruteforcing done.");
1639
1640 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1641 LED_D_OFF();
1642 LED_A_OFF();
1643
1644 }
1645
1646 // Allows to directly send commands to the tag via the client
1647 void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
1648
1649 LED_A_ON();
1650
1651 int recvlen = 0;
1652 uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
1653 uint32_t eof_time;
1654
1655 if (DEBUG) {
1656 Dbprintf("SEND:");
1657 Dbhexdump(datalen, data, false);
1658 }
1659
1660 recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, &eof_time);
1661
1662 // for the time being, switch field off to protect rdv4.0
1663 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1664 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1665 LED_D_OFF();
1666
1667 if (recv) {
1668 if (DEBUG) {
1669 Dbprintf("RECV:");
1670 if (recvlen > 0) {
1671 Dbhexdump(recvlen, recvbuf, false);
1672 DbdecodeIso15693Answer(recvlen, recvbuf);
1673 }
1674 }
1675 if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
1676 recvlen = ISO15693_MAX_RESPONSE_LENGTH;
1677 }
1678 cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
1679 }
1680
1681 LED_A_OFF();
1682 }
1683
1684 //-----------------------------------------------------------------------------
1685 // Work with "magic Chinese" card.
1686 //
1687 //-----------------------------------------------------------------------------
1688
1689 // Set the UID to the tag (based on Iceman work).
1690 void SetTag15693Uid(uint8_t *uid) {
1691
1692 LED_A_ON();
1693
1694 uint8_t cmd[4][9] = {0x00};
1695 uint16_t crc;
1696
1697 int recvlen = 0;
1698 uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
1699 uint32_t eof_time;
1700
1701 // Command 1 : 02213E00000000
1702 cmd[0][0] = 0x02;
1703 cmd[0][1] = 0x21;
1704 cmd[0][2] = 0x3e;
1705 cmd[0][3] = 0x00;
1706 cmd[0][4] = 0x00;
1707 cmd[0][5] = 0x00;
1708 cmd[0][6] = 0x00;
1709
1710 // Command 2 : 02213F69960000
1711 cmd[1][0] = 0x02;
1712 cmd[1][1] = 0x21;
1713 cmd[1][2] = 0x3f;
1714 cmd[1][3] = 0x69;
1715 cmd[1][4] = 0x96;
1716 cmd[1][5] = 0x00;
1717 cmd[1][6] = 0x00;
1718
1719 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1720 cmd[2][0] = 0x02;
1721 cmd[2][1] = 0x21;
1722 cmd[2][2] = 0x38;
1723 cmd[2][3] = uid[7];
1724 cmd[2][4] = uid[6];
1725 cmd[2][5] = uid[5];
1726 cmd[2][6] = uid[4];
1727
1728 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1729 cmd[3][0] = 0x02;
1730 cmd[3][1] = 0x21;
1731 cmd[3][2] = 0x39;
1732 cmd[3][3] = uid[3];
1733 cmd[3][4] = uid[2];
1734 cmd[3][5] = uid[1];
1735 cmd[3][6] = uid[0];
1736
1737 for (int i = 0; i < 4; i++) {
1738 // Add the CRC
1739 crc = Iso15693Crc(cmd[i], 7);
1740 cmd[i][7] = crc & 0xff;
1741 cmd[i][8] = crc >> 8;
1742
1743 if (DEBUG) {
1744 Dbprintf("SEND:");
1745 Dbhexdump(sizeof(cmd[i]), cmd[i], false);
1746 }
1747
1748 recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0, &eof_time);
1749
1750 if (DEBUG) {
1751 Dbprintf("RECV:");
1752 if (recvlen > 0) {
1753 Dbhexdump(recvlen, recvbuf, false);
1754 DbdecodeIso15693Answer(recvlen, recvbuf);
1755 }
1756 }
1757
1758 cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
1759 }
1760
1761 LED_A_OFF();
1762 }
1763
1764
1765
1766 // --------------------------------------------------------------------
1767 // -- Misc & deprecated functions
1768 // --------------------------------------------------------------------
1769
1770 /*
1771
1772 // do not use; has a fix UID
1773 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1774 {
1775 uint8_t cmd[12];
1776
1777 uint16_t crc;
1778 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1779 // followed by the block data
