1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendBit
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
94 // memcpy(c.d.asBytes, str, c.arg[0]);
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
102 void DbpIntegers(int x1
, int x2
, int x3
)
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
121 void Dbprintf(const char *fmt
, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string
[128];
127 kvsprintf(fmt
, output_string
, 10, ap
);
130 DbpString(output_string
);
133 // prints HEX & ASCII
134 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
147 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
150 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
152 Dbprintf("%*D",l
,d
," ");
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch
)
169 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
170 AT91C_BASE_ADC
->ADC_MR
=
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
176 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
184 int AvgAdc(int ch
) // was static - merlok
189 for(i
= 0; i
< 32; i
++) {
193 return (a
+ 15) >> 5;
196 void MeasureAntennaTuning(void)
198 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
199 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
200 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest
,0,FREE_BUFFER_SIZE
);
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
217 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
219 for (i
=255; i
>19; i
--) {
221 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
223 // Vref = 3.3V, and a 10000:240 voltage divider on the input
224 // can measure voltages up to 137500 mV
225 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
226 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
227 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
229 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
239 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
240 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
243 // Vref = 3300mV, and an 10:1 voltage divider on the input
244 // can measure voltages up to 33000 mV
245 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
247 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
248 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
250 // c.arg[2] = peakf | (peakv << 16);
252 DbpString("Measuring complete, sending report back to host");
253 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
254 // UsbSendPacket((uint8_t *)&c, sizeof(c));
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
261 void MeasureAntennaTuningHf(void)
263 int vHf
= 0; // in mV
265 DbpString("Measuring HF antenna, press button to exit");
268 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
269 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
270 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
272 // Vref = 3300mV, and an 10:1 voltage divider on the input
273 // can measure voltages up to 33000 mV
274 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
276 Dbprintf("%d mV",vHf
);
277 if (BUTTON_PRESS()) break;
279 DbpString("cancelled");
283 void SimulateTagHfListen(void)
285 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
290 // We're using this mode just so that I can test it out; the simulated
291 // tag mode would work just as well and be simpler.
292 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
293 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
295 // We need to listen to the high-frequency, peak-detected path.
296 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
302 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
303 AT91C_BASE_SSC
->SSC_THR
= 0xff;
305 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
306 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
320 if(i
>= FREE_BUFFER_SIZE
) {
326 DbpString("simulate tag (now type bitsamples)");
329 void ReadMem(int addr
)
331 const uint8_t *data
= ((uint8_t *)addr
);
333 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
334 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
337 /* osimage version information is linked in */
338 extern struct version_information version_information
;
339 /* bootrom version information is pointed to from _bootphase1_version_pointer */
340 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
341 void SendVersion(void)
343 char temp
[256]; /* Limited data payload in USB packets */
344 DbpString("Prox/RFID mark3 RFID instrument");
346 /* Try to find the bootrom version information. Expect to find a pointer at
347 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
348 * pointer, then use it.
350 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
351 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
352 DbpString("bootrom version information appears invalid");
354 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
358 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
361 FpgaGatherVersion(temp
, sizeof(temp
));
364 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
368 // samy's sniff and repeat routine
371 DbpString("Stand-alone mode! No PC necessary.");
372 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
374 // 3 possible options? no just 2 for now
377 int high
[OPTS
], low
[OPTS
];
379 // Oooh pretty -- notify user we're in elite samy mode now
381 LED(LED_ORANGE
, 200);
383 LED(LED_ORANGE
, 200);
385 LED(LED_ORANGE
, 200);
387 LED(LED_ORANGE
, 200);
393 // Turn on selected LED
394 LED(selected
+ 1, 0);
402 // Was our button held down or pressed?
403 int button_pressed
= BUTTON_HELD(1000);
406 // Button was held for a second, begin recording
407 if (button_pressed
> 0)
410 LED(selected
+ 1, 0);
414 DbpString("Starting recording");
416 // wait for button to be released
417 while(BUTTON_PRESS())
420 /* need this delay to prevent catching some weird data */
423 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
424 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
427 LED(selected
+ 1, 0);
428 // Finished recording
430 // If we were previously playing, set playing off
431 // so next button push begins playing what we recorded
435 // Change where to record (or begin playing)
436 else if (button_pressed
)
438 // Next option if we were previously playing
440 selected
= (selected
+ 1) % OPTS
;
444 LED(selected
+ 1, 0);
446 // Begin transmitting
450 DbpString("Playing");
451 // wait for button to be released
452 while(BUTTON_PRESS())
454 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
455 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
456 DbpString("Done playing");
457 if (BUTTON_HELD(1000) > 0)
459 DbpString("Exiting");
464 /* We pressed a button so ignore it here with a delay */
467 // when done, we're done playing, move to next option
468 selected
= (selected
+ 1) % OPTS
;
471 LED(selected
+ 1, 0);
474 while(BUTTON_PRESS())
