]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Added block command for T55xx and support for cloning HID long format
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18
19 #include <stdarg.h>
20
21 #include "legicrf.h"
22 #include <hitag2.h>
23
24 #ifdef WITH_LCD
25 # include "fonts.h"
26 # include "LCD.h"
27 #endif
28
29 #define abs(x) ( ((x)<0) ? -(x) : (x) )
30
31 //=============================================================================
32 // A buffer where we can queue things up to be sent through the FPGA, for
33 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
34 // is the order in which they go out on the wire.
35 //=============================================================================
36
37 uint8_t ToSend[512];
38 int ToSendMax;
39 static int ToSendBit;
40 struct common_area common_area __attribute__((section(".commonarea")));
41
42 void BufferClear(void)
43 {
44 memset(BigBuf,0,sizeof(BigBuf));
45 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
46 }
47
48 void ToSendReset(void)
49 {
50 ToSendMax = -1;
51 ToSendBit = 8;
52 }
53
54 void ToSendStuffBit(int b)
55 {
56 if(ToSendBit >= 8) {
57 ToSendMax++;
58 ToSend[ToSendMax] = 0;
59 ToSendBit = 0;
60 }
61
62 if(b) {
63 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
64 }
65
66 ToSendBit++;
67
68 if(ToSendBit >= sizeof(ToSend)) {
69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72 }
73
74 //=============================================================================
75 // Debug print functions, to go out over USB, to the usual PC-side client.
76 //=============================================================================
77
78 void DbpString(char *str)
79 {
80 /* this holds up stuff unless we're connected to usb */
81 if (!UsbConnected())
82 return;
83
84 UsbCommand c;
85 c.cmd = CMD_DEBUG_PRINT_STRING;
86 c.arg[0] = strlen(str);
87 if(c.arg[0] > sizeof(c.d.asBytes)) {
88 c.arg[0] = sizeof(c.d.asBytes);
89 }
90 memcpy(c.d.asBytes, str, c.arg[0]);
91
92 UsbSendPacket((uint8_t *)&c, sizeof(c));
93 // TODO fix USB so stupid things like this aren't req'd
94 SpinDelay(50);
95 }
96
97 #if 0
98 void DbpIntegers(int x1, int x2, int x3)
99 {
100 /* this holds up stuff unless we're connected to usb */
101 if (!UsbConnected())
102 return;
103
104 UsbCommand c;
105 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
106 c.arg[0] = x1;
107 c.arg[1] = x2;
108 c.arg[2] = x3;
109
110 UsbSendPacket((uint8_t *)&c, sizeof(c));
111 // XXX
112 SpinDelay(50);
113 }
114 #endif
115
116 void Dbprintf(const char *fmt, ...) {
117 // should probably limit size here; oh well, let's just use a big buffer
118 char output_string[128];
119 va_list ap;
120
121 va_start(ap, fmt);
122 kvsprintf(fmt, output_string, 10, ap);
123 va_end(ap);
124
125 DbpString(output_string);
126 }
127
128 // prints HEX & ASCII
129 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
130 int l=0,i;
131 char ascii[9];
132
133 while (len>0) {
134 if (len>8) l=8;
135 else l=len;
136
137 memcpy(ascii,d,l);
138 ascii[l]=0;
139
140 // filter safe ascii
141 for (i=0;i<l;i++)
142 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
143
144 if (bAsci) {
145 Dbprintf("%-8s %*D",ascii,l,d," ");
146 } else {
147 Dbprintf("%*D",l,d," ");
148 }
149
150 len-=8;
151 d+=8;
152 }
153 }
154
155 //-----------------------------------------------------------------------------
156 // Read an ADC channel and block till it completes, then return the result
157 // in ADC units (0 to 1023). Also a routine to average 32 samples and
158 // return that.
