]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
Added client-side support for recording longer samples, fixed last (?) issues on...
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19 uint8_t decimation = 1;
20 uint8_t bits_per_sample = 8;
21 bool averaging = 1;
22
23
24 typedef struct {
25 uint8_t * buffer;
26 uint32_t numbits;
27 uint32_t position;
28 } BitstreamOut;
29 /**
30 * @brief Pushes bit onto the stream
31 * @param stream
32 * @param bit
33 */
34 void pushBit( BitstreamOut* stream, uint8_t bit)
35 {
36 int bytepos = stream->position >> 3; // divide by 8
37 int bitpos = stream->position & 7;
38 *(stream->buffer+bytepos) |= (bit > 0) << (7 - bitpos);
39 stream->position++;
40 stream->numbits++;
41 }
42
43 /**
44 * Does the sample acquisition. If threshold is specified, the actual sampling
45 * is not commenced until the threshold has been reached.
46 * This method implements decimation and quantization in order to
47 * be able to provide longer sample traces.
48 * Uses the following global settings:
49 * - decimation - how much should the signal be decimated. A decimation of N means we keep 1 in N samples, etc.
50 * - bits_per_sample - bits per sample. Max 8, min 1 bit per sample.
51 * - averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample
52 * value that will be used is the average value of the three samples.
53 *
54 * @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
55 * to -1 to ignore threshold.
56 * @param silent - is true, now outputs are made. If false, dbprints the status
57 * @return the number of bits occupied by the samples.
58 */
59 uint32_t DoAcquisition125k_internal(int trigger_threshold,bool silent)
60 {
61 //.
62 uint8_t *dest = (uint8_t *)BigBuf;
63 int bufsize = BIGBUF_SIZE;
64 memset(dest, 0, bufsize);
65
66 if(bits_per_sample < 1) bits_per_sample = 1;
67 if(bits_per_sample > 8) bits_per_sample = 8;
68
69 if(decimation < 1) decimation = 1;
70
71 // Use a bit stream to handle the output
72 BitstreamOut data = { dest , 0, 0};
73 int sample_counter = 0;
74 uint8_t sample = 0;
75 //If we want to do averaging
76 uint32_t sample_sum =0 ;
77 uint32_t sample_total_numbers =0 ;
78 uint32_t sample_total_saved =0 ;
79
80 while(!BUTTON_PRESS()) {
81 WDT_HIT();
82 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
83 AT91C_BASE_SSC->SSC_THR = 0x43;
84 LED_D_ON();
85 }
86 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
87 sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
88 LED_D_OFF();
89 if (trigger_threshold != -1 && sample < trigger_threshold)
90 continue;
91
92 trigger_threshold = -1;
93 sample_total_numbers++;
94
95 if(averaging)
96 {
97 sample_sum += sample;
98 }
99 //Check decimation
100 if(decimation > 1)
101 {
102 sample_counter++;
103 if(sample_counter < decimation) continue;
104 sample_counter = 0;
105 }
106 //Averaging
107 if(averaging && decimation > 1) {
108 sample = sample_sum / decimation;
109 sample_sum =0;
110 }
111 //Store the sample
112 sample_total_saved ++;
113 if(bits_per_sample == 8){
114 dest[sample_total_saved-1] = sample;
115 data.numbits = sample_total_saved << 3;//Get the return value correct
116 if(sample_total_saved >= bufsize) break;
117 }
118 else{
119 pushBit(&data, sample & 0x80);
120 if(bits_per_sample > 1) pushBit(&data, sample & 0x40);
121 if(bits_per_sample > 2) pushBit(&data, sample & 0x20);
122 if(bits_per_sample > 3) pushBit(&data, sample & 0x10);
123 if(bits_per_sample > 4) pushBit(&data, sample & 0x08);
124 if(bits_per_sample > 5) pushBit(&data, sample & 0x04);
125 if(bits_per_sample > 6) pushBit(&data, sample & 0x02);
126 //Not needed, 8bps is covered above
127 //if(bits_per_sample > 7) pushBit(&data, sample & 0x01);
128 if((data.numbits >> 3) +1 >= bufsize) break;
129 }
130 }
131 }
132
133 if(!silent)
134 {
135 Dbprintf("Done, saved %d out of %d seen samples at %d bits/sample",sample_total_saved, sample_total_numbers,bits_per_sample);
136 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
137 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
138 }
139 return data.numbits;
140 }
141 /**
142 * Perform sample aquisition.
143 */
144 void DoAcquisition125k(int trigger_threshold)
145 {
146 DoAcquisition125k_internal(trigger_threshold, false);
147 }
148
149 /**
150 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
151 * if not already loaded, sets divisor and starts up the antenna.
152 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
153 * 0 or 95 ==> 125 KHz
154 *
155 **/
156 void LFSetupFPGAForADC(int divisor, bool lf_field)
157 {
158 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
159 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
160 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
161 else if (divisor == 0)
162 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
163 else
164 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
165
166 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
167
168 // Connect the A/D to the peak-detected low-frequency path.
169 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
170 // Give it a bit of time for the resonant antenna to settle.
171 SpinDelay(50);
172 // Now set up the SSC to get the ADC samples that are now streaming at us.
173 FpgaSetupSsc();
174 }
175 /**
176 * Initializes the FPGA, and acquires the samples.