483 Listen and detect an external reader. Determine the best location
487 Inside the ListenReaderField() function, there is two mode.
488 By default, when you call the function, you will enter mode 1.
489 If you press the PM3 button one time, you will enter mode 2.
490 If you press the PM3 button a second time, you will exit the function.
492 DESCRIPTION OF MODE 1:
493 This mode just listens for an external reader field and lights up green
494 for HF and/or red for LF. This is the original mode of the detectreader
497 DESCRIPTION OF MODE 2:
498 This mode will visually represent, using the LEDs, the actual strength of the
499 current compared to the maximum current detected. Basically, once you know
500 what kind of external reader is present, it will help you spot the best location to place
501 your antenna. You will probably not get some good results if there is a LF and a HF reader
502 at the same place! :-)
506 static const char LIGHT_SCHEME
[] = {
507 0x0, /* ---- | No field detected */
508 0x1, /* X--- | 14% of maximum current detected */
509 0x2, /* -X-- | 29% of maximum current detected */
510 0x4, /* --X- | 43% of maximum current detected */
511 0x8, /* ---X | 57% of maximum current detected */
512 0xC, /* --XX | 71% of maximum current detected */
513 0xE, /* -XXX | 86% of maximum current detected */
514 0xF, /* XXXX | 100% of maximum current detected */
516 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
518 void ListenReaderField(int limit
)
520 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
521 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
522 int mode
=1, display_val
, display_max
, i
;
529 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
531 if(limit
!= HF_ONLY
) {
532 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
536 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
538 if (limit
!= LF_ONLY
) {
539 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
544 if (BUTTON_PRESS()) {
549 DbpString("Signal Strength Mode");
553 DbpString("Stopped");
561 if (limit
!= HF_ONLY
) {
563 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
568 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
569 // see if there's a significant change
570 if(abs(lf_av
- lf_av_new
) > 10) {
571 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
579 if (limit
!= LF_ONLY
) {
581 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
586 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
587 // see if there's a significant change
588 if(abs(hf_av
- hf_av_new
) > 10) {
589 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
598 if (limit
== LF_ONLY
) {
600 display_max
= lf_max
;
601 } else if (limit
== HF_ONLY
) {
603 display_max
= hf_max
;
604 } else { /* Pick one at random */
605 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
607 display_max
= hf_max
;
610 display_max
= lf_max
;
613 for (i
=0; i
<LIGHT_LEN
; i
++) {
614 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
615 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
616 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
617 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
618 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
626 void UsbPacketReceived(uint8_t *packet
, int len
)
628 UsbCommand
*c
= (UsbCommand
*)packet
;
630 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
634 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
635 AcquireRawAdcSamples125k(c
->arg
[0]);
636 cmd_send(CMD_ACK
,0,0,0,0,0);
638 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
639 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
641 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
642 SnoopLFRawAdcSamples(c
->arg
[0], c
->arg
[1]);
643 cmd_send(CMD_ACK
,0,0,0,0,0);
645 case CMD_HID_DEMOD_FSK
:
646 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
648 case CMD_HID_SIM_TAG
:
649 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
651 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
652 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
654 case CMD_IO_DEMOD_FSK
:
655 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
657 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
658 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
660 case CMD_EM410X_WRITE_TAG
:
661 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
663 case CMD_READ_TI_TYPE
:
666 case CMD_WRITE_TI_TYPE
:
667 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
669 case CMD_SIMULATE_TAG_125K
:
671 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
674 case CMD_LF_SIMULATE_BIDIR
:
675 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
677 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
678 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
680 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
681 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
683 case CMD_T55XX_READ_BLOCK
:
684 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
686 case CMD_T55XX_WRITE_BLOCK
:
687 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
689 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
692 case CMD_PCF7931_READ
: // Read PCF7931 tag
694 cmd_send(CMD_ACK
,0,0,0,0,0);
695 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
697 case CMD_EM4X_READ_WORD
:
698 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
700 case CMD_EM4X_WRITE_WORD
:
701 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
706 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
707 SnoopHitag(c
->arg
[0]);
709 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
710 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
712 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
713 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
718 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
719 AcquireRawAdcSamplesIso15693();
721 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
722 RecordRawAdcSamplesIso15693();
725 case CMD_ISO_15693_COMMAND
:
726 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
729 case CMD_ISO_15693_FIND_AFI
:
730 BruteforceIso15693Afi(c
->arg
[0]);
733 case CMD_ISO_15693_DEBUG
:
734 SetDebugIso15693(c
->arg
[0]);
737 case CMD_READER_ISO_15693
:
738 ReaderIso15693(c
->arg
[0]);
740 case CMD_SIMTAG_ISO_15693
:
741 SimTagIso15693(c
->arg
[0]);
746 case CMD_SIMULATE_TAG_LEGIC_RF
:
747 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
750 case CMD_WRITER_LEGIC_RF
:
751 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
754 case CMD_READER_LEGIC_RF
:
755 LegicRfReader(c
