]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
Merge pull request #31 from dnet/patch-1
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26
27 #ifdef WITH_LCD
28 #include "LCD.h"
29 #endif
30
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
38
39 uint8_t ToSend[512];
40 int ToSendMax;
41 static int ToSendBit;
42 struct common_area common_area __attribute__((section(".commonarea")));
43
44 void BufferClear(void)
45 {
46 memset(BigBuf,0,sizeof(BigBuf));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
48 }
49
50 void ToSendReset(void)
51 {
52 ToSendMax = -1;
53 ToSendBit = 8;
54 }
55
56 void ToSendStuffBit(int b)
57 {
58 if(ToSendBit >= 8) {
59 ToSendMax++;
60 ToSend[ToSendMax] = 0;
61 ToSendBit = 0;
62 }
63
64 if(b) {
65 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
66 }
67
68 ToSendBit++;
69
70 if(ToSendBit >= sizeof(ToSend)) {
71 ToSendBit = 0;
72 DbpString("ToSendStuffBit overflowed!");
73 }
74 }
75
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
79
80 void DbpString(char *str)
81 {
82 byte_t len = strlen(str);
83 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
86 // return;
87 //
88 // UsbCommand c;
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
93 // }
94 // memcpy(c.d.asBytes, str, c.arg[0]);
95 //
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
98 // SpinDelay(50);
99 }
100
101 #if 0
102 void DbpIntegers(int x1, int x2, int x3)
103 {
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
107 // return;
108 //
109 // UsbCommand c;
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
111 // c.arg[0] = x1;
112 // c.arg[1] = x2;
113 // c.arg[2] = x3;
114 //
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
116 // // XXX
117 // SpinDelay(50);
118 }
119 #endif
120
121 void Dbprintf(const char *fmt, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string[128];
124 va_list ap;
125
126 va_start(ap, fmt);
127 kvsprintf(fmt, output_string, 10, ap);
128 va_end(ap);
129
130 DbpString(output_string);
131 }
132
133 // prints HEX & ASCII
134 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
135 int l=0,i;
136 char ascii[9];
137
138 while (len>0) {
139 if (len>8) l=8;
140 else l=len;
141
142 memcpy(ascii,d,l);
143 ascii[l]=0;
144
145 // filter safe ascii
146 for (i=0;i<l;i++)
147 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
148
149 if (bAsci) {
150 Dbprintf("%-8s %*D",ascii,l,d," ");
151 } else {
152 Dbprintf("%*D",l,d," ");
153 }
154
155 len-=8;
156 d+=8;
157 }
158 }
159
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
163 // return that.
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch)
166 {
167 uint32_t d;
168
169 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
170 AT91C_BASE_ADC->ADC_MR =
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
175
176 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
177 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
178 ;
179 d = AT91C_BASE_ADC->ADC_CDR[ch];
180
181 return d;
182 }
183
184 int AvgAdc(int ch) // was static - merlok
185 {
186 int i;
187 int a = 0;
188
189 for(i = 0; i < 32; i++) {
190 a += ReadAdc(ch);
191 }
192
193 return (a + 15) >> 5;
194 }
195
196 void MeasureAntennaTuning(void)
197 {
198 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
199 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
200 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
201
202 // UsbCommand c;
203
204 LED_B_ON();
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest,0,FREE_BUFFER_SIZE);
207
208 /*
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
215 */
216
217 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
219 for (i=255; i>19; i--) {
220 WDT_HIT();
221 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
222 SpinDelay(20);
223 // Vref = 3.3V, and a 10000:240 voltage divider on the input
224 // can measure voltages up to 137500 mV
225 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
226 if (i==95) vLf125 = adcval; // voltage at 125Khz
227 if (i==89) vLf134 = adcval; // voltage at 134Khz
228
229 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
230 if(dest[i] > peak) {
231 peakv = adcval;
232 peak = dest[i];
233 peakf = i;
234 //ptr = i;
235 }
236 }
237
238 LED_A_ON();
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
242 SpinDelay(20);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
246
247 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
248 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
249 // c.arg[1] = vHf;
250 // c.arg[2] = peakf | (peakv << 16);
251
252 DbpString("Measuring complete, sending report back to host");
253 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
254 // UsbSendPacket((uint8_t *)&c, sizeof(c));
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256 LED_A_OFF();
257 LED_B_OFF();
258 return;
259 }
260
261 void MeasureAntennaTuningHf(void)
262 {
263 int vHf = 0; // in mV
264
265 DbpString("Measuring HF antenna, press button to exit");
266
267 for (;;) {
268 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
269 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
270 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
271 SpinDelay(20);
272 // Vref = 3300mV, and an 10:1 voltage divider on the input
273 // can measure voltages up to 33000 mV
274 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
275
276 Dbprintf("%d mV",vHf);
277 if (BUTTON_PRESS()) break;
278 }
279 DbpString("cancelled");
280 }
281
282
283 void SimulateTagHfListen(void)
284 {
285 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
286 uint8_t v = 0;
287 int i;
288 int p = 0;
289
290 // We're using this mode just so that I can test it out; the simulated
291 // tag mode would work just as well and be simpler.