177 **/
178 void AcquireRawAdcSamples125k(int divisor,int arg1, int arg2)
179 {
180 if (arg1 != 0)
181 {
182 averaging = (arg1 & 0x80) != 0;
183 bits_per_sample = (arg1 & 0x0F);
184 }
185 if(arg2 != 0)
186 {
187 decimation = arg2;
188 }
189
190 Dbprintf("Sampling config: ");
191 Dbprintf(" divisor: %d ", divisor);
192 Dbprintf(" bps: %d ", bits_per_sample);
193 Dbprintf(" decimation: %d ", decimation);
194 Dbprintf(" averaging: %d ", averaging);
195
196 LFSetupFPGAForADC(divisor, true);
197 // Now call the acquisition routine
198 DoAcquisition125k_internal(-1,false);
199 }
200 /**
201 * Initializes the FPGA for snoop-mode, and acquires the samples.
202 **/
203
204 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
205 {
206 LFSetupFPGAForADC(divisor, false);
207 DoAcquisition125k(trigger_threshold);
208 }
209
210 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
211 {
212
213 /* Make sure the tag is reset */
214 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
215 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
216 SpinDelay(2500);
217
218
219 int divisor_used = 95; // 125 KHz
220 // see if 'h' was specified
221
222 if (command[strlen((char *) command) - 1] == 'h')
223 divisor_used = 88; // 134.8 KHz
224
225
226 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
227 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
228 // Give it a bit of time for the resonant antenna to settle.
229 SpinDelay(50);
230
231 // And a little more time for the tag to fully power up
232 SpinDelay(2000);
233
234 // Now set up the SSC to get the ADC samples that are now streaming at us.
235 FpgaSetupSsc();
236
237 // now modulate the reader field
238 while(*command != '\0' && *command != ' ') {
239 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
240 LED_D_OFF();
241 SpinDelayUs(delay_off);
242 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
243
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
245 LED_D_ON();
246 if(*(command++) == '0')
247 SpinDelayUs(period_0);
248 else
249 SpinDelayUs(period_1);
250 }
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
252 LED_D_OFF();
253 SpinDelayUs(delay_off);
254 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
255
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
257
258 // now do the read
259 DoAcquisition125k(-1);
260 }
261
262 /* blank r/w tag data stream
263 ...0000000000000000 01111111
264 1010101010101010101010101010101010101010101010101010101010101010
265 0011010010100001
266 01111111
267 101010101010101[0]000...
268
269 [5555fe852c5555555555555555fe0000]
270 */
271 void ReadTItag(void)
272 {
273 // some hardcoded initial params
274 // when we read a TI tag we sample the zerocross line at 2Mhz
275 // TI tags modulate a 1 as 16 cycles of 123.2Khz
276 // TI tags modulate a 0 as 16 cycles of 134.2Khz
277 #define FSAMPLE 2000000
278 #define FREQLO 123200
279 #define FREQHI 134200
280
281 signed char *dest = (signed char *)BigBuf;
282 int n = sizeof(BigBuf);
283 // 128 bit shift register [shift3:shift2:shift1:shift0]
284 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
285
286 int i, cycles=0, samples=0;
287 // how many sample points fit in 16 cycles of each frequency
288 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
289 // when to tell if we're close enough to one freq or another
290 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
291
292 // TI tags charge at 134.2Khz
293 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
294 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
295
296 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
297 // connects to SSP_DIN and the SSP_DOUT logic level controls
298 // whether we're modulating the antenna (high)
299 // or listening to the antenna (low)
300 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
301
302 // get TI tag data into the buffer
303 AcquireTiType();
304
305 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
306
307 for (i=0; i<n-1; i++) {
308 // count cycles by looking for lo to hi zero crossings
309 if ( (dest[i]<0) && (dest[i+1]>0) ) {
310 cycles++;
311 // after 16 cycles, measure the frequency
312 if (cycles>15) {
313 cycles=0;
314 samples=i-samples; // number of samples in these 16 cycles
315
316 // TI bits are coming to us lsb first so shift them
317 // right through our 128 bit right shift register
318 shift0 = (shift0>>1) | (shift1 << 31);
319 shift1 = (shift1>>1) | (shift2 << 31);
320 shift2 = (shift2>>1) | (shift3 << 31);
321 shift3 >>= 1;
322
323 // check if the cycles fall close to the number
324 // expected for either the low or high frequency
325 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
326 // low frequency represents a 1
327 shift3 |= (1<<31);
328 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
329 // high frequency represents a 0
330 } else {
331 // probably detected a gay waveform or noise
332 // use this as gaydar or discard shift register and start again
333 shift3 = shift2 = shift1 = shift0 = 0;
334 }
335 samples = i;
336
337 // for each bit we receive, test if we've detected a valid tag
338
339 // if we see 17 zeroes followed by 6 ones, we might have a tag
340 // remember the bits are backwards
341 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
342 // if start and end bytes match, we have a tag so break out of the loop