159 //-----------------------------------------------------------------------------
160 static int ReadAdc(int ch)
161 {
162 uint32_t d;
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
165 AT91C_BASE_ADC->ADC_MR =
166 ADC_MODE_PRESCALE(32) |
167 ADC_MODE_STARTUP_TIME(16) |
168 ADC_MODE_SAMPLE_HOLD_TIME(8);
169 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
170
171 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
172 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
173 ;
174 d = AT91C_BASE_ADC->ADC_CDR[ch];
175
176 return d;
177 }
178
179 int AvgAdc(int ch) // was static - merlok
180 {
181 int i;
182 int a = 0;
183
184 for(i = 0; i < 32; i++) {
185 a += ReadAdc(ch);
186 }
187
188 return (a + 15) >> 5;
189 }
190
191 void MeasureAntennaTuning(void)
192 {
193 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
194 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
195 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
196
197 UsbCommand c;
198
199 LED_B_ON();
200 DbpString("Measuring antenna characteristics, please wait...");
201 memset(dest,0,sizeof(FREE_BUFFER_SIZE));
202
203 /*
204 * Sweeps the useful LF range of the proxmark from
205 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
206 * read the voltage in the antenna, the result left
207 * in the buffer is a graph which should clearly show
208 * the resonating frequency of your LF antenna
209 * ( hopefully around 95 if it is tuned to 125kHz!)
210 */
211
212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
213 for (i=255; i>19; i--) {
214 WDT_HIT();
215 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
216 SpinDelay(20);
217 // Vref = 3.3V, and a 10000:240 voltage divider on the input
218 // can measure voltages up to 137500 mV
219 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
220 if (i==95) vLf125 = adcval; // voltage at 125Khz
221 if (i==89) vLf134 = adcval; // voltage at 134Khz
222
223 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
224 if(dest[i] > peak) {
225 peakv = adcval;
226 peak = dest[i];
227 peakf = i;
228 //ptr = i;
229 }
230 }
231
232 LED_A_ON();
233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
235 SpinDelay(20);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
239
240 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
241 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
242 c.arg[1] = vHf;
243 c.arg[2] = peakf | (peakv << 16);
244
245 DbpString("Measuring complete, sending report back to host");
246
247 UsbSendPacket((uint8_t *)&c, sizeof(c));
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249 LED_A_OFF();
250 LED_B_OFF();
251 return;
252 }
253
254 void MeasureAntennaTuningHf(void)
255 {
256 int vHf = 0; // in mV
257
258 DbpString("Measuring HF antenna, press button to exit");
259
260 for (;;) {
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
263 SpinDelay(20);
264 // Vref = 3300mV, and an 10:1 voltage divider on the input
265 // can measure voltages up to 33000 mV
266 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
267
268 Dbprintf("%d mV",vHf);
269 if (BUTTON_PRESS()) break;
270 }
271 DbpString("cancelled");
272 }
273
274
275 void SimulateTagHfListen(void)
276 {
277 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
278 uint8_t v = 0;
279 int i;
280 int p = 0;
281
282 // We're using this mode just so that I can test it out; the simulated
283 // tag mode would work just as well and be simpler.
284 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
285
286 // We need to listen to the high-frequency, peak-detected path.
287 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
288
289 FpgaSetupSsc();
290
291 i = 0;
292 for(;;) {
293 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
294 AT91C_BASE_SSC->SSC_THR = 0xff;
295 }
296 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
297 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
298
299 v <<= 1;
300 if(r & 1) {
301 v |= 1;
302 }
303 p++;
304
305 if(p >= 8) {
306 dest[i] = v;
307 v = 0;
308 p = 0;
309 i++;
310
311 if(i >= FREE_BUFFER_SIZE) {
312 break;
313 }
314 }
315 }
316 }
317 DbpString("simulate tag (now type bitsamples)");
318 }
319
320 void ReadMem(int addr)
321 {
322 const uint8_t *data = ((uint8_t *)addr);
323
324 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
325 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
326 }
327
328 /* osimage version information is linked in */
329 extern struct version_information version_information;
330 /* bootrom version information is pointed to from _bootphase1_version_pointer */
331 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
332 void SendVersion(void)
333 {
334 char temp[48]; /* Limited data payload in USB packets */
335 DbpString("Prox/RFID mark3 RFID instrument");
336
337 /* Try to find the bootrom version information. Expect to find a pointer at
338 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
339 * pointer, then use it.
