]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
chg: LF t55xx trace
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "../include/proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
16 #include "string.h"
17 #include "crapto1.h"
18 #include "mifareutil.h"
19
20 void LFSetupFPGAForADC(int divisor, bool lf_field)
21 {
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
23 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
25 else if (divisor == 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
27 else
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
29
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
31
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
34
35 // Give it a bit of time for the resonant antenna to settle.
36 SpinDelay(150);
37
38 // Now set up the SSC to get the ADC samples that are now streaming at us.
39 FpgaSetupSsc();
40 }
41
42 void AcquireRawAdcSamples125k(int divisor)
43 {
44 LFSetupFPGAForADC(divisor, true);
45 DoAcquisition125k(-1);
46 }
47
48 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
49 {
50 LFSetupFPGAForADC(divisor, false);
51 DoAcquisition125k(trigger_threshold);
52 }
53
54 // split into two routines so we can avoid timing issues after sending commands //
55 void DoAcquisition125k(int trigger_threshold)
56 {
57 uint8_t *dest = (uint8_t *)BigBuf;
58 int n = sizeof(BigBuf);
59 int i;
60
61 memset(dest, 0, n);
62 i = 0;
63 for(;;) {
64 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
65 AT91C_BASE_SSC->SSC_THR = 0x43;
66 LED_D_ON();
67 }
68 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
69 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
70 LED_D_OFF();
71 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
72 continue;
73 else
74 trigger_threshold = -1;
75 if (++i >= n) break;
76 }
77 }
78 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
79 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
80 }
81
82 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
83 {
84 int at134khz;
85
86 /* Make sure the tag is reset */
87 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
88 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
89 SpinDelay(2500);
90
91 // see if 'h' was specified
92 if (command[strlen((char *) command) - 1] == 'h')
93 at134khz = TRUE;
94 else
95 at134khz = FALSE;
96
97 if (at134khz)
98 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
99 else
100 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
101
102 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
103
104 // Give it a bit of time for the resonant antenna to settle.
105 SpinDelay(50);
106 // And a little more time for the tag to fully power up
107 SpinDelay(2000);
108
109 // Now set up the SSC to get the ADC samples that are now streaming at us.
110 FpgaSetupSsc();
111
112 // now modulate the reader field
113 while(*command != '\0' && *command != ' ') {
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 LED_D_OFF();
116 SpinDelayUs(delay_off);
117 if (at134khz)
118 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
119 else
120 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
121
122 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
123 LED_D_ON();
124 if(*(command++) == '0')
125 SpinDelayUs(period_0);
126 else
127 SpinDelayUs(period_1);
128 }
129 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
130 LED_D_OFF();
131 SpinDelayUs(delay_off);
132 if (at134khz)
133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
134 else
135 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
136
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
138
139 // now do the read
140 DoAcquisition125k(-1);
141 }
142
143 /* blank r/w tag data stream
144 ...0000000000000000 01111111
145 1010101010101010101010101010101010101010101010101010101010101010
146 0011010010100001
147 01111111
148 101010101010101[0]000...
149
150 [5555fe852c5555555555555555fe0000]
151 */
152 void ReadTItag(void)
153 {
154 // some hardcoded initial params
155 // when we read a TI tag we sample the zerocross line at 2Mhz
156 // TI tags modulate a 1 as 16 cycles of 123.2Khz
157 // TI tags modulate a 0 as 16 cycles of 134.2Khz
158 #define FSAMPLE 2000000
159 #define FREQLO 123200
160 #define FREQHI 134200
161
162 signed char *dest = (signed char *)BigBuf;
163 int n = sizeof(BigBuf);
164 // int *dest = GraphBuffer;
165 // int n = GraphTraceLen;
166
167 // 128 bit shift register [shift3:shift2:shift1:shift0]
168 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
169
170 int i, cycles=0, samples=0;
171 // how many sample points fit in 16 cycles of each frequency
172 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
173 // when to tell if we're close enough to one freq or another
174 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
175
176 // TI tags charge at 134.2Khz
177 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
178 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
179
180 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
181 // connects to SSP_DIN and the SSP_DOUT logic level controls
182 // whether we're modulating the antenna (high)
183 // or listening to the antenna (low)
184 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
185
186 // get TI tag data into the buffer
187 AcquireTiType();
188
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
190
191 for (i=0; i<n-1; i++) {
192 // count cycles by looking for lo to hi zero crossings
193 if ( (dest[i]<0) && (dest[i+1]>0) ) {
194 cycles++;
195 // after 16 cycles, measure the frequency
196 if (cycles>15) {
197 cycles=0;
198 samples=i-samples; // number of samples in these 16 cycles
199
200 // TI bits are coming to us lsb first so shift them
201 // right through our 128 bit right shift register
202 shift0 = (shift0>>1) | (shift1 << 31);
203 shift1 = (shift1>>1) | (shift2 << 31);
204 shift2 = (shift2>>1) | (shift3 << 31);
205 shift3 >>= 1;
206
207 // check if the cycles fall close to the number
208 // expected for either the low or high frequency
209 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
210 // low frequency represents a 1
211 shift3 |= (1<<31);
212 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
213 // high frequency represents a 0
214 } else {
215 // probably detected a gay waveform or noise
216 // use this as gaydar or discard shift register and start again
217 shift3 = shift2 = shift1 = shift0 = 0;
218 }
219 samples = i;
220
221 // for each bit we receive, test if we've detected a valid tag
222
223 // if we see 17 zeroes followed by 6 ones, we might have a tag
224 // remember the bits are backwards
225 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
226 // if start and end bytes match, we have a tag so break out of the loop
227 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
228 cycles = 0xF0B; //use this as a flag (ugly but whatever)
229 break;
230 }
231 }
232 }
233 }
234 }
235
236 // if flag is set we have a tag
237 if (cycles!=0xF0B) {
238 DbpString("Info: No valid tag detected.");
239 } else {
240 // put 64 bit data into shift1 and shift0
241 shift0 = (shift0>>24) | (shift1 << 8);
242 shift1 = (shift1>>24) | (shift2 << 8);
243
244 // align 16 bit crc into lower half of shift2
245 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
246
247 // if r/w tag, check ident match
248 if ( shift3&(1<<15) ) {
249 DbpString("Info: TI tag is rewriteable");
250 // only 15 bits compare, last bit of ident is not valid
251 if ( ((shift3>>16)^shift0)&0x7fff ) {
252 DbpString("Error: Ident mismatch!");
253 } else {
254 DbpString("Info: TI tag ident is valid");
255 }
256 } else {
257 DbpString("Info: TI tag is readonly");
258 }
259
260 // WARNING the order of the bytes in which we calc crc below needs checking
261 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
262 // bytes in reverse or something
263 // calculate CRC
264 uint32_t crc=0;
265
266 crc = update_crc16(crc, (shift0)&0xff);
267 crc = update_crc16(crc, (shift0>>8)&0xff);
268 crc = update_crc16(crc, (shift0>>16)&0xff);
269 crc = update_crc16(crc, (shift0>>24)&0xff);
270 crc = update_crc16(crc, (shift1)&0xff);
271 crc = update_crc16(crc, (shift1>>8)&0xff);
272 crc = update_crc16(crc, (shift1>>16)&0xff);
273 crc = update_crc16(crc, (shift1>>24)&0xff);
274
275 Dbprintf("Info: Tag data: %x%08x, crc=%x",
276 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
277 if (crc != (shift2&0xffff)) {
278 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
279 } else {
280 DbpString("Info: CRC is good");
281 }
282 }
283 }
284
285 void WriteTIbyte(uint8_t b)
286 {
287 int i = 0;
288
289 // modulate 8 bits out to the antenna
290 for (i=0; i<8; i++)
291 {
292 if (b&(1<<i)) {
293 // stop modulating antenna
294 LOW(GPIO_SSC_DOUT);
295 SpinDelayUs(1000);
296 // modulate antenna
297 HIGH(GPIO_SSC_DOUT);
298 SpinDelayUs(1000);
299 } else {
300 // stop modulating antenna
301 LOW(GPIO_SSC_DOUT);
302 SpinDelayUs(300);
303 // modulate antenna
304 HIGH(GPIO_SSC_DOUT);
305 SpinDelayUs(1700);
306 }
307 }
308 }
309
310 void AcquireTiType(void)
311 {
312 int i, j, n;
313 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
314 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
315 #define TIBUFLEN 1250
316
317 // clear buffer
318 memset(BigBuf,0,sizeof(BigBuf));
319
320 // Set up the synchronous serial port
321 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
322 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
323
324 // steal this pin from the SSP and use it to control the modulation
325 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
326 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
327
328 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
329 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
330
331 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
332 // 48/2 = 24 MHz clock must be divided by 12
333 AT91C_BASE_SSC->SSC_CMR = 12;
334
335 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
336 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
337 AT91C_BASE_SSC->SSC_TCMR = 0;
338 AT91C_BASE_SSC->SSC_TFMR = 0;
339
340 LED_D_ON();
341
342 // modulate antenna
343 HIGH(GPIO_SSC_DOUT);
344
345 // Charge TI tag for 50ms.