343 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
344 cycles = 0xF0B; //use this as a flag (ugly but whatever)
345 break;
346 }
347 }
348 }
349 }
350 }
351
352 // if flag is set we have a tag
353 if (cycles!=0xF0B) {
354 DbpString("Info: No valid tag detected.");
355 } else {
356 // put 64 bit data into shift1 and shift0
357 shift0 = (shift0>>24) | (shift1 << 8);
358 shift1 = (shift1>>24) | (shift2 << 8);
359
360 // align 16 bit crc into lower half of shift2
361 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
362
363 // if r/w tag, check ident match
364 if (shift3 & (1<<15) ) {
365 DbpString("Info: TI tag is rewriteable");
366 // only 15 bits compare, last bit of ident is not valid
367 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
368 DbpString("Error: Ident mismatch!");
369 } else {
370 DbpString("Info: TI tag ident is valid");
371 }
372 } else {
373 DbpString("Info: TI tag is readonly");
374 }
375
376 // WARNING the order of the bytes in which we calc crc below needs checking
377 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
378 // bytes in reverse or something
379 // calculate CRC
380 uint32_t crc=0;
381
382 crc = update_crc16(crc, (shift0)&0xff);
383 crc = update_crc16(crc, (shift0>>8)&0xff);
384 crc = update_crc16(crc, (shift0>>16)&0xff);
385 crc = update_crc16(crc, (shift0>>24)&0xff);
386 crc = update_crc16(crc, (shift1)&0xff);
387 crc = update_crc16(crc, (shift1>>8)&0xff);
388 crc = update_crc16(crc, (shift1>>16)&0xff);
389 crc = update_crc16(crc, (shift1>>24)&0xff);
390
391 Dbprintf("Info: Tag data: %x%08x, crc=%x",
392 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
393 if (crc != (shift2&0xffff)) {
394 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
395 } else {
396 DbpString("Info: CRC is good");
397 }
398 }
399 }
400
401 void WriteTIbyte(uint8_t b)
402 {
403 int i = 0;
404
405 // modulate 8 bits out to the antenna
406 for (i=0; i<8; i++)
407 {
408 if (b&(1<<i)) {
409 // stop modulating antenna
410 LOW(GPIO_SSC_DOUT);
411 SpinDelayUs(1000);
412 // modulate antenna
413 HIGH(GPIO_SSC_DOUT);
414 SpinDelayUs(1000);
415 } else {
416 // stop modulating antenna
417 LOW(GPIO_SSC_DOUT);
418 SpinDelayUs(300);
419 // modulate antenna
420 HIGH(GPIO_SSC_DOUT);
421 SpinDelayUs(1700);
422 }
423 }
424 }
425
426 void AcquireTiType(void)
427 {
428 int i, j, n;
429 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
430 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
431 #define TIBUFLEN 1250
432
433 // clear buffer
434 memset(BigBuf,0,sizeof(BigBuf));
435
436 // Set up the synchronous serial port
437 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
438 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
439
440 // steal this pin from the SSP and use it to control the modulation
441 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
442 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
443
444 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
445 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
446
447 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
448 // 48/2 = 24 MHz clock must be divided by 12
449 AT91C_BASE_SSC->SSC_CMR = 12;
450
451 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
452 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
453 AT91C_BASE_SSC->SSC_TCMR = 0;
454 AT91C_BASE_SSC->SSC_TFMR = 0;
455
456 LED_D_ON();
457
458 // modulate antenna
459 HIGH(GPIO_SSC_DOUT);
460
461 // Charge TI tag for 50ms.
462 SpinDelay(50);
463
464 // stop modulating antenna and listen
465 LOW(GPIO_SSC_DOUT);
466
467 LED_D_OFF();
468
469 i = 0;
470 for(;;) {
471 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
472 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
473 i++; if(i >= TIBUFLEN) break;
474 }
475 WDT_HIT();
476 }
477
478 // return stolen pin to SSP
479 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
480 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
481
482 char *dest = (char *)BigBuf;
483 n = TIBUFLEN*32;
484 // unpack buffer
485 for (i=TIBUFLEN-1; i>=0; i--) {
486 for (j=0; j<32; j++) {
487 if(BigBuf[i] & (1 << j)) {
488 dest[--n] = 1;
489 } else {
490 dest[--n] = -1;
491 }
492 }
493 }
494 }
495
496 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
497 // if crc provided, it will be written with the data verbatim (even if bogus)
498 // if not provided a valid crc will be computed from the data and written.
499 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
500 {
501 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
502 if(crc == 0) {
503 crc = update_crc16(crc, (idlo)&0xff);
504 crc = update_crc16(crc, (idlo>>8)&0xff);
505 crc = update_crc16(crc, (idlo>>16)&0xff);
506 crc = update_crc16(crc, (idlo>>24)&0xff);
507 crc = update_crc16(crc, (idhi)&0xff);
508 crc = update_crc16(crc, (idhi>>8)&0xff);
509 crc = update_crc16(crc, (idhi>>16)&0xff);
510 crc = update_crc16(crc, (idhi>>24)&0xff);
511 }
512 Dbprintf("Writing to tag: %x%08x, crc=%x",
513 (unsigned int) idhi, (unsigned int) idlo, crc);
514
515 // TI tags charge at 134.2Khz
516 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
517 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
518 // connects to SSP_DIN and the SSP_DOUT logic level controls
519 // whether we're modulating the antenna (high)
520 // or listening to the antenna (low)