292 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
293 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
294
295 // We need to listen to the high-frequency, peak-detected path.
296 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
297
298 FpgaSetupSsc();
299
300 i = 0;
301 for(;;) {
302 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
303 AT91C_BASE_SSC->SSC_THR = 0xff;
304 }
305 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
306 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
307
308 v <<= 1;
309 if(r & 1) {
310 v |= 1;
311 }
312 p++;
313
314 if(p >= 8) {
315 dest[i] = v;
316 v = 0;
317 p = 0;
318 i++;
319
320 if(i >= FREE_BUFFER_SIZE) {
321 break;
322 }
323 }
324 }
325 }
326 DbpString("simulate tag (now type bitsamples)");
327 }
328
329 void ReadMem(int addr)
330 {
331 const uint8_t *data = ((uint8_t *)addr);
332
333 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
334 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
335 }
336
337 /* osimage version information is linked in */
338 extern struct version_information version_information;
339 /* bootrom version information is pointed to from _bootphase1_version_pointer */
340 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
341 void SendVersion(void)
342 {
343 char temp[256]; /* Limited data payload in USB packets */
344 DbpString("Prox/RFID mark3 RFID instrument");
345
346 /* Try to find the bootrom version information. Expect to find a pointer at
347 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
348 * pointer, then use it.
349 */
350 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
351 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
352 DbpString("bootrom version information appears invalid");
353 } else {
354 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
355 DbpString(temp);
356 }
357
358 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
359 DbpString(temp);
360
361 FpgaGatherVersion(temp, sizeof(temp));
362 DbpString(temp);
363 // Send Chip ID
364 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
365 }
366
367 #ifdef WITH_LF
368 // samy's sniff and repeat routine
369 void SamyRun()
370 {
371 DbpString("Stand-alone mode! No PC necessary.");
372 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
373
374 // 3 possible options? no just 2 for now
375 #define OPTS 2
376
377 int high[OPTS], low[OPTS];
378
379 // Oooh pretty -- notify user we're in elite samy mode now
380 LED(LED_RED, 200);
381 LED(LED_ORANGE, 200);
382 LED(LED_GREEN, 200);
383 LED(LED_ORANGE, 200);
384 LED(LED_RED, 200);
385 LED(LED_ORANGE, 200);
386 LED(LED_GREEN, 200);
387 LED(LED_ORANGE, 200);
388 LED(LED_RED, 200);
389
390 int selected = 0;
391 int playing = 0;
392
393 // Turn on selected LED
394 LED(selected + 1, 0);
395
396 for (;;)
397 {
398 // UsbPoll(FALSE);
399 usb_poll();
400 WDT_HIT();
401
402 // Was our button held down or pressed?