346 SpinDelay(50);
347
348 // stop modulating antenna and listen
349 LOW(GPIO_SSC_DOUT);
350
351 LED_D_OFF();
352
353 i = 0;
354 for(;;) {
355 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
356 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
357 i++; if(i >= TIBUFLEN) break;
358 }
359 WDT_HIT();
360 }
361
362 // return stolen pin to SSP
363 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
364 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
365
366 char *dest = (char *)BigBuf;
367 n = TIBUFLEN*32;
368 // unpack buffer
369 for (i=TIBUFLEN-1; i>=0; i--) {
370 for (j=0; j<32; j++) {
371 if(BigBuf[i] & (1 << j)) {
372 dest[--n] = 1;
373 } else {
374 dest[--n] = -1;
375 }
376 }
377 }
378 }
379
380 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
381 // if crc provided, it will be written with the data verbatim (even if bogus)
382 // if not provided a valid crc will be computed from the data and written.
383 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
384 {
385 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
386 if(crc == 0) {
387 crc = update_crc16(crc, (idlo)&0xff);
388 crc = update_crc16(crc, (idlo>>8)&0xff);
389 crc = update_crc16(crc, (idlo>>16)&0xff);
390 crc = update_crc16(crc, (idlo>>24)&0xff);
391 crc = update_crc16(crc, (idhi)&0xff);
392 crc = update_crc16(crc, (idhi>>8)&0xff);
393 crc = update_crc16(crc, (idhi>>16)&0xff);
394 crc = update_crc16(crc, (idhi>>24)&0xff);
395 }
396 Dbprintf("Writing to tag: %x%08x, crc=%x",
397 (unsigned int) idhi, (unsigned int) idlo, crc);
398
399 // TI tags charge at 134.2Khz
400 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
401 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
402 // connects to SSP_DIN and the SSP_DOUT logic level controls
403 // whether we're modulating the antenna (high)
404 // or listening to the antenna (low)
405 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
406 LED_A_ON();
407
408 // steal this pin from the SSP and use it to control the modulation
409 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
410 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
411
412 // writing algorithm:
413 // a high bit consists of a field off for 1ms and field on for 1ms
414 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
415 // initiate a charge time of 50ms (field on) then immediately start writing bits
416 // start by writing 0xBB (keyword) and 0xEB (password)
417 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
418 // finally end with 0x0300 (write frame)
419 // all data is sent lsb firts
420 // finish with 15ms programming time
421
422 // modulate antenna
423 HIGH(GPIO_SSC_DOUT);
424 SpinDelay(50); // charge time
425
426 WriteTIbyte(0xbb); // keyword
427 WriteTIbyte(0xeb); // password
428 WriteTIbyte( (idlo )&0xff );
429 WriteTIbyte( (idlo>>8 )&0xff );
430 WriteTIbyte( (idlo>>16)&0xff );
431 WriteTIbyte( (idlo>>24)&0xff );
432 WriteTIbyte( (idhi )&0xff );
433 WriteTIbyte( (idhi>>8 )&0xff );
434 WriteTIbyte( (idhi>>16)&0xff );
435 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
436 WriteTIbyte( (crc )&0xff ); // crc lo
437 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
438 WriteTIbyte(0x00); // write frame lo
439 WriteTIbyte(0x03); // write frame hi
440 HIGH(GPIO_SSC_DOUT);
441 SpinDelay(50); // programming time
442
443 LED_A_OFF();
444
445 // get TI tag data into the buffer
446 AcquireTiType();
447
448 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
449 DbpString("Now use tiread to check");
450 }
451
452 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
453 {
454 int i;
455 uint8_t *tab = (uint8_t *)BigBuf;
456
457 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
458 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
459
460 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
461
462 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
463 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
464
465 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
466 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
467
468 i = 0;
469 for(;;) {
470 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
471 if(BUTTON_PRESS()) {
472 DbpString("Stopped");
473 return;
474 }
475 WDT_HIT();
476 }
477
478 if (ledcontrol)
479 LED_D_ON();
480
481 if(tab[i])
482 OPEN_COIL();
483 else
484 SHORT_COIL();
485
486 if (ledcontrol)
487 LED_D_OFF();
488
489 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
490 if(BUTTON_PRESS()) {
491 DbpString("Stopped");
492 return;
493 }
494 WDT_HIT();
495 }
496
497 i++;
498 if(i == period) {
499 i = 0;
500 if (gap) {
501 SHORT_COIL();
502 SpinDelayUs(gap);
503 }
504 }
505 }
506 }
507
508 #define DEBUG_FRAME_CONTENTS 1
509 void SimulateTagLowFrequencyBidir(int divisor, int t0)
510 {
511 }
512
513 // compose fc/8 fc/10 waveform
514 static void fc(int c, int *n) {
515 uint8_t *dest = (uint8_t *)BigBuf;
516 int idx;
517
518 // for when we want an fc8 pattern every 4 logical bits
519 if(c==0) {
520 dest[((*n)++)]=1;
521 dest[((*n)++)]=1;
522 dest[((*n)++)]=0;
523 dest[((*n)++)]=0;
524 dest[((*n)++)]=0;
525 dest[((*n)++)]=0;
526 dest[((*n)++)]=0;
527 dest[((*n)++)]=0;
528 }
529 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
530 if(c==8) {
531 for (idx=0; idx<6; idx++) {
532 dest[((*n)++)]=1;
533 dest[((*n)++)]=1;
534 dest[((*n)++)]=0;
535 dest[((*n)++)]=0;
536 dest[((*n)++)]=0;
537 dest[((*n)++)]=0;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 }
541 }
542
543 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
544 if(c==10) {
545 for (idx=0; idx<5; idx++) {
546 dest[((*n)++)]=1;
547 dest[((*n)++)]=1;
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=0;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 }
557 }
558 }
559
560 // prepare a waveform pattern in the buffer based on the ID given then
561 // simulate a HID tag until the button is pressed
562 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
563 {
564 int n=0, i=0;
565 /*
566 HID tag bitstream format
567 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
568 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
569 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
570 A fc8 is inserted before every 4 bits
571 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
572 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
573 */
574
575 if (hi>0xFFF) {
576 DbpString("Tags can only have 44 bits.");
577 return;
578 }
579 fc(0,&n);
580 // special start of frame marker containing invalid bit sequences
581 fc(8, &n); fc(8, &n); // invalid
582 fc(8, &n); fc(10, &n); // logical 0
583 fc(10, &n); fc(10, &n); // invalid
584 fc(8, &n); fc(10, &n); // logical 0
585
586 WDT_HIT();
587 // manchester encode bits 43 to 32
588 for (i=11; i>=0; i--) {
589 if ((i%4)==3) fc(0,&n);
590 if ((hi>>i)&1) {
591 fc(10, &n); fc(8, &n); // low-high transition
592 } else {
593 fc(8, &n); fc(10, &n); // high-low transition
594 }
595 }
596
597 WDT_HIT();
598 // manchester encode bits 31 to 0
599 for (i=31; i>=0; i--) {
600 if ((i%4)==3) fc(0,&n);
601 if ((lo>>i)&1) {
602 fc(10, &n); fc(8, &n); // low-high transition
603 } else {
604 fc(8, &n); fc(10, &n); // high-low transition
605 }
606 }
607
608 if (ledcontrol)
609 LED_A_ON();
610 SimulateTagLowFrequency(n, 0, ledcontrol);
611
612 if (ledcontrol)
613 LED_A_OFF();
614 }
615
616
617 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
618 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
619 {
620 uint8_t *dest = (uint8_t *)BigBuf;
621 int m=0, n=0, i=0, idx=0, found=0, lastval=0;
622 uint32_t hi2=0, hi=0, lo=0;
623
624 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
625 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
626 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
627
628 // Connect the A/D to the peak-detected low-frequency path.