521 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
522 LED_A_ON();
523
524 // steal this pin from the SSP and use it to control the modulation
525 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
526 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
527
528 // writing algorithm:
529 // a high bit consists of a field off for 1ms and field on for 1ms
530 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
531 // initiate a charge time of 50ms (field on) then immediately start writing bits
532 // start by writing 0xBB (keyword) and 0xEB (password)
533 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
534 // finally end with 0x0300 (write frame)
535 // all data is sent lsb firts
536 // finish with 15ms programming time
537
538 // modulate antenna
539 HIGH(GPIO_SSC_DOUT);
540 SpinDelay(50); // charge time
541
542 WriteTIbyte(0xbb); // keyword
543 WriteTIbyte(0xeb); // password
544 WriteTIbyte( (idlo )&0xff );
545 WriteTIbyte( (idlo>>8 )&0xff );
546 WriteTIbyte( (idlo>>16)&0xff );
547 WriteTIbyte( (idlo>>24)&0xff );
548 WriteTIbyte( (idhi )&0xff );
549 WriteTIbyte( (idhi>>8 )&0xff );
550 WriteTIbyte( (idhi>>16)&0xff );
551 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
552 WriteTIbyte( (crc )&0xff ); // crc lo
553 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
554 WriteTIbyte(0x00); // write frame lo
555 WriteTIbyte(0x03); // write frame hi
556 HIGH(GPIO_SSC_DOUT);
557 SpinDelay(50); // programming time
558
559 LED_A_OFF();
560
561 // get TI tag data into the buffer
562 AcquireTiType();
563
564 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
565 DbpString("Now use tiread to check");
566 }
567
568 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
569 {
570 int i;
571 uint8_t *tab = (uint8_t *)BigBuf;
572
573 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
574 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
575
576 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
577
578 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
579 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
580
581 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
582 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
583
584 i = 0;
585 for(;;) {
586 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
587 if(BUTTON_PRESS()) {
588 DbpString("Stopped");
589 return;
590 }
591 WDT_HIT();
592 }
593
594 if (ledcontrol)
595 LED_D_ON();
596
597 if(tab[i])
598 OPEN_COIL();
599 else
600 SHORT_COIL();
601
602 if (ledcontrol)
603 LED_D_OFF();
604
605 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
606 if(BUTTON_PRESS()) {
607 DbpString("Stopped");
608 return;
609 }
610 WDT_HIT();
611 }
612
613 i++;
614 if(i == period) {
615 i = 0;
616 if (gap) {
617 SHORT_COIL();
618 SpinDelayUs(gap);
619 }
620 }
621 }
622 }
623
624 #define DEBUG_FRAME_CONTENTS 1
625 void SimulateTagLowFrequencyBidir(int divisor, int t0)
626 {
627 }
628
629 // compose fc/8 fc/10 waveform
630 static void fc(int c, int *n) {
631 uint8_t *dest = (uint8_t *)BigBuf;
632 int idx;
633
634 // for when we want an fc8 pattern every 4 logical bits
635 if(c==0) {
636 dest[((*n)++)]=1;
637 dest[((*n)++)]=1;
638 dest[((*n)++)]=0;
639 dest[((*n)++)]=0;
640 dest[((*n)++)]=0;
641 dest[((*n)++)]=0;
642 dest[((*n)++)]=0;
643 dest[((*n)++)]=0;
644 }
645 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
646 if(c==8) {
647 for (idx=0; idx<6; idx++) {
648 dest[((*n)++)]=1;
649 dest[((*n)++)]=1;
650 dest[((*n)++)]=0;
651 dest[((*n)++)]=0;
652 dest[((*n)++)]=0;
653 dest[((*n)++)]=0;
654 dest[((*n)++)]=0;
655 dest[((*n)++)]=0;
656 }
657 }
658
659 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
660 if(c==10) {
661 for (idx=0; idx<5; idx++) {
662 dest[((*n)++)]=1;
663 dest[((*n)++)]=1;
664 dest[((*n)++)]=1;
665 dest[((*n)++)]=0;
666 dest[((*n)++)]=0;
667 dest[((*n)++)]=0;
668 dest[((*n)++)]=0;
669 dest[((*n)++)]=0;
670 dest[((*n)++)]=0;
671 dest[((*n)++)]=0;
672 }
673 }
674 }
675
676 // prepare a waveform pattern in the buffer based on the ID given then
677 // simulate a HID tag until the button is pressed
678 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
679 {
680 int n=0, i=0;
681 /*
682 HID tag bitstream format
683 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
684 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
685 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
686 A fc8 is inserted before every 4 bits
687 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
688 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
689 */
690
691 if (hi>0xFFF) {
692 DbpString("Tags can only have 44 bits.");
693 return;
694 }
695 fc(0,&n);
696 // special start of frame marker containing invalid bit sequences
697 fc(8, &n); fc(8, &n); // invalid
698 fc(8, &n); fc(10, &n); // logical 0
699 fc(10, &n); fc(10, &n); // invalid
700 fc(8, &n); fc(10, &n); // logical 0
701
702 WDT_HIT();
703 // manchester encode bits 43 to 32
704 for (i=11; i>=0; i--) {
705 if ((i%4)==3) fc(0,&n);
706 if ((hi>>i)&1) {
707 fc(10, &n); fc(8, &n); // low-high transition
708 } else {
709 fc(8, &n); fc(10, &n); // high-low transition
710 }
711 }
712
713 WDT_HIT();
714 // manchester encode bits 31 to 0
715 for (i=31; i>=0; i--) {
716 if ((i%4)==3) fc(0,&n);
717 if ((lo>>i)&1) {
718 fc(10, &n); fc(8, &n); // low-high transition
719 } else {
720 fc(8, &n); fc(10, &n); // high-low transition