340 */
341 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
342 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
343 DbpString("bootrom version information appears invalid");
344 } else {
345 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
346 DbpString(temp);
347 }
348
349 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
350 DbpString(temp);
351
352 FpgaGatherVersion(temp, sizeof(temp));
353 DbpString(temp);
354 }
355
356 #ifdef WITH_LF
357 // samy's sniff and repeat routine
358 void SamyRun()
359 {
360 DbpString("Stand-alone mode! No PC necessary.");
361
362 // 3 possible options? no just 2 for now
363 #define OPTS 2
364
365 int high[OPTS], low[OPTS];
366
367 // Oooh pretty -- notify user we're in elite samy mode now
368 LED(LED_RED, 200);
369 LED(LED_ORANGE, 200);
370 LED(LED_GREEN, 200);
371 LED(LED_ORANGE, 200);
372 LED(LED_RED, 200);
373 LED(LED_ORANGE, 200);
374 LED(LED_GREEN, 200);
375 LED(LED_ORANGE, 200);
376 LED(LED_RED, 200);
377
378 int selected = 0;
379 int playing = 0;
380
381 // Turn on selected LED
382 LED(selected + 1, 0);
383
384 for (;;)
385 {
386 UsbPoll(FALSE);
387 WDT_HIT();
388
389 // Was our button held down or pressed?
390 int button_pressed = BUTTON_HELD(1000);
391 SpinDelay(300);
392
393 // Button was held for a second, begin recording
394 if (button_pressed > 0)
395 {
396 LEDsoff();
397 LED(selected + 1, 0);
398 LED(LED_RED2, 0);
399
400 // record
401 DbpString("Starting recording");
402
403 // wait for button to be released
404 while(BUTTON_PRESS())
405 WDT_HIT();
406
407 /* need this delay to prevent catching some weird data */
408 SpinDelay(500);
409
410 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
411 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
412
413 LEDsoff();
414 LED(selected + 1, 0);
415 // Finished recording
416
417 // If we were previously playing, set playing off
418 // so next button push begins playing what we recorded
419 playing = 0;
420 }
421
422 // Change where to record (or begin playing)
423 else if (button_pressed)
424 {
425 // Next option if we were previously playing
426 if (playing)
427 selected = (selected + 1) % OPTS;
428 playing = !playing;
429
430 LEDsoff();
431 LED(selected + 1, 0);
432
433 // Begin transmitting
434 if (playing)
435 {
436 LED(LED_GREEN, 0);
437 DbpString("Playing");
438 // wait for button to be released
439 while(BUTTON_PRESS())
440 WDT_HIT();
441 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
442 CmdHIDsimTAG(high[selected], low[selected], 0);
443 DbpString("Done playing");
444 if (BUTTON_HELD(1000) > 0)
445 {
446 DbpString("Exiting");
447 LEDsoff();
448 return;
449 }
450
451 /* We pressed a button so ignore it here with a delay */
452 SpinDelay(300);
453
454 // when done, we're done playing, move to next option
455 selected = (selected + 1) % OPTS;
456 playing = !playing;
457 LEDsoff();
458 LED(selected + 1, 0);
459 }
460 else
461 while(BUTTON_PRESS())
462 WDT_HIT();
463 }
464 }
465 }
466 #endif
467
468 /*
469 OBJECTIVE
470 Listen and detect an external reader. Determine the best location
471 for the antenna.
472
473 INSTRUCTIONS:
474 Inside the ListenReaderField() function, there is two mode.
475 By default, when you call the function, you will enter mode 1.
476 If you press the PM3 button one time, you will enter mode 2.
477 If you press the PM3 button a second time, you will exit the function.
478
479 DESCRIPTION OF MODE 1:
480 This mode just listens for an external reader field and lights up green
481 for HF and/or red for LF. This is the original mode of the detectreader
482 function.