629 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
630
631 // Give it a bit of time for the resonant antenna to settle.
632 SpinDelay(50);
633
634 // Now set up the SSC to get the ADC samples that are now streaming at us.
635 FpgaSetupSsc();
636
637 for(;;) {
638 WDT_HIT();
639 if (ledcontrol)
640 LED_A_ON();
641 if(BUTTON_PRESS()) {
642 DbpString("Stopped");
643 if (ledcontrol)
644 LED_A_OFF();
645 return;
646 }
647
648 i = 0;
649 m = sizeof(BigBuf);
650 memset(dest,128,m);
651 for(;;) {
652 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
653 AT91C_BASE_SSC->SSC_THR = 0x43;
654 if (ledcontrol)
655 LED_D_ON();
656 }
657 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
658 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
659 // we don't care about actual value, only if it's more or less than a
660 // threshold essentially we capture zero crossings for later analysis
661 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
662 i++;
663 if (ledcontrol)
664 LED_D_OFF();
665 if(i >= m) {
666 break;
667 }
668 }
669 }
670
671 // FSK demodulator
672
673 // sync to first lo-hi transition
674 for( idx=1; idx<m; idx++) {
675 if (dest[idx-1]<dest[idx])
676 lastval=idx;
677 break;
678 }
679 WDT_HIT();
680
681 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
682 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
683 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
684 for( i=0; idx<m; idx++) {
685 if (dest[idx-1]<dest[idx]) {
686 dest[i]=idx-lastval;
687 if (dest[i] <= 8) {
688 dest[i]=1;
689 } else {
690 dest[i]=0;
691 }
692
693 lastval=idx;
694 i++;
695 }
696 }
697 m=i;
698 WDT_HIT();
699
700 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
701 lastval=dest[0];
702 idx=0;
703 i=0;
704 n=0;
705 for( idx=0; idx<m; idx++) {
706 if (dest[idx]==lastval) {
707 n++;
708 } else {
709 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
710 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
711 // swallowed up by rounding
712 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
713 // special start of frame markers use invalid manchester states (no transitions) by using sequences
714 // like 111000
715 if (dest[idx-1]) {
716 n=(n+1)/6; // fc/8 in sets of 6
717 } else {
718 n=(n+1)/5; // fc/10 in sets of 5
719 }
720 switch (n) { // stuff appropriate bits in buffer
721 case 0:
722 case 1: // one bit
723 dest[i++]=dest[idx-1];
724 break;
725 case 2: // two bits
726 dest[i++]=dest[idx-1];
727 dest[i++]=dest[idx-1];
728 break;
729 case 3: // 3 bit start of frame markers
730 dest[i++]=dest[idx-1];
731 dest[i++]=dest[idx-1];
732 dest[i++]=dest[idx-1];
733 break;
734 // When a logic 0 is immediately followed by the start of the next transmisson
735 // (special pattern) a pattern of 4 bit duration lengths is created.
736 case 4:
737 dest[i++]=dest[idx-1];
738 dest[i++]=dest[idx-1];
739 dest[i++]=dest[idx-1];
740 dest[i++]=dest[idx-1];
741 break;
742 default: // this shouldn't happen, don't stuff any bits
743 break;
744 }
745 n=0;
746 lastval=dest[idx];
747 }
748 }
749 m=i;
750 WDT_HIT();
751
752 // final loop, go over previously decoded manchester data and decode into usable tag ID
753 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
754 for( idx=0; idx<m-6; idx++) {
755 // search for a start of frame marker
756 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
757 {
758 found=1;
759 idx+=6;
760 if (found && (hi2|hi|lo)) {
761 if (hi2 != 0){
762 Dbprintf("TAG ID: %x%08x%08x (%d)",
763 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
764 }
765 else {
766 Dbprintf("TAG ID: %x%08x (%d)",
767 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
768 }
769 /* if we're only looking for one tag */
770 if (findone)
771 {
772 *high = hi;
773 *low = lo;
774 return;
775 }
776 hi2=0;
777 hi=0;
778 lo=0;
779 found=0;
780 }
781 }
782 if (found) {
783 if (dest[idx] && (!dest[idx+1]) ) {
784 hi2=(hi2<<1)|(hi>>31);
785 hi=(hi<<1)|(lo>>31);
786 lo=(lo<<1)|0;
787 } else if ( (!dest[idx]) && dest[idx+1]) {
788 hi2=(hi2<<1)|(hi>>31);
789 hi=(hi<<1)|(lo>>31);
790 lo=(lo<<1)|1;
791 } else {
792 found=0;
793 hi2=0;
794 hi=0;
795 lo=0;
796 }
797 idx++;
798 }
799 if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
800 {
801 found=1;
802 idx+=6;
803 if (found && (hi|lo)) {
804 if (hi2 != 0){
805 Dbprintf("TAG ID: %x%08x%08x (%d)",
806 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
807 }
808 else {
809 Dbprintf("TAG ID: %x%08x (%d)",
810 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
811 }
812 /* if we're only looking for one tag */
813 if (findone)
814 {
815 *high = hi;
816 *low = lo;
817 return;
818 }
819 hi2=0;
820 hi=0;
821 lo=0;
822 found=0;
823 }
824 }
825 }
826 WDT_HIT();
827 }
828 }
829
830 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
831 {
832 uint8_t *dest = (uint8_t *)BigBuf;
833 int m=0, n=0, i=0, idx=0, lastval=0;
834 int found=0;
835 uint32_t code=0, code2=0;
836 //uint32_t hi2=0, hi=0, lo=0;
837
838 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
839 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
840 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
841
842 // Connect the A/D to the peak-detected low-frequency path.
843 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
844
845 // Give it a bit of time for the resonant antenna to settle.
846 SpinDelay(50);
847
848 // Now set up the SSC to get the ADC samples that are now streaming at us.