721 }
722 }
723
724 if (ledcontrol)
725 LED_A_ON();
726 SimulateTagLowFrequency(n, 0, ledcontrol);
727
728 if (ledcontrol)
729 LED_A_OFF();
730 }
731
732 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
733 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
734 {
735 uint8_t *dest = (uint8_t *)BigBuf;
736
737 size_t size=0; //, found=0;
738 uint32_t hi2=0, hi=0, lo=0;
739
740 // Configure to go in 125Khz listen mode
741 LFSetupFPGAForADC(95, true);
742
743 while(!BUTTON_PRESS()) {
744
745 WDT_HIT();
746 if (ledcontrol) LED_A_ON();
747
748 DoAcquisition125k_internal(-1,true);
749 // FSK demodulator
750 size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
751
752 WDT_HIT();
753
754 if (size>0 && lo>0){
755 // final loop, go over previously decoded manchester data and decode into usable tag ID
756 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
757 if (hi2 != 0){ //extra large HID tags
758 Dbprintf("TAG ID: %x%08x%08x (%d)",
759 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
760 }else { //standard HID tags <38 bits
761 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
762 uint8_t bitlen = 0;
763 uint32_t fc = 0;
764 uint32_t cardnum = 0;
765 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
766 uint32_t lo2=0;
767 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
768 uint8_t idx3 = 1;
769 while(lo2 > 1){ //find last bit set to 1 (format len bit)
770 lo2=lo2 >> 1;
771 idx3++;
772 }
773 bitlen = idx3+19;
774 fc =0;
775 cardnum=0;
776 if(bitlen == 26){
777 cardnum = (lo>>1)&0xFFFF;
778 fc = (lo>>17)&0xFF;
779 }
780 if(bitlen == 37){
781 cardnum = (lo>>1)&0x7FFFF;
782 fc = ((hi&0xF)<<12)|(lo>>20);
783 }
784 if(bitlen == 34){
785 cardnum = (lo>>1)&0xFFFF;
786 fc= ((hi&1)<<15)|(lo>>17);
787 }
788 if(bitlen == 35){
789 cardnum = (lo>>1)&0xFFFFF;
790 fc = ((hi&1)<<11)|(lo>>21);
791 }
792 }
793 else { //if bit 38 is not set then 37 bit format is used
794 bitlen= 37;
795 fc =0;
796 cardnum=0;
797 if(bitlen==37){
798 cardnum = (lo>>1)&0x7FFFF;
799 fc = ((hi&0xF)<<12)|(lo>>20);
800 }
801 }
802 //Dbprintf("TAG ID: %x%08x (%d)",
803 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
804 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
805 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
806 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
807 }
808 if (findone){
809 if (ledcontrol) LED_A_OFF();
810 return;
811 }
812 // reset
813 hi2 = hi = lo = 0;
814 }
815 WDT_HIT();
816 }
817 DbpString("Stopped");
818 if (ledcontrol) LED_A_OFF();
819 }
820
821 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
822 {
823 uint8_t *dest = (uint8_t *)BigBuf;
824
825 size_t size=0;
826 int clk=0, invert=0, errCnt=0;
827 uint64_t lo=0;
828 // Configure to go in 125Khz listen mode
829 LFSetupFPGAForADC(95, true);
830
831 while(!BUTTON_PRESS()) {
832
833 WDT_HIT();
834 if (ledcontrol) LED_A_ON();
835
836 DoAcquisition125k_internal(-1,true);
837 size = sizeof(BigBuf);
838 //Dbprintf("DEBUG: Buffer got");
839 //askdemod and manchester decode
840 errCnt = askmandemod(dest, &size, &clk, &invert);
841 //Dbprintf("DEBUG: ASK Got");
842 WDT_HIT();
843
844 if (errCnt>=0){
845 lo = Em410xDecode(dest,size);
846 //Dbprintf("DEBUG: EM GOT");
847 if (lo>0){
848 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
849 (uint32_t)(lo>>32),
850 (uint32_t)lo,
851 (uint32_t)(lo&0xFFFF),
852 (uint32_t)((lo>>16LL) & 0xFF),
853 (uint32_t)(lo & 0xFFFFFF));
854 }
855 if (findone){
856 if (ledcontrol) LED_A_OFF();
857 return;
858 }
859 } else{
860 //Dbprintf("DEBUG: No Tag");
861 }
862 WDT_HIT();
863 lo = 0;
864 clk=0;
865 invert=0;
866 errCnt=0;
867 size=0;
868 }
869 DbpString("Stopped");
870 if (ledcontrol) LED_A_OFF();
871 }
872
873 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
874 {
875 uint8_t *dest = (uint8_t *)BigBuf;
876 int idx=0;
877 uint32_t code=0, code2=0;
878 uint8_t version=0;
879 uint8_t facilitycode=0;
880 uint16_t number=0;
881 // Configure to go in 125Khz listen mode
882 LFSetupFPGAForADC(95, true);
883
884 while(!BUTTON_PRESS()) {
885 WDT_HIT();
886 if (ledcontrol) LED_A_ON();
887 DoAcquisition125k_internal(-1,true);
888 //fskdemod and get start index
889 WDT_HIT();
890 idx = IOdemodFSK(dest,sizeof(BigBuf));
891 if (idx>0){
892 //valid tag found
893
894 //Index map
895 //0 10 20 30 40 50 60
896 //| | | | | | |
897 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
898 //-----------------------------------------------------------------------------
899 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
900 //
901 //XSF(version)facility:codeone+codetwo
902 //Handle the data
903 if(findone){ //only print binary if we are doing one
904 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
905 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
906 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
907 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
908 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
909 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
910 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
911 }
912 code = bytebits_to_byte(dest+idx,32);
913 code2 = bytebits_to_byte(dest+idx+32,32);
914 version = bytebits_to_byte(dest+idx+27,8); //14,4
915 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
916 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