->arg
[0], c
->arg
[1]);
759 #ifdef WITH_ISO14443b
760 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
761 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
763 case CMD_READ_SRI512_TAG
:
764 ReadSTMemoryIso14443(0x0F);
766 case CMD_READ_SRIX4K_TAG
:
767 ReadSTMemoryIso14443(0x7F);
769 case CMD_SNOOP_ISO_14443
:
772 case CMD_SIMULATE_TAG_ISO_14443
:
773 SimulateIso14443Tag();
775 case CMD_ISO_14443B_COMMAND
:
776 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
780 #ifdef WITH_ISO14443a
781 case CMD_SNOOP_ISO_14443a
:
782 SnoopIso14443a(c
->arg
[0]);
784 case CMD_READER_ISO_14443a
:
787 case CMD_SIMULATE_TAG_ISO_14443a
:
788 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
790 case CMD_EPA_PACE_COLLECT_NONCE
:
791 EPA_PACE_Collect_Nonce(c
);
794 case CMD_READER_MIFARE
:
795 ReaderMifare(c
->arg
[0]);
797 case CMD_MIFARE_READBL
:
798 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFAREU_READBL
:
801 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
803 case CMD_MIFAREU_READCARD
:
804 MifareUReadCard(c
->arg
[0],c
->d
.asBytes
);
806 case CMD_MIFARE_READSC
:
807 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
809 case CMD_MIFARE_WRITEBL
:
810 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
812 case CMD_MIFAREU_WRITEBL_COMPAT
:
813 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
815 case CMD_MIFAREU_WRITEBL
:
816 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
818 case CMD_MIFARE_NESTED
:
819 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
821 case CMD_MIFARE_CHKKEYS
:
822 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
824 case CMD_SIMULATE_MIFARE_CARD
:
825 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
829 case CMD_MIFARE_SET_DBGMODE
:
830 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
832 case CMD_MIFARE_EML_MEMCLR
:
833 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
835 case CMD_MIFARE_EML_MEMSET
:
836 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
838 case CMD_MIFARE_EML_MEMGET
:
839 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
841 case CMD_MIFARE_EML_CARDLOAD
:
842 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
845 // Work with "magic Chinese" card
846 case CMD_MIFARE_EML_CSETBLOCK
:
847 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
849 case CMD_MIFARE_EML_CGETBLOCK
:
850 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
854 case CMD_MIFARE_SNIFFER
:
855 SniffMifare(c
->arg
[0]);
860 // Makes use of ISO14443a FPGA Firmware
861 case CMD_SNOOP_ICLASS
:
864 case CMD_SIMULATE_TAG_ICLASS
:
865 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
867 case CMD_READER_ICLASS
:
868 ReaderIClass(c
->arg
[0]);
870 case CMD_READER_ICLASS_REPLAY
:
871 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
875 case CMD_SIMULATE_TAG_HF_LISTEN
:
876 SimulateTagHfListen();
883 case CMD_MEASURE_ANTENNA_TUNING
:
884 MeasureAntennaTuning();
887 case CMD_MEASURE_ANTENNA_TUNING_HF
:
888 MeasureAntennaTuningHf();
891 case CMD_LISTEN_READER_FIELD
:
892 ListenReaderField(c
->arg
[0]);
895 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
896 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
898 LED_D_OFF(); // LED D indicates field ON or OFF
901 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
903 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
904 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
906 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
908 // n.arg[0] = c->arg[0];
909 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
911 // usb_write((uint8_t *)&n, sizeof(n));
912 // UsbSendPacket((uint8_t *)&n, sizeof(n));
916 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
917 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
918 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
920 // Trigger a finish downloading signal with an ACK frame
921 cmd_send(CMD_ACK
,0,0,0,0,0);
925 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
926 uint8_t *b
= (uint8_t *)BigBuf
;
927 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
928 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
929 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
930 cmd_send(CMD_ACK
,0,0,0,0,0);
937 case CMD_SET_LF_DIVISOR
:
938 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
939 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
942 case CMD_SET_ADC_MUX
:
944 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
945 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
946 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
947 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
963 case CMD_SETUP_WRITE
:
964 case CMD_FINISH_WRITE
:
965 case CMD_HARDWARE_RESET
:
969 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
971 // We're going to reset, and the bootrom will take control.
975 case CMD_START_FLASH
:
976 if(common_area
.flags
.bootrom_present
) {
977 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
980 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
984 case CMD_DEVICE_INFO
: {
985 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
986 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
987 // UsbSendPacket((uint8_t*)&c, sizeof(c));
988 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
992 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
997 void __attribute__((noreturn
)) AppMain(void)
1001 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1002 /* Initialize common area */
1003 memset(&common_area
, 0, sizeof(common_area
));
1004 common_area
.magic
= COMMON_AREA_MAGIC
;
1005 common_area
.version
= 1;
1007 common_area
.flags
.osimage_present
= 1;
1018 // The FPGA gets its clock from us from PCK0 output, so set that up.
1019 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1020 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1021 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1022 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1023 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1024 AT91C_PMC_PRES_CLK_4
;
1025 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1028 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1030 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1032 // Load the FPGA image, which we have stored in our flash.
1033 // (the HF version by default)
1034 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1042 byte_t rx
[sizeof(UsbCommand
)];
1047 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1049 UsbPacketReceived(rx
,rx_len
);
1057 if (BUTTON_HELD(1000) > 0)