849 FpgaSetupSsc();
850
851 for(;;) {
852 WDT_HIT();
853 if (ledcontrol)
854 LED_A_ON();
855 if(BUTTON_PRESS()) {
856 DbpString("Stopped");
857 if (ledcontrol)
858 LED_A_OFF();
859 return;
860 }
861
862 i = 0;
863 m = sizeof(BigBuf);
864 memset(dest,128,m);
865 for(;;) {
866 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
867 AT91C_BASE_SSC->SSC_THR = 0x43;
868 if (ledcontrol)
869 LED_D_ON();
870 }
871 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
872 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
873 // we don't care about actual value, only if it's more or less than a
874 // threshold essentially we capture zero crossings for later analysis
875 if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
876 i++;
877 if (ledcontrol)
878 LED_D_OFF();
879 if(i >= m) {
880 break;
881 }
882 }
883 }
884
885 // FSK demodulator
886
887 // sync to first lo-hi transition
888 for( idx=1; idx<m; idx++) {
889 if (dest[idx-1]<dest[idx])
890 lastval=idx;
891 break;
892 }
893 WDT_HIT();
894
895 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
896 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
897 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
898 for( i=0; idx<m; idx++) {
899 if (dest[idx-1]<dest[idx]) {
900 dest[i]=idx-lastval;
901 if (dest[i] <= 8) {
902 dest[i]=1;
903 } else {
904 dest[i]=0;
905 }
906
907 lastval=idx;
908 i++;
909 }
910 }
911 m=i;
912 WDT_HIT();
913
914 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
915 lastval=dest[0];
916 idx=0;
917 i=0;
918 n=0;
919 for( idx=0; idx<m; idx++) {
920 if (dest[idx]==lastval) {
921 n++;
922 } else {
923 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
924 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
925 // swallowed up by rounding
926 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
927 // special start of frame markers use invalid manchester states (no transitions) by using sequences
928 // like 111000
929 if (dest[idx-1]) {
930 n=(n+1)/7; // fc/8 in sets of 7
931 } else {
932 n=(n+1)/6; // fc/10 in sets of 6
933 }
934 switch (n) { // stuff appropriate bits in buffer
935 case 0:
936 case 1: // one bit
937 dest[i++]=dest[idx-1]^1;
938 //Dbprintf("%d",dest[idx-1]);
939 break;
940 case 2: // two bits
941 dest[i++]=dest[idx-1]^1;
942 dest[i++]=dest[idx-1]^1;
943 //Dbprintf("%d",dest[idx-1]);
944 //Dbprintf("%d",dest[idx-1]);
945 break;
946 case 3: // 3 bit start of frame markers
947 for(int j=0; j<3; j++){
948 dest[i++]=dest[idx-1]^1;
949 // Dbprintf("%d",dest[idx-1]);
950 }
951 break;
952 case 4:
953 for(int j=0; j<4; j++){
954 dest[i++]=dest[idx-1]^1;
955 // Dbprintf("%d",dest[idx-1]);
956 }
957 break;
958 case 5:
959 for(int j=0; j<5; j++){
960 dest[i++]=dest[idx-1]^1;
961 // Dbprintf("%d",dest[idx-1]);
962 }
963 break;
964 case 6:
965 for(int j=0; j<6; j++){
966 dest[i++]=dest[idx-1]^1;
967 // Dbprintf("%d",dest[idx-1]);
968 }
969 break;
970 case 7:
971 for(int j=0; j<7; j++){
972 dest[i++]=dest[idx-1]^1;
973 // Dbprintf("%d",dest[idx-1]);
974 }
975 break;
976 case 8:
977 for(int j=0; j<8; j++){
978 dest[i++]=dest[idx-1]^1;
979 // Dbprintf("%d",dest[idx-1]);
980 }
981 break;
982 case 9:
983 for(int j=0; j<9; j++){
984 dest[i++]=dest[idx-1]^1;
985 // Dbprintf("%d",dest[idx-1]);
986 }
987 break;
988 case 10:
989 for(int j=0; j<10; j++){
990 dest[i++]=dest[idx-1]^1;
991 // Dbprintf("%d",dest[idx-1]);
992 }
993 break;
994 case 11:
995 for(int j=0; j<11; j++){
996 dest[i++]=dest[idx-1]^1;
997 // Dbprintf("%d",dest[idx-1]);
998 }
999 break;
1000 case 12:
1001 for(int j=0; j<12; j++){
1002 dest[i++]=dest[idx-1]^1;
1003 // Dbprintf("%d",dest[idx-1]);
1004 }
1005 break;
1006 default: // this shouldn't happen, don't stuff any bits
1007 //Dbprintf("%d",dest[idx-1]);
1008 break;
1009 }
1010 n=0;
1011 lastval=dest[idx];
1012 }
1013 }//end for
1014 /*for(int j=0; j<64;j+=8){
1015 Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
1016 }
1017 Dbprintf("\n");*/
1018 m=i;
1019 WDT_HIT();
1020
1021 for( idx=0; idx<m-9; idx++) {
1022 if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
1023 found=1;
1024 //idx+=9;
1025 if (found) {
1026 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
1027 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
1028 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
1029 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
1030 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
1031 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
1032 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
1033 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1034
1035 short version='\x00';
1036 char unknown='\x00';
1037 uint16_t number=0;
1038 for(int j=14;j<18;j++){
1039 //Dbprintf("%d",dest[idx+j]);
1040 version <<=1;
1041 if (dest[idx+j]) version |= 1;
1042 }
1043 for(int j=19;j<27;j++){
1044 //Dbprintf("%d",dest[idx+j]);
1045 unknown <<=1;
1046 if (dest[idx+j]) unknown |= 1;
1047 }
1048 for(int j=36;j<45;j++){
1049 //Dbprintf("%d",dest[idx+j]);
1050 number <<=1;
1051 if (dest[idx+j]) number |= 1;
1052 }
1053 for(int j=46;j<53;j++){
1054 //Dbprintf("%d",dest[idx+j]);
1055 number <<=1;
1056 if (dest[idx+j]) number |= 1;
1057 }
1058 for(int j=0; j<32; j++){
1059 code <<=1;
1060 if(dest[idx+j]) code |= 1;
1061 }
1062 for(int j=32; j<64; j++){
1063 code2 <<=1;
1064 if(dest[idx+j]) code2 |= 1;
1065 }
1066
1067 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
1068 if (ledcontrol)
1069 LED_D_OFF();
1070 }
1071 // if we're only looking for one tag
1072 if (findone){
1073 //*high = hi;
1074 //*low = lo;
1075 LED_A_OFF();
1076 return;
1077 }
1078
1079 //hi=0;
1080 //lo=0;
1081 found=0;
1082 }
1083
1084 }
1085 }
1086 WDT_HIT();
1087 }
1088
1089 /*------------------------------
1090 * T5555/T5557/T5567 routines
1091 *------------------------------
1092 */
1093
1094 /* T55x7 configuration register definitions */
1095 #define T55x7_POR_DELAY 0x00000001
1096 #define T55x7_ST_TERMINATOR 0x00000008
1097 #define T55x7_PWD 0x00000010
1098 #define T55x7_MAXBLOCK_SHIFT 5
1099 #define T55x7_AOR 0x00000200
1100 #define T55x7_PSKCF_RF_2 0
1101 #define T55x7_PSKCF_RF_4 0x00000400
1102 #define T55x7_PSKCF_RF_8 0x00000800
1103 #define T55x7_MODULATION_DIRECT 0
1104 #define T55x7_MODULATION_PSK1 0x00001000
1105 #define T55x7_MODULATION_PSK2 0x00002000
1106 #define T55x7_MODULATION_PSK3 0x00003000
1107 #define T55x7_MODULATION_FSK1 0x00004000