403 int button_pressed = BUTTON_HELD(1000);
404 SpinDelay(300);
405
406 // Button was held for a second, begin recording
407 if (button_pressed > 0)
408 {
409 LEDsoff();
410 LED(selected + 1, 0);
411 LED(LED_RED2, 0);
412
413 // record
414 DbpString("Starting recording");
415
416 // wait for button to be released
417 while(BUTTON_PRESS())
418 WDT_HIT();
419
420 /* need this delay to prevent catching some weird data */
421 SpinDelay(500);
422
423 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
424 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
425
426 LEDsoff();
427 LED(selected + 1, 0);
428 // Finished recording
429
430 // If we were previously playing, set playing off
431 // so next button push begins playing what we recorded
432 playing = 0;
433 }
434
435 // Change where to record (or begin playing)
436 else if (button_pressed)
437 {
438 // Next option if we were previously playing
439 if (playing)
440 selected = (selected + 1) % OPTS;
441 playing = !playing;
442
443 LEDsoff();
444 LED(selected + 1, 0);
445
446 // Begin transmitting
447 if (playing)
448 {
449 LED(LED_GREEN, 0);
450 DbpString("Playing");
451 // wait for button to be released
452 while(BUTTON_PRESS())
453 WDT_HIT();
454 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
455 CmdHIDsimTAG(high[selected], low[selected], 0);
456 DbpString("Done playing");
457 if (BUTTON_HELD(1000) > 0)
458 {
459 DbpString("Exiting");
460 LEDsoff();
461 return;
462 }
463
464 /* We pressed a button so ignore it here with a delay */
465 SpinDelay(300);
466
467 // when done, we're done playing, move to next option
468 selected = (selected + 1) % OPTS;
469 playing = !playing;
470 LEDsoff();
471 LED(selected + 1, 0);
472 }
473 else
474 while(BUTTON_PRESS())
475 WDT_HIT();
476 }
477 }
478 }
479 #endif
480
481 /*
482 OBJECTIVE
483 Listen and detect an external reader. Determine the best location
484 for the antenna.
485
486 INSTRUCTIONS:
487 Inside the ListenReaderField() function, there is two mode.
488 By default, when you call the function, you will enter mode 1.
489 If you press the PM3 button one time, you will enter mode 2.
490 If you press the PM3 button a second time, you will exit the function.
491
492 DESCRIPTION OF MODE 1:
493 This mode just listens for an external reader field and lights up green
494 for HF and/or red for LF. This is the original mode of the detectreader
495 function.
496
497 DESCRIPTION OF MODE 2:
498 This mode will visually represent, using the LEDs, the actual strength of the
499 current compared to the maximum current detected. Basically, once you know
500 what kind of external reader is present, it will help you spot the best location to place
501 your antenna. You will probably not get some good results if there is a LF and a HF reader
502 at the same place! :-)
503
504 LIGHT SCHEME USED:
505 */
506 static const char LIGHT_SCHEME[] = {
507 0x0, /* ---- | No field detected */
508 0x1, /* X--- | 14% of maximum current detected */
509 0x2, /* -X-- | 29% of maximum current detected */
510 0x4, /* --X- | 43% of maximum current detected */
511 0x8, /* ---X | 57% of maximum current detected */
512 0xC, /* --XX | 71% of maximum current detected */
513 0xE, /* -XXX | 86% of maximum current detected */
514 0xF, /* XXXX | 100% of maximum current detected */
515 };
516 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
517
518 void ListenReaderField(int limit)
519 {
520 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
521 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
522 int mode=1, display_val, display_max, i;
523
524 #define LF_ONLY 1
525 #define HF_ONLY 2
526
527 LEDsoff();
528
529 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
530
531 if(limit != HF_ONLY) {
532 Dbprintf("LF 125/134 Baseline: %d", lf_av);
533 lf_baseline = lf_av;
534 }
535
536 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
537
538 if (limit != LF_ONLY) {
539 Dbprintf("HF 13.56 Baseline: %d", hf_av);
540 hf_baseline = hf_av;
541 }
542
543 for(;;) {
544 if (BUTTON_PRESS()) {
545 SpinDelay(500);
546 switch (mode) {
547 case 1:
548 mode=2;
549 DbpString("Signal Strength Mode");
550 break;
551 case 2:
552 default:
553 DbpString("Stopped");
554 LEDsoff();
555 return;
556 break;
557 }
558 }
559 WDT_HIT();
560
561 if (limit != HF_ONLY) {
562 if(mode==1) {
563 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
564 else LED_D_OFF();
565 }
566
567 ++lf_count;
568 lf_av_new= ReadAdc(ADC_CHAN_LF);
569 // see if there's a significant change
570 if(abs(lf_av - lf_av_new) > 10) {