483
484 DESCRIPTION OF MODE 2:
485 This mode will visually represent, using the LEDs, the actual strength of the
486 current compared to the maximum current detected. Basically, once you know
487 what kind of external reader is present, it will help you spot the best location to place
488 your antenna. You will probably not get some good results if there is a LF and a HF reader
489 at the same place! :-)
490
491 LIGHT SCHEME USED:
492 */
493 static const char LIGHT_SCHEME[] = {
494 0x0, /* ---- | No field detected */
495 0x1, /* X--- | 14% of maximum current detected */
496 0x2, /* -X-- | 29% of maximum current detected */
497 0x4, /* --X- | 43% of maximum current detected */
498 0x8, /* ---X | 57% of maximum current detected */
499 0xC, /* --XX | 71% of maximum current detected */
500 0xE, /* -XXX | 86% of maximum current detected */
501 0xF, /* XXXX | 100% of maximum current detected */
502 };
503 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
504
505 void ListenReaderField(int limit)
506 {
507 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
508 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
509 int mode=1, display_val, display_max, i;
510
511 #define LF_ONLY 1
512 #define HF_ONLY 2
513
514 LEDsoff();
515
516 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
517
518 if(limit != HF_ONLY) {
519 Dbprintf("LF 125/134 Baseline: %d", lf_av);
520 lf_baseline = lf_av;
521 }
522
523 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
524
525 if (limit != LF_ONLY) {
526 Dbprintf("HF 13.56 Baseline: %d", hf_av);
527 hf_baseline = hf_av;
528 }
529
530 for(;;) {
531 if (BUTTON_PRESS()) {
532 SpinDelay(500);
533 switch (mode) {
534 case 1:
535 mode=2;
536 DbpString("Signal Strength Mode");
537 break;
538 case 2:
539 default:
540 DbpString("Stopped");
541 LEDsoff();
542 return;
543 break;
544 }
545 }
546 WDT_HIT();
547
548 if (limit != HF_ONLY) {
549 if(mode==1) {
550 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
551 else LED_D_OFF();
552 }
553
554 ++lf_count;
555 lf_av_new= ReadAdc(ADC_CHAN_LF);
556 // see if there's a significant change
557 if(abs(lf_av - lf_av_new) > 10) {
558 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
559 lf_av = lf_av_new;
560 if (lf_av > lf_max)
561 lf_max = lf_av;
562 lf_count= 0;
563 }
564 }
565
566 if (limit != LF_ONLY) {
567 if (mode == 1){
568 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
569 else LED_B_OFF();
570 }
571
572 ++hf_count;
573 hf_av_new= ReadAdc(ADC_CHAN_HF);
574 // see if there's a significant change
575 if(abs(hf_av - hf_av_new) > 10) {
576 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
577 hf_av = hf_av_new;
578 if (hf_av > hf_max)
579 hf_max = hf_av;
580 hf_count= 0;
581 }
582 }
583
584 if(mode == 2) {
585 if (limit == LF_ONLY) {
586 display_val = lf_av;
587 display_max = lf_max;
588 } else if (limit == HF_ONLY) {
589 display_val = hf_av;
590 display_max = hf_max;
591 } else { /* Pick one at random */
592 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
593 display_val = hf_av;
594 display_max = hf_max;
595 } else {
596 display_val = lf_av;
597 display_max = lf_max;
598 }
599 }
600 for (i=0; i<LIGHT_LEN; i++) {
601 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
602 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
603 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
604 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
605 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
606 break;
607 }
608 }
609 }
610 }
611 }
612
613 void UsbPacketReceived(uint8_t *packet, int len)
614 {
615 UsbCommand *c = (UsbCommand *)packet;
616 UsbCommand ack;
617 ack.cmd = CMD_ACK;
618
619 switch(c->cmd) {
620 #ifdef WITH_LF
621 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
622 AcquireRawAdcSamples125k(c->arg[0]);
623 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
624 break;
625 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
626 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
627 break;
628 case CMD_HID_DEMOD_FSK:
629 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
630 break;
631 case CMD_HID_SIM_TAG:
632 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
633 break;
634 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
635 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
636 break;
637 case CMD_EM410X_WRITE_TAG:
638 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
639 break;
640 case CMD_READ_TI_TYPE:
641 ReadTItag();
642 break;
643 case CMD_WRITE_TI_TYPE:
644 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
645 break;
646 case CMD_SIMULATE_TAG_125K:
647 LED_A_ON();
648 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
649 LED_A_OFF();
650 break;
651 case CMD_LF_SIMULATE_BIDIR:
652 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
653 break;
654 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