917
918 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
919 // if we're only looking for one tag
920 if (findone){
921 if (ledcontrol) LED_A_OFF();
922 //LED_A_OFF();
923 return;
924 }
925 code=code2=0;
926 version=facilitycode=0;
927 number=0;
928 idx=0;
929 }
930 WDT_HIT();
931 }
932 DbpString("Stopped");
933 if (ledcontrol) LED_A_OFF();
934 }
935
936 /*------------------------------
937 * T5555/T5557/T5567 routines
938 *------------------------------
939 */
940
941 /* T55x7 configuration register definitions */
942 #define T55x7_POR_DELAY 0x00000001
943 #define T55x7_ST_TERMINATOR 0x00000008
944 #define T55x7_PWD 0x00000010
945 #define T55x7_MAXBLOCK_SHIFT 5
946 #define T55x7_AOR 0x00000200
947 #define T55x7_PSKCF_RF_2 0
948 #define T55x7_PSKCF_RF_4 0x00000400
949 #define T55x7_PSKCF_RF_8 0x00000800
950 #define T55x7_MODULATION_DIRECT 0
951 #define T55x7_MODULATION_PSK1 0x00001000
952 #define T55x7_MODULATION_PSK2 0x00002000
953 #define T55x7_MODULATION_PSK3 0x00003000
954 #define T55x7_MODULATION_FSK1 0x00004000
955 #define T55x7_MODULATION_FSK2 0x00005000
956 #define T55x7_MODULATION_FSK1a 0x00006000
957 #define T55x7_MODULATION_FSK2a 0x00007000
958 #define T55x7_MODULATION_MANCHESTER 0x00008000
959 #define T55x7_MODULATION_BIPHASE 0x00010000
960 #define T55x7_BITRATE_RF_8 0
961 #define T55x7_BITRATE_RF_16 0x00040000
962 #define T55x7_BITRATE_RF_32 0x00080000
963 #define T55x7_BITRATE_RF_40 0x000C0000
964 #define T55x7_BITRATE_RF_50 0x00100000
965 #define T55x7_BITRATE_RF_64 0x00140000
966 #define T55x7_BITRATE_RF_100 0x00180000
967 #define T55x7_BITRATE_RF_128 0x001C0000
968
969 /* T5555 (Q5) configuration register definitions */
970 #define T5555_ST_TERMINATOR 0x00000001
971 #define T5555_MAXBLOCK_SHIFT 0x00000001
972 #define T5555_MODULATION_MANCHESTER 0
973 #define T5555_MODULATION_PSK1 0x00000010
974 #define T5555_MODULATION_PSK2 0x00000020
975 #define T5555_MODULATION_PSK3 0x00000030
976 #define T5555_MODULATION_FSK1 0x00000040
977 #define T5555_MODULATION_FSK2 0x00000050
978 #define T5555_MODULATION_BIPHASE 0x00000060
979 #define T5555_MODULATION_DIRECT 0x00000070
980 #define T5555_INVERT_OUTPUT 0x00000080
981 #define T5555_PSK_RF_2 0
982 #define T5555_PSK_RF_4 0x00000100
983 #define T5555_PSK_RF_8 0x00000200
984 #define T5555_USE_PWD 0x00000400
985 #define T5555_USE_AOR 0x00000800
986 #define T5555_BITRATE_SHIFT 12
987 #define T5555_FAST_WRITE 0x00004000
988 #define T5555_PAGE_SELECT 0x00008000
989
990 /*
991 * Relevant times in microsecond
992 * To compensate antenna falling times shorten the write times
993 * and enlarge the gap ones.
994 */
995 #define START_GAP 250
996 #define WRITE_GAP 160
997 #define WRITE_0 144 // 192
998 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
999
1000 // Write one bit to card
1001 void T55xxWriteBit(int bit)
1002 {
1003 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1004 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1005 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1006 if (bit == 0)
1007 SpinDelayUs(WRITE_0);
1008 else
1009 SpinDelayUs(WRITE_1);
1010 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1011 SpinDelayUs(WRITE_GAP);
1012 }
1013
1014 // Write one card block in page 0, no lock
1015 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1016 {
1017 //unsigned int i; //enio adjustment 12/10/14
1018 uint32_t i;
1019
1020 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1021 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1022 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1023
1024 // Give it a bit of time for the resonant antenna to settle.
1025 // And for the tag to fully power up
1026 SpinDelay(150);
1027
1028 // Now start writting
1029 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1030 SpinDelayUs(START_GAP);
1031
1032 // Opcode
1033 T55xxWriteBit(1);
1034 T55xxWriteBit(0); //Page 0
1035 if (PwdMode == 1){
1036 // Pwd
1037 for (i = 0x80000000; i != 0; i >>= 1)
1038 T55xxWriteBit(Pwd & i);
1039 }
1040 // Lock bit
1041 T55xxWriteBit(0);
1042
1043 // Data
1044 for (i = 0x80000000; i != 0; i >>= 1)
1045 T55xxWriteBit(Data & i);
1046
1047 // Block
1048 for (i = 0x04; i != 0; i >>= 1)
1049 T55xxWriteBit(Block & i);
1050
1051 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1052 // so wait a little more)
1053 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1054 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1055 SpinDelay(20);
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1057 }
1058
1059 // Read one card block in page 0
1060 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
1061 {
1062 uint8_t *dest = (uint8_t *)BigBuf;
1063 //int m=0, i=0; //enio adjustment 12/10/14
1064 uint32_t m=0, i=0;
1065 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1066 m = sizeof(BigBuf);
1067 // Clear destination buffer before sending the command
1068 memset(dest, 128, m);
1069 // Connect the A/D to the peak-detected low-frequency path.
1070 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1071 // Now set up the SSC to get the ADC samples that are now streaming at us.
1072 FpgaSetupSsc();
1073
1074 LED_D_ON();
1075 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1076 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1077
1078 // Give it a bit of time for the resonant antenna to settle.