571 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
572 lf_av = lf_av_new;
573 if (lf_av > lf_max)
574 lf_max = lf_av;
575 lf_count= 0;
576 }
577 }
578
579 if (limit != LF_ONLY) {
580 if (mode == 1){
581 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
582 else LED_B_OFF();
583 }
584
585 ++hf_count;
586 hf_av_new= ReadAdc(ADC_CHAN_HF);
587 // see if there's a significant change
588 if(abs(hf_av - hf_av_new) > 10) {
589 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
590 hf_av = hf_av_new;
591 if (hf_av > hf_max)
592 hf_max = hf_av;
593 hf_count= 0;
594 }
595 }
596
597 if(mode == 2) {
598 if (limit == LF_ONLY) {
599 display_val = lf_av;
600 display_max = lf_max;
601 } else if (limit == HF_ONLY) {
602 display_val = hf_av;
603 display_max = hf_max;
604 } else { /* Pick one at random */
605 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
606 display_val = hf_av;
607 display_max = hf_max;
608 } else {
609 display_val = lf_av;
610 display_max = lf_max;
611 }
612 }
613 for (i=0; i<LIGHT_LEN; i++) {
614 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
615 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
616 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
617 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
618 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
619 break;
620 }
621 }
622 }
623 }
624 }
625
626 void UsbPacketReceived(uint8_t *packet, int len)
627 {
628 UsbCommand *c = (UsbCommand *)packet;
629
630 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
631
632 switch(c->cmd) {
633 #ifdef WITH_LF
634 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
635 AcquireRawAdcSamples125k(c->arg[0]);
636 cmd_send(CMD_ACK,0,0,0,0,0);
637 break;
638 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
639 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
640 break;
641 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
642 SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
643 cmd_send(CMD_ACK,0,0,0,0,0);
644 break;
645 case CMD_HID_DEMOD_FSK:
646 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
647 break;
648 case CMD_HID_SIM_TAG:
649 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
650 break;
651 case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
652 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
653 break;
654 case CMD_IO_DEMOD_FSK:
655 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
656 break;
657 case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
658 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
659 break;
660 case CMD_EM410X_WRITE_TAG:
661 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
662 break;
663 case CMD_READ_TI_TYPE:
664 ReadTItag();
665 break;
666 case CMD_WRITE_TI_TYPE:
667 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
668 break;
669 case CMD_SIMULATE_TAG_125K:
670 LED_A_ON();
671 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
672 LED_A_OFF();
673 break;
674 case CMD_LF_SIMULATE_BIDIR:
675 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
676 break;
677 case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
678 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
679 break;
680 case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
681 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
682 break;
683 case CMD_T55XX_READ_BLOCK:
684 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
685 break;
686 case CMD_T55XX_WRITE_BLOCK:
687 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
688 break;
689 case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
690 T55xxReadTrace();
691 break;
692 case CMD_PCF7931_READ: // Read PCF7931 tag
693 ReadPCF7931();
694 cmd_send(CMD_ACK,0,0,0,0,0);
695 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
696 break;
697 case CMD_EM4X_READ_WORD:
698 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
699 break;
700 case CMD_EM4X_WRITE_WORD:
701 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
702 break;
703 #endif
704
705 #ifdef WITH_HITAG
706 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
707 SnoopHitag(c->arg[0]);
708 break;
709 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
710 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
711 break;
712 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
713 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
714 break;
715 #endif
716
717 #ifdef WITH_ISO15693
718 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
719 AcquireRawAdcSamplesIso15693();
720 break;
721 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