655 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
656 break;
657 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
658 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
659 break;
660 case CMD_T55XX_READ_BLOCK:
661 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
662 break;
663 case CMD_T55XX_WRITE_BLOCK:
664 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
665 break;
666 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
667 T55xxReadTrace();
668 break;
669 #endif
670
671 #ifdef WITH_HITAG
672 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
673 SnoopHitag(c->arg[0]);
674 break;
675 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
676 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
677 break;
678 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
679 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
680 break;
681 #endif
682
683 #ifdef WITH_ISO15693
684 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
685 AcquireRawAdcSamplesIso15693();
686 break;
687 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
688 RecordRawAdcSamplesIso15693();
689 break;
690
691 case CMD_ISO_15693_COMMAND:
692 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
693 break;
694
695 case CMD_ISO_15693_FIND_AFI:
696 BruteforceIso15693Afi(c->arg[0]);
697 break;
698
699 case CMD_ISO_15693_DEBUG:
700 SetDebugIso15693(c->arg[0]);
701 break;
702
703 case CMD_READER_ISO_15693:
704 ReaderIso15693(c->arg[0]);
705 break;
706 case CMD_SIMTAG_ISO_15693:
707 SimTagIso15693(c->arg[0]);
708 break;
709 #endif
710
711 #ifdef WITH_LEGICRF
712 case CMD_SIMULATE_TAG_LEGIC_RF:
713 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
714 break;
715
716 case CMD_WRITER_LEGIC_RF:
717 LegicRfWriter(c->arg[1], c->arg[0]);
718 break;
719
720 case CMD_READER_LEGIC_RF:
721 LegicRfReader(c->arg[0], c->arg[1]);
722 break;
723 #endif
724
725 #ifdef WITH_ISO14443b
726 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
727 AcquireRawAdcSamplesIso14443(c->arg[0]);
728 break;
729 case CMD_READ_SRI512_TAG:
730 ReadSRI512Iso14443(c->arg[0]);
731 break;
732 case CMD_READ_SRIX4K_TAG:
733 ReadSRIX4KIso14443(c->arg[0]);
734 break;
735 case CMD_SNOOP_ISO_14443:
736 SnoopIso14443();
737 break;
738 case CMD_SIMULATE_TAG_ISO_14443:
739 SimulateIso14443Tag();
740 break;
741 #endif
742
743 #ifdef WITH_ISO14443a
744 case CMD_SNOOP_ISO_14443a:
745 SnoopIso14443a(c->arg[0]);
746 break;
747 case CMD_READER_ISO_14443a:
748 ReaderIso14443a(c, &ack);
749 break;
750 case CMD_SIMULATE_TAG_ISO_14443a:
751 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2]); // ## Simulate iso14443a tag - pass tag type & UID
752 break;
753 case CMD_EPA_PACE_COLLECT_NONCE:
754 EPA_PACE_Collect_Nonce(c, &ack);
755 break;
756
757 case CMD_READER_MIFARE:
758 ReaderMifare(c->arg[0]);
759 break;
760 case CMD_MIFARE_READBL:
761 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
762 break;
763 case CMD_MIFARE_READSC:
764 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
765 break;
766 case CMD_MIFARE_WRITEBL:
767 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
768 break;
769 case CMD_MIFARE_NESTED:
770 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
771 break;
772 case CMD_MIFARE_CHKKEYS:
773 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
774 break;
775 case CMD_SIMULATE_MIFARE_CARD:
776 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
777 break;
778
779 // emulator
780 case CMD_MIFARE_SET_DBGMODE:
781 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
782 break;
783 case CMD_MIFARE_EML_MEMCLR:
784 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
785 break;
786 case CMD_MIFARE_EML_MEMSET:
787 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
788 break;
789 case CMD_MIFARE_EML_MEMGET:
790 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
791 break;
792 case CMD_MIFARE_EML_CARDLOAD:
793 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
794 break;
795
796 // Work with "magic Chinese" card
797 case CMD_MIFARE_EML_CSETBLOCK:
798 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
799 break;
800 case CMD_MIFARE_EML_CGETBLOCK:
801 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
802 break;
803
804 // mifare sniffer
805 case CMD_MIFARE_SNIFFER:
806 SniffMifare(c->arg[0]);
807 break;
808 #endif
809
810 #ifdef WITH_ICLASS
811 // Makes use of ISO14443a FPGA Firmware
812 case CMD_SNOOP_ICLASS:
813 SnoopIClass();
814 break;
815 case CMD_SIMULATE_TAG_ICLASS:
816 SimulateIClass(c->arg[0], c->d.asBytes);
817 break;
818 case CMD_READER_ICLASS:
819 ReaderIClass(c->arg[0]);
820 break;
821 #endif
822
823 case CMD_SIMULATE_TAG_HF_LISTEN:
824 SimulateTagHfListen();
825 break;
826
827 case CMD_BUFF_CLEAR:
828 BufferClear();
829 break;
830
831 case CMD_MEASURE_ANTENNA_TUNING:
832 MeasureAntennaTuning();
833 break;
834
835 case CMD_MEASURE_ANTENNA_TUNING_HF:
836 MeasureAntennaTuningHf();