1108 #define T55x7_MODULATION_FSK2 0x00005000
1109 #define T55x7_MODULATION_FSK1a 0x00006000
1110 #define T55x7_MODULATION_FSK2a 0x00007000
1111 #define T55x7_MODULATION_MANCHESTER 0x00008000
1112 #define T55x7_MODULATION_BIPHASE 0x00010000
1113 #define T55x7_BITRATE_RF_8 0
1114 #define T55x7_BITRATE_RF_16 0x00040000
1115 #define T55x7_BITRATE_RF_32 0x00080000
1116 #define T55x7_BITRATE_RF_40 0x000C0000
1117 #define T55x7_BITRATE_RF_50 0x00100000
1118 #define T55x7_BITRATE_RF_64 0x00140000
1119 #define T55x7_BITRATE_RF_100 0x00180000
1120 #define T55x7_BITRATE_RF_128 0x001C0000
1121
1122 /* T5555 (Q5) configuration register definitions */
1123 #define T5555_ST_TERMINATOR 0x00000001
1124 #define T5555_MAXBLOCK_SHIFT 0x00000001
1125 #define T5555_MODULATION_MANCHESTER 0
1126 #define T5555_MODULATION_PSK1 0x00000010
1127 #define T5555_MODULATION_PSK2 0x00000020
1128 #define T5555_MODULATION_PSK3 0x00000030
1129 #define T5555_MODULATION_FSK1 0x00000040
1130 #define T5555_MODULATION_FSK2 0x00000050
1131 #define T5555_MODULATION_BIPHASE 0x00000060
1132 #define T5555_MODULATION_DIRECT 0x00000070
1133 #define T5555_INVERT_OUTPUT 0x00000080
1134 #define T5555_PSK_RF_2 0
1135 #define T5555_PSK_RF_4 0x00000100
1136 #define T5555_PSK_RF_8 0x00000200
1137 #define T5555_USE_PWD 0x00000400
1138 #define T5555_USE_AOR 0x00000800
1139 #define T5555_BITRATE_SHIFT 12
1140 #define T5555_FAST_WRITE 0x00004000
1141 #define T5555_PAGE_SELECT 0x00008000
1142
1143 /*
1144 * Relevant times in microsecond
1145 * To compensate antenna falling times shorten the write times
1146 * and enlarge the gap ones.
1147 */
1148 #define START_GAP 30*8 // 10 - 50fc 250
1149 #define WRITE_GAP 20*8 // 8 - 30fc
1150 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
1151 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
1152
1153 // VALUES TAKEN FROM EM4x function: SendForward
1154 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1155 // WRITE_GAP = 128; (16*8)
1156 // WRITE_1 = 256 32*8; (32*8)
1157
1158 // These timings work for 4469/4269/4305 (with the 55*8 above)
1159 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1160
1161 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
1162
1163 // Write one bit to card
1164 void T55xxWriteBit(int bit)
1165 {
1166 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1167 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1168 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1169 if (!bit)
1170 SpinDelayUs(WRITE_0);
1171 else
1172 SpinDelayUs(WRITE_1);
1173 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1174 SpinDelayUs(WRITE_GAP);
1175 }
1176
1177 // Write one card block in page 0, no lock
1178 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1179 {
1180 uint32_t i = 0;
1181
1182 // Set up FPGA, 125kHz
1183 // Wait for config.. (192+8190xPOW)x8 == 67ms
1184 LFSetupFPGAForADC(0, true);
1185
1186 // Now start writting
1187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1188 SpinDelayUs(START_GAP);
1189
1190 // Opcode
1191 T55xxWriteBit(1);
1192 T55xxWriteBit(0); //Page 0
1193 if (PwdMode == 1){
1194 // Pwd
1195 for (i = 0x80000000; i != 0; i >>= 1)
1196 T55xxWriteBit(Pwd & i);
1197 }
1198 // Lock bit
1199 T55xxWriteBit(0);
1200
1201 // Data
1202 for (i = 0x80000000; i != 0; i >>= 1)
1203 T55xxWriteBit(Data & i);
1204
1205 // Block
1206 for (i = 0x04; i != 0; i >>= 1)
1207 T55xxWriteBit(Block & i);
1208
1209 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1210 // so wait a little more)
1211 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1213 SpinDelay(20);
1214 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1215 }
1216
1217 // Read one card block in page 0
1218 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1219 {
1220 uint8_t *dest = mifare_get_bigbufptr();
1221 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
1222 uint32_t i = 0;
1223
1224 // Clear destination buffer before sending the command 0x80 = average.
1225 memset(dest, 0x80, bufferlength);
1226
1227 // Set up FPGA, 125kHz
1228 // Wait for config.. (192+8190xPOW)x8 == 67ms
1229 LFSetupFPGAForADC(0, true);
1230
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1232 SpinDelayUs(START_GAP);
1233
1234 // Opcode
1235 T55xxWriteBit(1);
1236 T55xxWriteBit(0); //Page 0
1237 if (PwdMode == 1){
1238 // Pwd
1239 for (i = 0x80000000; i != 0; i >>= 1)
1240 T55xxWriteBit(Pwd & i);
1241 }
1242 // Lock bit
1243 T55xxWriteBit(0);
1244 // Block
1245 for (i = 0x04; i != 0; i >>= 1)
1246 T55xxWriteBit(Block & i);
1247
1248 // Turn field on to read the response
1249 TurnReadLFOn();
1250
1251 // Now do the acquisition
1252 i = 0;
1253 for(;;) {
1254 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1255 AT91C_BASE_SSC->SSC_THR = 0x43;
1256 LED_D_ON();
1257 }
1258 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1259 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1260 ++i;
1261 LED_D_OFF();
1262 if (i > bufferlength) break;
1263 }
1264 }
1265
1266 cmd_send(CMD_ACK,0,0,0,0,0);
1267 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1268 LED_D_OFF();
1269 }
1270
1271 // Read card traceability data (page 1)
1272 void T55xxReadTrace(void){
1273 uint8_t *dest = mifare_get_bigbufptr();
1274 uint16_t bufferlength = T55xx_SAMPLES_SIZE;
1275 int i=0;
1276
1277 // Clear destination buffer before sending the command 0x80 = average
1278 memset(dest, 0x80, bufferlength);
1279
1280 LFSetupFPGAForADC(0, true);
1281
1282 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1283 SpinDelayUs(START_GAP);
1284
1285 // Opcode
1286 T55xxWriteBit(1);
1287 T55xxWriteBit(1); //Page 1
1288
1289 // Turn field on to read the response
1290 TurnReadLFOn();
1291
1292 // Now do the acquisition
1293 for(;;) {
1294 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1295 AT91C_BASE_SSC->SSC_THR = 0x43;
1296 LED_D_ON();
1297 }
1298 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1299 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1300 ++i;
1301 LED_D_OFF();
1302
1303 if (i >= bufferlength) break;
1304 }
1305 }
1306
1307 cmd_send(CMD_ACK,0,0,0,0,0);
1308 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1309 LED_D_OFF();
1310 }
1311
1312 void TurnReadLFOn(){
1313 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1314 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1315 // Give it a bit of time for the resonant antenna to settle.