1079 // And for the tag to fully power up
1080 SpinDelay(150);
1081
1082 // Now start writting
1083 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1084 SpinDelayUs(START_GAP);
1085
1086 // Opcode
1087 T55xxWriteBit(1);
1088 T55xxWriteBit(0); //Page 0
1089 if (PwdMode == 1){
1090 // Pwd
1091 for (i = 0x80000000; i != 0; i >>= 1)
1092 T55xxWriteBit(Pwd & i);
1093 }
1094 // Lock bit
1095 T55xxWriteBit(0);
1096 // Block
1097 for (i = 0x04; i != 0; i >>= 1)
1098 T55xxWriteBit(Block & i);
1099
1100 // Turn field on to read the response
1101 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1102 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1103
1104 // Now do the acquisition
1105 i = 0;
1106 for(;;) {
1107 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1108 AT91C_BASE_SSC->SSC_THR = 0x43;
1109 }
1110 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1111 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1112 // we don't care about actual value, only if it's more or less than a
1113 // threshold essentially we capture zero crossings for later analysis
1114 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1115 i++;
1116 if (i >= m) break;
1117 }
1118 }
1119
1120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1121 LED_D_OFF();
1122 DbpString("DONE!");
1123 }
1124
1125 // Read card traceability data (page 1)
1126 void T55xxReadTrace(void){
1127 uint8_t *dest = (uint8_t *)BigBuf;
1128 int m=0, i=0;
1129
1130 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1131 m = sizeof(BigBuf);
1132 // Clear destination buffer before sending the command
1133 memset(dest, 128, m);
1134 // Connect the A/D to the peak-detected low-frequency path.
1135 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1136 // Now set up the SSC to get the ADC samples that are now streaming at us.
1137 FpgaSetupSsc();
1138
1139 LED_D_ON();
1140 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1141 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1142
1143 // Give it a bit of time for the resonant antenna to settle.
1144 // And for the tag to fully power up
1145 SpinDelay(150);
1146
1147 // Now start writting
1148 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1149 SpinDelayUs(START_GAP);
1150
1151 // Opcode
1152 T55xxWriteBit(1);
1153 T55xxWriteBit(1); //Page 1
1154
1155 // Turn field on to read the response
1156 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1157 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1158
1159 // Now do the acquisition
1160 i = 0;
1161 for(;;) {
1162 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1163 AT91C_BASE_SSC->SSC_THR = 0x43;
1164 }
1165 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1166 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1167 i++;
1168 if (i >= m) break;
1169 }
1170 }
1171
1172 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1173 LED_D_OFF();
1174 DbpString("DONE!");
1175 }
1176
1177 /*-------------- Cloning routines -----------*/
1178 // Copy HID id to card and setup block 0 config
1179 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1180 {
1181 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1182 int last_block = 0;
1183
1184 if (longFMT){
1185 // Ensure no more than 84 bits supplied
1186 if (hi2>0xFFFFF) {
1187 DbpString("Tags can only have 84 bits.");
1188 return;
1189 }
1190 // Build the 6 data blocks for supplied 84bit ID
1191 last_block = 6;
1192 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1193 for (int i=0;i<4;i++) {
1194 if (hi2 & (1<<(19-i)))
1195 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1196 else
1197 data1 |= (1<<((3-i)*2)); // 0 -> 01
1198 }
1199
1200 data2 = 0;
1201 for (int i=0;i<16;i++) {
1202 if (hi2 & (1<<(15-i)))
1203 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1204 else
1205 data2 |= (1<<((15-i)*2)); // 0 -> 01
1206 }
1207
1208 data3 = 0;
1209 for (int i=0;i<16;i++) {
1210 if (hi & (1<<(31-i)))
1211 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1212 else
1213 data3 |= (1<<((15-i)*2)); // 0 -> 01
1214 }
1215
1216 data4 = 0;
1217 for (int i=0;i<16;i++) {
1218 if (hi & (1<<(15-i)))
1219 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1220 else
1221 data4 |= (1<<((15-i)*2)); // 0 -> 01
1222 }
1223
1224 data5 = 0;
1225 for (int i=0;i<16;i++) {
1226 if (lo & (1<<(31-i)))
1227 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1228 else
1229 data5 |= (1<<((15-i)*2)); // 0 -> 01
1230 }
1231
1232 data6 = 0;
1233 for (int i=0;i<16;i++) {
1234 if (lo & (1<<(15-i)))
1235 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1236 else
1237 data6 |= (1<<((15-i)*2)); // 0 -> 01
1238 }
1239 }
1240 else {
1241 // Ensure no more than 44 bits supplied
1242 if (hi>0xFFF) {
1243 DbpString("Tags can only have 44 bits.");
1244 return;
1245 }
1246
1247 // Build the 3 data blocks for supplied 44bit ID
1248 last_block = 3;
1249
1250 data1 = 0x1D000000; // load preamble
1251
1252 for (int i=0;i<12;i++) {
1253 if (hi & (1<<(11-i)))
1254 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1255 else
1256 data1 |= (1<<((11-i)*2)); // 0 -> 01
1257 }
1258
1259 data2 = 0;
1260 for (int i=0;i<16;i++) {
1261 if (lo & (1<<(31-i)))
1262 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1263 else
1264 data2 |= (1<<((15-i)*2)); // 0 -> 01
1265 }
1266
1267 data3 = 0;
1268 for (int i=0;i<16;i++) {
1269 if (lo & (1<<(15-i)))
1270 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1271 else
1272 data3 |= (1<<((15-i)*2)); // 0 -> 01
1273 }
1274 }
1275
1276 LED_D_ON();