1780 // one sub-carrier, inventory, 1 slot, fast rate
1781 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1782 // System Information command code
1783 cmd[1] = 0x2B;
1784 // UID may be optionally specified here
1785 // 64-bit UID
1786 cmd[2] = 0x32;
1787 cmd[3]= 0x4b;
1788 cmd[4] = 0x03;
1789 cmd[5] = 0x01;
1790 cmd[6] = 0x00;
1791 cmd[7] = 0x10;
1792 cmd[8] = 0x05;
1793 cmd[9]= 0xe0; // always e0 (not exactly unique)
1794 //Now the CRC
1795 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1796 cmd[10] = crc & 0xff;
1797 cmd[11] = crc >> 8;
1798
1799 CodeIso15693AsReader(cmd, sizeof(cmd));
1800 }
1801
1802
1803 // do not use; has a fix UID
1804 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1805 {
1806 uint8_t cmd[14];
1807
1808 uint16_t crc;
1809 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1810 // followed by the block data
1811 // one sub-carrier, inventory, 1 slot, fast rate
1812 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1813 // READ Multi BLOCK command code
1814 cmd[1] = 0x23;
1815 // UID may be optionally specified here
1816 // 64-bit UID
1817 cmd[2] = 0x32;
1818 cmd[3]= 0x4b;
1819 cmd[4] = 0x03;
1820 cmd[5] = 0x01;
1821 cmd[6] = 0x00;
1822 cmd[7] = 0x10;
1823 cmd[8] = 0x05;
1824 cmd[9]= 0xe0; // always e0 (not exactly unique)
1825 // First Block number to read
1826 cmd[10] = 0x00;
1827 // Number of Blocks to read
1828 cmd[11] = 0x2f; // read quite a few
1829 //Now the CRC
1830 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1831 cmd[12] = crc & 0xff;
1832 cmd[13] = crc >> 8;
1833
1834 CodeIso15693AsReader(cmd, sizeof(cmd));
1835 }
1836
1837 // do not use; has a fix UID
1838 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1839 {
1840 uint8_t cmd[14];
1841
1842 uint16_t crc;
1843 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1844 // followed by the block data
1845 // one sub-carrier, inventory, 1 slot, fast rate
1846 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1847 // READ BLOCK command code
1848 cmd[1] = CmdCode;
1849 // UID may be optionally specified here
1850 // 64-bit UID
1851 cmd[2] = 0x32;
1852 cmd[3]= 0x4b;
1853 cmd[4] = 0x03;
1854 cmd[5] = 0x01;
1855 cmd[6] = 0x00;
1856 cmd[7] = 0x10;
1857 cmd[8] = 0x05;
1858 cmd[9]= 0xe0; // always e0 (not exactly unique)
1859 // Parameter
1860 cmd[10] = 0x00;
1861 cmd[11] = 0x0a;
1862
1863 // cmd[12] = 0x00;
1864 // cmd[13] = 0x00; //Now the CRC
1865 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1866 cmd[12] = crc & 0xff;
1867 cmd[13] = crc >> 8;
1868
1869 CodeIso15693AsReader(cmd, sizeof(cmd));
1870 }
1871
1872 // do not use; has a fix UID
1873 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1874 {
1875 uint8_t cmd[14];
1876
1877 uint16_t crc;
1878 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1879 // followed by the block data
1880 // one sub-carrier, inventory, 1 slot, fast rate
1881 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1882 // READ BLOCK command code
1883 cmd[1] = CmdCode;
1884 // UID may be optionally specified here
1885 // 64-bit UID
1886 cmd[2] = 0x32;
1887 cmd[3]= 0x4b;
1888 cmd[4] = 0x03;
1889 cmd[5] = 0x01;
1890 cmd[6] = 0x00;
1891 cmd[7] = 0x10;
1892 cmd[8] = 0x05;
1893 cmd[9]= 0xe0; // always e0 (not exactly unique)
1894 // Parameter
1895 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1896 cmd[11] = 0x00;
1897
1898 // cmd[12] = 0x00;
1899 // cmd[13] = 0x00; //Now the CRC
1900 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1901 cmd[12] = crc & 0xff;
1902 cmd[13] = crc >> 8;
1903
1904 CodeIso15693AsReader(cmd, sizeof(cmd));
1905 }
1906
1907
1908
1909
1910 */
1911
1912
Impressum, Datenschutz