1316 //SpinDelay(30);
1317 SpinDelayUs(8*150);
1318 }
1319
1320 /*-------------- Cloning routines -----------*/
1321 // Copy HID id to card and setup block 0 config
1322 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1323 {
1324 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1325 int last_block = 0;
1326
1327 if (longFMT){
1328 // Ensure no more than 84 bits supplied
1329 if (hi2>0xFFFFF) {
1330 DbpString("Tags can only have 84 bits.");
1331 return;
1332 }
1333 // Build the 6 data blocks for supplied 84bit ID
1334 last_block = 6;
1335 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1336 for (int i=0;i<4;i++) {
1337 if (hi2 & (1<<(19-i)))
1338 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1339 else
1340 data1 |= (1<<((3-i)*2)); // 0 -> 01
1341 }
1342
1343 data2 = 0;
1344 for (int i=0;i<16;i++) {
1345 if (hi2 & (1<<(15-i)))
1346 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1347 else
1348 data2 |= (1<<((15-i)*2)); // 0 -> 01
1349 }
1350
1351 data3 = 0;
1352 for (int i=0;i<16;i++) {
1353 if (hi & (1<<(31-i)))
1354 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1355 else
1356 data3 |= (1<<((15-i)*2)); // 0 -> 01
1357 }
1358
1359 data4 = 0;
1360 for (int i=0;i<16;i++) {
1361 if (hi & (1<<(15-i)))
1362 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1363 else
1364 data4 |= (1<<((15-i)*2)); // 0 -> 01
1365 }
1366
1367 data5 = 0;
1368 for (int i=0;i<16;i++) {
1369 if (lo & (1<<(31-i)))
1370 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1371 else
1372 data5 |= (1<<((15-i)*2)); // 0 -> 01
1373 }
1374
1375 data6 = 0;
1376 for (int i=0;i<16;i++) {
1377 if (lo & (1<<(15-i)))
1378 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1379 else
1380 data6 |= (1<<((15-i)*2)); // 0 -> 01
1381 }
1382 }
1383 else {
1384 // Ensure no more than 44 bits supplied
1385 if (hi>0xFFF) {
1386 DbpString("Tags can only have 44 bits.");
1387 return;
1388 }
1389
1390 // Build the 3 data blocks for supplied 44bit ID
1391 last_block = 3;
1392
1393 data1 = 0x1D000000; // load preamble
1394
1395 for (int i=0;i<12;i++) {
1396 if (hi & (1<<(11-i)))
1397 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1398 else
1399 data1 |= (1<<((11-i)*2)); // 0 -> 01
1400 }
1401
1402 data2 = 0;
1403 for (int i=0;i<16;i++) {
1404 if (lo & (1<<(31-i)))
1405 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1406 else
1407 data2 |= (1<<((15-i)*2)); // 0 -> 01
1408 }
1409
1410 data3 = 0;
1411 for (int i=0;i<16;i++) {
1412 if (lo & (1<<(15-i)))
1413 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1414 else
1415 data3 |= (1<<((15-i)*2)); // 0 -> 01
1416 }
1417 }
1418
1419 LED_D_ON();
1420 // Program the data blocks for supplied ID
1421 // and the block 0 for HID format
1422 T55xxWriteBlock(data1,1,0,0);
1423 T55xxWriteBlock(data2,2,0,0);
1424 T55xxWriteBlock(data3,3,0,0);
1425
1426 if (longFMT) { // if long format there are 6 blocks
1427 T55xxWriteBlock(data4,4,0,0);
1428 T55xxWriteBlock(data5,5,0,0);
1429 T55xxWriteBlock(data6,6,0,0);
1430 }
1431
1432 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1433 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1434 T55x7_MODULATION_FSK2a |
1435 last_block << T55x7_MAXBLOCK_SHIFT,
1436 0,0,0);
1437
1438 LED_D_OFF();
1439
1440 DbpString("DONE!");
1441 }
1442
1443 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1444 {
1445 int data1=0, data2=0; //up to six blocks for long format
1446
1447 data1 = hi; // load preamble
1448 data2 = lo;
1449
1450 LED_D_ON();
1451 // Program the data blocks for supplied ID
1452 // and the block 0 for HID format
1453 T55xxWriteBlock(data1,1,0,0);
1454 T55xxWriteBlock(data2,2,0,0);
1455
1456 //Config Block
1457 T55xxWriteBlock(0x00147040,0,0,0);
1458 LED_D_OFF();
1459
1460 DbpString("DONE!");
1461 }
1462
1463 // Define 9bit header for EM410x tags
1464 #define EM410X_HEADER 0x1FF
1465 #define EM410X_ID_LENGTH 40
1466
1467 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1468 {
1469 int i, id_bit;
1470 uint64_t id = EM410X_HEADER;
1471 uint64_t rev_id = 0; // reversed ID
1472 int c_parity[4]; // column parity
1473 int r_parity = 0; // row parity
1474 uint32_t clock = 0;
1475
1476 // Reverse ID bits given as parameter (for simpler operations)
1477 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1478 if (i < 32) {
1479 rev_id = (rev_id << 1) | (id_lo & 1);
1480 id_lo >>= 1;
1481 } else {
1482 rev_id = (rev_id << 1) | (id_hi & 1);
1483 id_hi >>= 1;
1484 }
1485 }
1486
1487 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1488 id_bit = rev_id & 1;
1489
1490 if (i % 4 == 0) {
1491 // Don't write row parity bit at start of parsing
1492 if (i)
1493 id = (id << 1) | r_parity;
1494 // Start counting parity for new row
1495 r_parity = id_bit;
1496 } else {
1497 // Count row parity
1498 r_parity ^= id_bit;
1499 }
1500
1501 // First elements in column?
1502 if (i < 4)
1503 // Fill out first elements
1504 c_parity[i] = id_bit;
1505 else
1506 // Count column parity
1507 c_parity[i % 4] ^= id_bit;
1508
1509 // Insert ID bit
1510 id = (id << 1) | id_bit;
1511 rev_id >>= 1;
1512 }
1513
1514 // Insert parity bit of last row
1515 id = (id << 1) | r_parity;
1516
1517 // Fill out column parity at the end of tag
1518 for (i = 0; i < 4; ++i)
1519 id = (id << 1) | c_parity[i];
1520
1521 // Add stop bit
1522 id <<= 1;
1523
1524 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1525 LED_D_ON();
1526
1527 // Write EM410x ID
1528 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1529 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1530
1531 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1532 if (card) {
1533 // Clock rate is stored in bits 8-15 of the card value
1534 clock = (card & 0xFF00) >> 8;
1535 Dbprintf("Clock rate: %d", clock);
1536 switch (clock)
1537 {
1538 case 32:
1539 clock = T55x7_BITRATE_RF_32;
1540 break;
1541 case 16:
1542 clock = T55x7_BITRATE_RF_16;
1543 break;
1544 case 0:
1545 // A value of 0 is assumed to be 64 for backwards-compatibility
1546 // Fall through...