837 break;
838
839 case CMD_LISTEN_READER_FIELD:
840 ListenReaderField(c->arg[0]);
841 break;
842
843 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
844 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
845 SpinDelay(200);
846 LED_D_OFF(); // LED D indicates field ON or OFF
847 break;
848
849 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
850 UsbCommand n;
851 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
852 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
853 } else {
854 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
855 }
856 n.arg[0] = c->arg[0];
857 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t));
858 LED_B_ON();
859 UsbSendPacket((uint8_t *)&n, sizeof(n));
860 LED_B_OFF();
861 } break;
862
863 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
864 uint8_t *b = (uint8_t *)BigBuf;
865 memcpy(b+c->arg[0], c->d.asBytes, 48);
866 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
867 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
868 } break;
869
870 case CMD_READ_MEM:
871 ReadMem(c->arg[0]);
872 break;
873
874 case CMD_SET_LF_DIVISOR:
875 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
876 break;
877
878 case CMD_SET_ADC_MUX:
879 switch(c->arg[0]) {
880 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
881 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
882 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
883 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
884 }
885 break;
886
887 case CMD_VERSION:
888 SendVersion();
889 break;
890
891 #ifdef WITH_LCD
892 case CMD_LCD_RESET:
893 LCDReset();
894 break;
895 case CMD_LCD:
896 LCDSend(c->arg[0]);
897 break;
898 #endif
899 case CMD_SETUP_WRITE:
900 case CMD_FINISH_WRITE:
901 case CMD_HARDWARE_RESET: {
902 USB_D_PLUS_PULLUP_OFF();
903 SpinDelay(1000);
904 SpinDelay(1000);
905 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
906 for(;;) {
907 // We're going to reset, and the bootrom will take control.
908 }
909 } break;
910
911 case CMD_START_FLASH: {
912 if(common_area.flags.bootrom_present) {
913 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
914 }
915 USB_D_PLUS_PULLUP_OFF();
916 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
917 for(;;);
918 } break;
919
920 case CMD_DEVICE_INFO: {
921 UsbCommand c;
922 c.cmd = CMD_DEVICE_INFO;
923 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
924 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
925 UsbSendPacket((uint8_t*)&c, sizeof(c));
926 } break;
927
928 default: {
929 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
930 } break;
931 }
932 }
933
934 void __attribute__((noreturn)) AppMain(void)
935 {
936 SpinDelay(100);
937
938 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
939 /* Initialize common area */
940 memset(&common_area, 0, sizeof(common_area));
941 common_area.magic = COMMON_AREA_MAGIC;
942 common_area.version = 1;
943 }
944 common_area.flags.osimage_present = 1;
945
946 LED_D_OFF();
947 LED_C_OFF();
948 LED_B_OFF();
949 LED_A_OFF();
950
951 UsbStart();
952
953 // The FPGA gets its clock from us from PCK0 output, so set that up.
954 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
955 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
956 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
957 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
958 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
959 AT91C_PMC_PRES_CLK_4;
960 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
961
962 // Reset SPI
963 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
964 // Reset SSC
965 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
966
967 // Load the FPGA image, which we have stored in our flash.
968 FpgaDownloadAndGo();
969
970 StartTickCount();
971
972 #ifdef WITH_LCD
973
974 LCDInit();
975
976 // test text on different colored backgrounds
977 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
978 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
979 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
980 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
981 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
982 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
983 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
984 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
985
986 // color bands
987 LCDFill(0, 1+8* 8, 132, 8, BLACK);
988 LCDFill(0, 1+8* 9, 132, 8, WHITE);
989 LCDFill(0, 1+8*10, 132, 8, RED);
990 LCDFill(0, 1+8*11, 132, 8, GREEN);
991 LCDFill(0, 1+8*12, 132, 8, BLUE);
992 LCDFill(0, 1+8*13, 132, 8, YELLOW);
993 LCDFill(0, 1+8*14, 132, 8, CYAN);
994 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
995
996 #endif
997
998 for(;;) {
999 UsbPoll(FALSE);
1000 WDT_HIT();
1001
1002 #ifdef WITH_LF
1003 if (BUTTON_HELD(1000) > 0)
1004 SamyRun();
1005 #endif
1006 }
1007 }
Impressum, Datenschutz