722 RecordRawAdcSamplesIso15693();
723 break;
724
725 case CMD_ISO_15693_COMMAND:
726 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
727 break;
728
729 case CMD_ISO_15693_FIND_AFI:
730 BruteforceIso15693Afi(c->arg[0]);
731 break;
732
733 case CMD_ISO_15693_DEBUG:
734 SetDebugIso15693(c->arg[0]);
735 break;
736
737 case CMD_READER_ISO_15693:
738 ReaderIso15693(c->arg[0]);
739 break;
740 case CMD_SIMTAG_ISO_15693:
741 SimTagIso15693(c->arg[0]);
742 break;
743 #endif
744
745 #ifdef WITH_LEGICRF
746 case CMD_SIMULATE_TAG_LEGIC_RF:
747 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
748 break;
749
750 case CMD_WRITER_LEGIC_RF:
751 LegicRfWriter(c->arg[1], c->arg[0]);
752 break;
753
754 case CMD_READER_LEGIC_RF:
755 LegicRfReader(c->arg[0], c->arg[1]);
756 break;
757 #endif
758
759 #ifdef WITH_ISO14443b
760 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
761 AcquireRawAdcSamplesIso14443(c->arg[0]);
762 break;
763 case CMD_READ_SRI512_TAG:
764 ReadSTMemoryIso14443(0x0F);
765 break;
766 case CMD_READ_SRIX4K_TAG:
767 ReadSTMemoryIso14443(0x7F);
768 break;
769 case CMD_SNOOP_ISO_14443:
770 SnoopIso14443();
771 break;
772 case CMD_SIMULATE_TAG_ISO_14443:
773 SimulateIso14443Tag();
774 break;
775 case CMD_ISO_14443B_COMMAND:
776 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
777 break;
778 #endif
779
780 #ifdef WITH_ISO14443a
781 case CMD_SNOOP_ISO_14443a:
782 SnoopIso14443a(c->arg[0]);
783 break;
784 case CMD_READER_ISO_14443a:
785 ReaderIso14443a(c);
786 break;
787 case CMD_SIMULATE_TAG_ISO_14443a:
788 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
789 break;
790 case CMD_EPA_PACE_COLLECT_NONCE:
791 EPA_PACE_Collect_Nonce(c);
792 break;
793
794 case CMD_READER_MIFARE:
795 ReaderMifare(c->arg[0]);
796 break;
797 case CMD_MIFARE_READBL:
798 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
799 break;
800 case CMD_MIFAREU_READBL:
801 MifareUReadBlock(c->arg[0],c->d.asBytes);
802 break;
803 case CMD_MIFAREU_READCARD:
804 MifareUReadCard(c->arg[0],c->d.asBytes);
805 break;
806 case CMD_MIFARE_READSC:
807 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
808 break;
809 case CMD_MIFARE_WRITEBL:
810 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
811 break;
812 case CMD_MIFAREU_WRITEBL_COMPAT:
813 MifareUWriteBlock(c->arg[0], c->d.asBytes);
814 break;
815 case CMD_MIFAREU_WRITEBL:
816 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
817 break;
818 case CMD_MIFARE_NESTED:
819 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
820 break;
821 case CMD_MIFARE_CHKKEYS:
822 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
823 break;
824 case CMD_SIMULATE_MIFARE_CARD:
825 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
826 break;
827
828 // emulator
829 case CMD_MIFARE_SET_DBGMODE:
830 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
831 break;
832 case CMD_MIFARE_EML_MEMCLR:
833 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
834 break;
835 case CMD_MIFARE_EML_MEMSET:
836 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
837 break;
838 case CMD_MIFARE_EML_MEMGET:
839 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
840 break;
841 case CMD_MIFARE_EML_CARDLOAD:
842 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
843 break;
844
845 // Work with "magic Chinese" card
846 case CMD_MIFARE_EML_CSETBLOCK:
847 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
848 break;
849 case CMD_MIFARE_EML_CGETBLOCK:
850 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
851 break;
852
853 // mifare sniffer
854 case CMD_MIFARE_SNIFFER:
855 SniffMifare(c->arg[0]);
856 break;
857 #endif
858
859 #ifdef WITH_ICLASS
860 // Makes use of ISO14443a FPGA Firmware
861 case CMD_SNOOP_ICLASS:
862 SnoopIClass();
863 break;
864 case CMD_SIMULATE_TAG_ICLASS:
865 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
866 break;
867 case CMD_READER_ICLASS:
868 ReaderIClass(c->arg[0]);
869 break;
870 case CMD_READER_ICLASS_REPLAY:
871 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
872 break;
873 #endif
874
875 case CMD_SIMULATE_TAG_HF_LISTEN:
876 SimulateTagHfListen();
877 break;
878
879 case CMD_BUFF_CLEAR:
880 BufferClear();
881 break;
882
883 case CMD_MEASURE_ANTENNA_TUNING:
884 MeasureAntennaTuning();
885 break;
886
887 case CMD_MEASURE_ANTENNA_TUNING_HF:
888 MeasureAntennaTuningHf();
889 break;
890
891 case CMD_LISTEN_READER_FIELD:
892 ListenReaderField(c->arg[0]);
893 break;
894
895 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
896 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
897 SpinDelay(200);