1547 case 64:
1548 clock = T55x7_BITRATE_RF_64;
1549 break;
1550 default:
1551 Dbprintf("Invalid clock rate: %d", clock);
1552 return;
1553 }
1554
1555 // Writing configuration for T55x7 tag
1556 T55xxWriteBlock(clock |
1557 T55x7_MODULATION_MANCHESTER |
1558 2 << T55x7_MAXBLOCK_SHIFT,
1559 0, 0, 0);
1560 }
1561 else
1562 // Writing configuration for T5555(Q5) tag
1563 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1564 T5555_MODULATION_MANCHESTER |
1565 2 << T5555_MAXBLOCK_SHIFT,
1566 0, 0, 0);
1567
1568 LED_D_OFF();
1569 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1570 (uint32_t)(id >> 32), (uint32_t)id);
1571 }
1572
1573 // Clone Indala 64-bit tag by UID to T55x7
1574 void CopyIndala64toT55x7(int hi, int lo)
1575 {
1576 //Program the 2 data blocks for supplied 64bit UID
1577 // and the block 0 for Indala64 format
1578 T55xxWriteBlock(hi,1,0,0);
1579 T55xxWriteBlock(lo,2,0,0);
1580 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1581 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1582 T55x7_MODULATION_PSK1 |
1583 2 << T55x7_MAXBLOCK_SHIFT,
1584 0, 0, 0);
1585 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1586 // T5567WriteBlock(0x603E1042,0);
1587
1588 DbpString("DONE!");
1589 }
1590
1591 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1592 {
1593 //Program the 7 data blocks for supplied 224bit UID
1594 // and the block 0 for Indala224 format
1595 T55xxWriteBlock(uid1,1,0,0);
1596 T55xxWriteBlock(uid2,2,0,0);
1597 T55xxWriteBlock(uid3,3,0,0);
1598 T55xxWriteBlock(uid4,4,0,0);
1599 T55xxWriteBlock(uid5,5,0,0);
1600 T55xxWriteBlock(uid6,6,0,0);
1601 T55xxWriteBlock(uid7,7,0,0);
1602 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1603 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1604 T55x7_MODULATION_PSK1 |
1605 7 << T55x7_MAXBLOCK_SHIFT,
1606 0,0,0);
1607 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1608 // T5567WriteBlock(0x603E10E2,0);
1609
1610 DbpString("DONE!");
1611 }
1612
1613
1614 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1615 #define max(x,y) ( x<y ? y:x)
1616
1617 int DemodPCF7931(uint8_t **outBlocks) {
1618 uint8_t BitStream[256];
1619 uint8_t Blocks[8][16];
1620 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1621 int GraphTraceLen = sizeof(BigBuf);
1622 int i, j, lastval, bitidx, half_switch;
1623 int clock = 64;
1624 int tolerance = clock / 8;
1625 int pmc, block_done;
1626 int lc, warnings = 0;
1627 int num_blocks = 0;
1628 int lmin=128, lmax=128;
1629 uint8_t dir;
1630
1631 AcquireRawAdcSamples125k(0);
1632
1633 lmin = 64;
1634 lmax = 192;
1635
1636 i = 2;
1637
1638 /* Find first local max/min */
1639 if(GraphBuffer[1] > GraphBuffer[0]) {
1640 while(i < GraphTraceLen) {
1641 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1642 break;
1643 i++;
1644 }
1645 dir = 0;
1646 }
1647 else {
1648 while(i < GraphTraceLen) {
1649 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1650 break;
1651 i++;
1652 }
1653 dir = 1;
1654 }
1655
1656 lastval = i++;
1657 half_switch = 0;
1658 pmc = 0;
1659 block_done = 0;
1660
1661 for (bitidx = 0; i < GraphTraceLen; i++)
1662 {
1663 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1664 {
1665 lc = i - lastval;
1666 lastval = i;
1667
1668 // Switch depending on lc length:
1669 // Tolerance is 1/8 of clock rate (arbitrary)
1670 if (abs(lc-clock/4) < tolerance) {
1671 // 16T0
1672 if((i - pmc) == lc) { /* 16T0 was previous one */
1673 /* It's a PMC ! */
1674 i += (128+127+16+32+33+16)-1;
1675 lastval = i;
1676 pmc = 0;
1677 block_done = 1;
1678 }
1679 else {
1680 pmc = i;
1681 }
1682 } else if (abs(lc-clock/2) < tolerance) {
1683 // 32TO
1684 if((i - pmc) == lc) { /* 16T0 was previous one */
1685 /* It's a PMC ! */
1686 i += (128+127+16+32+33)-1;
1687 lastval = i;
1688 pmc = 0;
1689 block_done = 1;
1690 }
1691 else if(half_switch == 1) {
1692 BitStream[bitidx++] = 0;
1693 half_switch = 0;
1694 }
1695 else
1696 half_switch++;
1697 } else if (abs(lc-clock) < tolerance) {
1698 // 64TO
1699 BitStream[bitidx++] = 1;
1700 } else {
1701 // Error
1702 warnings++;
1703 if (warnings > 10)
1704 {
1705 Dbprintf("Error: too many detection errors, aborting.");
1706 return 0;
1707 }
1708 }
1709
1710 if(block_done == 1) {
1711 if(bitidx == 128) {
1712 for(j=0; j<16; j++) {
1713 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1714 64*BitStream[j*8+6]+
1715 32*BitStream[j*8+5]+
1716 16*BitStream[j*8+4]+
1717 8*BitStream[j*8+3]+
1718 4*BitStream[j*8+2]+
1719 2*BitStream[j*8+1]+
1720 BitStream[j*8];
1721 }
1722 num_blocks++;
1723 }
1724 bitidx = 0;
1725 block_done = 0;
1726 half_switch = 0;
1727 }
1728 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1729 else dir = 1;
1730 }
1731 if(bitidx==255)
1732 bitidx=0;
1733 warnings = 0;
1734 if(num_blocks == 4) break;
1735 }
1736 memcpy(outBlocks, Blocks, 16*num_blocks);
1737 return num_blocks;
1738 }
1739
1740 int IsBlock0PCF7931(uint8_t *Block) {
1741 // Assume RFU means 0 :)
1742 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1743 return 1;
1744 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1745 return 1;
1746 return 0;
1747 }
1748
1749 int IsBlock1PCF7931(uint8_t *Block) {
1750 // Assume RFU means 0 :)
1751 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1752 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1753 return 1;
1754
1755 return 0;
1756 }
1757 #define ALLOC 16
1758
1759 void ReadPCF7931() {
1760 uint8_t Blocks[8][17];
1761 uint8_t tmpBlocks[4][16];
1762 int i, j, ind, ind2, n;
1763 int num_blocks = 0;
1764 int max_blocks = 8;
1765 int ident = 0;
1766 int error = 0;
1767 int tries = 0;
1768
1769 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1770
1771 do {
1772 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1773 n = DemodPCF7931((uint8_t**)tmpBlocks);
1774 if(!n)
1775 error++;
1776 if(error==10 && num_blocks == 0) {
1777 Dbprintf("Error, no tag or bad tag");
1778 return;
1779 }
1780 else if (tries==20 || error==10) {
1781 Dbprintf("Error reading the tag");
1782 Dbprintf("Here is the partial content");
1783 goto end;
1784 }
1785
1786 for(i=0; i<n; i++)
1787 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1788 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1789 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1790 if(!ident) {
1791 for(i=0; i<n; i++) {
1792 if(IsBlock0PCF7931(tmpBlocks[i])) {
1793 // Found block 0 ?
1794 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1795 // Found block 1!
1796 // \o/
1797 ident = 1;
1798 memcpy(Blocks[0], tmpBlocks[i], 16);
1799 Blocks[0][ALLOC] = 1;
1800 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1801 Blocks[1][ALLOC] = 1;
1802 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1803 // Debug print
1804 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1805 num_blocks = 2;
1806 // Handle following blocks
1807 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1808 if(j==n) j=0;
1809 if(j==i) break;
1810 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1811 Blocks[ind2][ALLOC] = 1;
1812 }
1813 break;
1814 }
1815 }
1816 }
1817 }
1818 else {
1819 for(i=0; i<n; i++) { // Look for identical block in known blocks
1820 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1821 for(j=0; j<max_blocks; j++) {
1822 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1823 // Found an identical block
1824 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1825 if(ind2 < 0)
1826 ind2 = max_blocks;
1827 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1828 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1829 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1830 Blocks[ind2][ALLOC] = 1;
1831 num_blocks++;
1832 if(num_blocks == max_blocks) goto end;
1833 }
1834 }
1835 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1836 if(ind2 > max_blocks)
1837 ind2 = 0;
1838 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1839 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1840 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1841 Blocks[ind2][ALLOC] = 1;
1842 num_blocks++;
1843 if(num_blocks == max_blocks) goto end;
1844 }
1845 }
1846 }
1847 }
1848 }
1849 }
1850 }
1851 tries++;
1852 if (BUTTON_PRESS()) return;
1853 } while (num_blocks != max_blocks);
1854 end:
1855 Dbprintf("-----------------------------------------");
1856 Dbprintf("Memory content:");
1857 Dbprintf("-----------------------------------------");
1858 for(i=0; i<max_blocks; i++) {
1859 if(Blocks[i][ALLOC]==1)
1860 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1861 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1862 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1863 else
1864 Dbprintf("<missing block %d>", i);
1865 }
1866 Dbprintf("-----------------------------------------");
1867
1868 return ;
1869 }
1870
1871
1872 //-----------------------------------
1873 // EM4469 / EM4305 routines
1874 //-----------------------------------
1875 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1876 #define FWD_CMD_WRITE 0xA
1877 #define FWD_CMD_READ 0x9
1878 #define FWD_CMD_DISABLE 0x5
1879
1880
1881 uint8_t forwardLink_data[64]; //array of forwarded bits
1882 uint8_t * forward_ptr; //ptr for forward message preparation
1883 uint8_t fwd_bit_sz; //forwardlink bit counter
1884 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1885
1886 //====================================================================
1887 // prepares command bits
1888 // see EM4469 spec
1889 //====================================================================
1890 //--------------------------------------------------------------------
1891 uint8_t Prepare_Cmd( uint8_t cmd ) {
1892 //--------------------------------------------------------------------
1893
1894 *forward_ptr++ = 0; //start bit
1895 *forward_ptr++ = 0; //second pause for 4050 code
1896
1897 *forward_ptr++ = cmd;
1898 cmd >>= 1;
1899 *forward_ptr++ = cmd;
1900 cmd >>= 1;
1901 *forward_ptr++ = cmd;
1902 cmd >>= 1;
1903 *forward_ptr++ = cmd;
1904
1905 return 6; //return number of emited bits
1906 }
1907
1908 //====================================================================
1909 // prepares address bits
1910 // see EM4469 spec
1911 //====================================================================
1912
1913 //--------------------------------------------------------------------
1914 uint8_t Prepare_Addr( uint8_t addr ) {
1915 //--------------------------------------------------------------------
1916
1917 register uint8_t line_parity;
1918
1919 uint8_t i;
1920 line_parity = 0;
1921 for(i=0;i<6;i++) {
1922 *forward_ptr++ = addr;
1923 line_parity ^= addr;
1924 addr >>= 1;
1925 }
1926
1927 *forward_ptr++ = (line_parity & 1);
1928
1929 return 7; //return number of emited bits
1930 }
1931
1932 //====================================================================
1933 // prepares data bits intreleaved with parity bits
1934 // see EM4469 spec
1935 //====================================================================
1936
1937 //--------------------------------------------------------------------
1938 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1939 //--------------------------------------------------------------------
1940
1941 register uint8_t line_parity;
1942 register uint8_t column_parity;
1943 register uint8_t i, j;
1944 register uint16_t data;
1945
1946 data = data_low;
1947 column_parity = 0;
1948
1949 for(i=0; i<4; i++) {
1950 line_parity = 0;
1951 for(j=0; j<8; j++) {
1952 line_parity ^= data;
1953 column_parity ^= (data & 1) << j;
1954 *forward_ptr++ = data;
1955 data >>= 1;
1956 }
1957 *forward_ptr++ = line_parity;
1958 if(i == 1)
1959 data = data_hi;
1960 }
1961
1962 for(j=0; j<8; j++) {
1963 *forward_ptr++ = column_parity;
1964 column_parity >>= 1;
1965 }
1966 *forward_ptr = 0;
1967
1968 return 45; //return number of emited bits
1969 }
1970
1971 //====================================================================
1972 // Forward Link send function
1973 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1974 // fwd_bit_count set with number of bits to be sent
1975 //====================================================================
1976 void SendForward(uint8_t fwd_bit_count) {
1977
1978 fwd_write_ptr = forwardLink_data;
1979 fwd_bit_sz = fwd_bit_count;
1980
1981 LED_D_ON();
1982
1983 //Field on
1984 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1985 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1987
1988 // Give it a bit of time for the resonant antenna to settle.
1989 // And for the tag to fully power up
1990 SpinDelay(150);
1991
1992 // force 1st mod pulse (start gap must be longer for 4305)
1993 fwd_bit_sz--; //prepare next bit modulation
1994 fwd_write_ptr++;
1995 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1996 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1997 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1998 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1999 SpinDelayUs(16*8); //16 cycles on (8us each)
2000
2001 // now start writting
2002 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
2003 if(((*fwd_write_ptr++) & 1) == 1)
2004 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
2005 else {
2006 //These timings work for 4469/4269/4305 (with the 55*8 above)
2007 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2008 SpinDelayUs(23*8); //16-4 cycles off (8us each)
2009 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
2010 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
2011 SpinDelayUs(9*8); //16 cycles on (8us each)
2012 }
2013 }
2014 }
2015
2016
2017 void EM4xLogin(uint32_t Password) {
2018
2019 uint8_t fwd_bit_count;
2020
2021 forward_ptr = forwardLink_data;
2022 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
2023 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
2024
2025 SendForward(fwd_bit_count);
2026
2027 //Wait for command to complete
2028 SpinDelay(20);
2029
2030 }
2031
2032 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2033
2034 uint8_t *dest = mifare_get_bigbufptr();
2035 uint16_t bufferlength = 12000;
2036 uint32_t i = 0;
2037
2038 // Clear destination buffer before sending the command 0x80 = average.
2039 memset(dest, 0x80, bufferlength);
2040
2041 uint8_t fwd_bit_count;
2042
2043 //If password mode do login
2044 if (PwdMode == 1) EM4xLogin(Pwd);
2045
2046 forward_ptr = forwardLink_data;
2047 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
2048 fwd_bit_count += Prepare_Addr( Address );
2049
2050 // Connect the A/D to the peak-detected low-frequency path.
2051 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
2052 // Now set up the SSC to get the ADC samples that are now streaming at us.
2053 FpgaSetupSsc();
2054
2055 SendForward(fwd_bit_count);
2056
2057 // // Turn field on to read the response
2058 // TurnReadLFOn();
2059
2060 // Now do the acquisition
2061 i = 0;
2062 for(;;) {
2063 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
2064 AT91C_BASE_SSC->SSC_THR = 0x43;
2065 }
2066 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
2067 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
2068 ++i;
2069 if (i >= bufferlength) break;
2070 }
2071 }
2072
2073 cmd_send(CMD_ACK,0,0,0,0,0);
2074 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2075 LED_D_OFF();
2076 }
2077
2078 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
2079
2080 uint8_t fwd_bit_count;
2081
2082 //If password mode do login
2083 if (PwdMode == 1) EM4xLogin(Pwd);
2084
2085 forward_ptr = forwardLink_data;
2086 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
2087 fwd_bit_count += Prepare_Addr( Address );
2088 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
2089
2090 SendForward(fwd_bit_count);
2091
2092 //Wait for write to complete
2093 SpinDelay(20);
2094 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
2095 LED_D_OFF();
2096 }
Impressum, Datenschutz