898 LED_D_OFF(); // LED D indicates field ON or OFF
899 break;
900
901 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902 // UsbCommand n;
903 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
904 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
905 // } else {
906 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
907 // }
908 // n.arg[0] = c->arg[0];
909 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
910 // LED_B_ON();
911 // usb_write((uint8_t *)&n, sizeof(n));
912 // UsbSendPacket((uint8_t *)&n, sizeof(n));
913 // LED_B_OFF();
914
915 LED_B_ON();
916 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
917 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
918 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
919 }
920 // Trigger a finish downloading signal with an ACK frame
921 cmd_send(CMD_ACK,0,0,0,0,0);
922 LED_B_OFF();
923 break;
924
925 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
926 uint8_t *b = (uint8_t *)BigBuf;
927 memcpy(b+c->arg[0], c->d.asBytes, 48);
928 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
929 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
930 cmd_send(CMD_ACK,0,0,0,0,0);
931 break;
932 }
933 case CMD_READ_MEM:
934 ReadMem(c->arg[0]);
935 break;
936
937 case CMD_SET_LF_DIVISOR:
938 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
939 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
940 break;
941
942 case CMD_SET_ADC_MUX:
943 switch(c->arg[0]) {
944 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
945 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
946 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
947 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
948 }
949 break;
950
951 case CMD_VERSION:
952 SendVersion();
953 break;
954
955 #ifdef WITH_LCD
956 case CMD_LCD_RESET:
957 LCDReset();
958 break;
959 case CMD_LCD:
960 LCDSend(c->arg[0]);
961 break;
962 #endif
963 case CMD_SETUP_WRITE:
964 case CMD_FINISH_WRITE:
965 case CMD_HARDWARE_RESET:
966 usb_disable();
967 SpinDelay(1000);
968 SpinDelay(1000);
969 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
970 for(;;) {
971 // We're going to reset, and the bootrom will take control.
972 }
973 break;
974
975 case CMD_START_FLASH:
976 if(common_area.flags.bootrom_present) {
977 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
978 }
979 usb_disable();
980 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
981 for(;;);
982 break;
983
984 case CMD_DEVICE_INFO: {
985 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
986 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
987 // UsbSendPacket((uint8_t*)&c, sizeof(c));
988 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
989 break;
990 }
991 default:
992 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
993 break;
994 }
995 }
996
997 void __attribute__((noreturn)) AppMain(void)
998 {
999 SpinDelay(100);
1000
1001 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1002 /* Initialize common area */
1003 memset(&common_area, 0, sizeof(common_area));
1004 common_area.magic = COMMON_AREA_MAGIC;
1005 common_area.version = 1;
1006 }
1007 common_area.flags.osimage_present = 1;
1008
1009 LED_D_OFF();
1010 LED_C_OFF();
1011 LED_B_OFF();
1012 LED_A_OFF();
1013
1014 // Init USB device`
1015 usb_enable();
1016 // UsbStart();
1017
1018 // The FPGA gets its clock from us from PCK0 output, so set that up.
1019 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1020 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1021 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1022 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1023 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1024 AT91C_PMC_PRES_CLK_4;
1025 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1026
1027 // Reset SPI
1028 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1029 // Reset SSC
1030 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1031
1032 // Load the FPGA image, which we have stored in our flash.
1033 // (the HF version by default)
1034 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1035
1036 StartTickCount();
1037
1038 #ifdef WITH_LCD
1039 LCDInit();
1040 #endif
1041
1042 byte_t rx[sizeof(UsbCommand)];
1043 size_t rx_len;
1044
1045 for(;;) {
1046 if (usb_poll()) {
1047 rx_len = usb_read(rx,sizeof(UsbCommand));
1048 if (rx_len) {
1049 UsbPacketReceived(rx,rx_len);
1050 }
1051 }
1052 // UsbPoll(FALSE);
1053
1054 WDT_HIT();
1055
1056 #ifdef WITH_LF
1057 if (BUTTON_HELD(1000) > 0)
1058 SamyRun();
1059 #endif
1060 }
1061 }
Impressum, Datenschutz