1277 // Program the data blocks for supplied ID
1278 // and the block 0 for HID format
1279 T55xxWriteBlock(data1,1,0,0);
1280 T55xxWriteBlock(data2,2,0,0);
1281 T55xxWriteBlock(data3,3,0,0);
1282
1283 if (longFMT) { // if long format there are 6 blocks
1284 T55xxWriteBlock(data4,4,0,0);
1285 T55xxWriteBlock(data5,5,0,0);
1286 T55xxWriteBlock(data6,6,0,0);
1287 }
1288
1289 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1290 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1291 T55x7_MODULATION_FSK2a |
1292 last_block << T55x7_MAXBLOCK_SHIFT,
1293 0,0,0);
1294
1295 LED_D_OFF();
1296
1297 DbpString("DONE!");
1298 }
1299
1300 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1301 {
1302 int data1=0, data2=0; //up to six blocks for long format
1303
1304 data1 = hi; // load preamble
1305 data2 = lo;
1306
1307 LED_D_ON();
1308 // Program the data blocks for supplied ID
1309 // and the block 0 for HID format
1310 T55xxWriteBlock(data1,1,0,0);
1311 T55xxWriteBlock(data2,2,0,0);
1312
1313 //Config Block
1314 T55xxWriteBlock(0x00147040,0,0,0);
1315 LED_D_OFF();
1316
1317 DbpString("DONE!");
1318 }
1319
1320 // Define 9bit header for EM410x tags
1321 #define EM410X_HEADER 0x1FF
1322 #define EM410X_ID_LENGTH 40
1323
1324 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1325 {
1326 int i, id_bit;
1327 uint64_t id = EM410X_HEADER;
1328 uint64_t rev_id = 0; // reversed ID
1329 int c_parity[4]; // column parity
1330 int r_parity = 0; // row parity
1331 uint32_t clock = 0;
1332
1333 // Reverse ID bits given as parameter (for simpler operations)
1334 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1335 if (i < 32) {
1336 rev_id = (rev_id << 1) | (id_lo & 1);
1337 id_lo >>= 1;
1338 } else {
1339 rev_id = (rev_id << 1) | (id_hi & 1);
1340 id_hi >>= 1;
1341 }
1342 }
1343
1344 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1345 id_bit = rev_id & 1;
1346
1347 if (i % 4 == 0) {
1348 // Don't write row parity bit at start of parsing
1349 if (i)
1350 id = (id << 1) | r_parity;
1351 // Start counting parity for new row
1352 r_parity = id_bit;
1353 } else {
1354 // Count row parity
1355 r_parity ^= id_bit;
1356 }
1357
1358 // First elements in column?
1359 if (i < 4)
1360 // Fill out first elements
1361 c_parity[i] = id_bit;
1362 else
1363 // Count column parity
1364 c_parity[i % 4] ^= id_bit;
1365
1366 // Insert ID bit
1367 id = (id << 1) | id_bit;
1368 rev_id >>= 1;
1369 }
1370
1371 // Insert parity bit of last row
1372 id = (id << 1) | r_parity;
1373
1374 // Fill out column parity at the end of tag
1375 for (i = 0; i < 4; ++i)
1376 id = (id << 1) | c_parity[i];
1377
1378 // Add stop bit
1379 id <<= 1;
1380
1381 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1382 LED_D_ON();
1383
1384 // Write EM410x ID
1385 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1386 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1387
1388 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1389 if (card) {
1390 // Clock rate is stored in bits 8-15 of the card value
1391 clock = (card & 0xFF00) >> 8;
1392 Dbprintf("Clock rate: %d", clock);
1393 switch (clock)
1394 {
1395 case 32:
1396 clock = T55x7_BITRATE_RF_32;
1397 break;
1398 case 16:
1399 clock = T55x7_BITRATE_RF_16;
1400 break;
1401 case 0:
1402 // A value of 0 is assumed to be 64 for backwards-compatibility
1403 // Fall through...
1404 case 64:
1405 clock = T55x7_BITRATE_RF_64;
1406 break;
1407 default:
1408 Dbprintf("Invalid clock rate: %d", clock);
1409 return;
1410 }
1411
1412 // Writing configuration for T55x7 tag
1413 T55xxWriteBlock(clock |
1414 T55x7_MODULATION_MANCHESTER |
1415 2 << T55x7_MAXBLOCK_SHIFT,
1416 0, 0, 0);
1417 }
1418 else
1419 // Writing configuration for T5555(Q5) tag
1420 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1421 T5555_MODULATION_MANCHESTER |
1422 2 << T5555_MAXBLOCK_SHIFT,
1423 0, 0, 0);
1424
1425 LED_D_OFF();
1426 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1427 (uint32_t)(id >> 32), (uint32_t)id);
1428 }
1429
1430 // Clone Indala 64-bit tag by UID to T55x7
1431 void CopyIndala64toT55x7(int hi, int lo)
1432 {
1433
1434 //Program the 2 data blocks for supplied 64bit UID
1435 // and the block 0 for Indala64 format
1436 T55xxWriteBlock(hi,1,0,0);
1437 T55xxWriteBlock(lo,2,0,0);
1438 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1439 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1440 T55x7_MODULATION_PSK1 |
1441 2 << T55x7_MAXBLOCK_SHIFT,
1442 0, 0, 0);
1443 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1444 // T5567WriteBlock(0x603E1042,0);
1445
1446 DbpString("DONE!");
1447
1448 }
1449
1450 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1451 {
1452
1453 //Program the 7 data blocks for supplied 224bit UID
1454 // and the block 0 for Indala224 format
1455 T55xxWriteBlock(uid1,1,0,0);
1456 T55xxWriteBlock(uid2,2,0,0);
1457 T55xxWriteBlock(uid3,3,0,0);
1458 T55xxWriteBlock(uid4,4,0,0);
1459 T55xxWriteBlock(uid5,5,0,0);
1460 T55xxWriteBlock(uid6,6,0,0);
1461 T55xxWriteBlock(uid7,7,0,0);
1462 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1463 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1464 T55x7_MODULATION_PSK1 |
1465 7 << T55x7_MAXBLOCK_SHIFT,
1466 0,0,0);
1467 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1468 // T5567WriteBlock(0x603E10E2,0);
1469
1470 DbpString("DONE!");
1471
1472 }
1473
1474
1475 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1476 #define max(x,y) ( x<y ? y:x)
1477
1478 int DemodPCF7931(uint8_t **outBlocks) {
1479 uint8_t BitStream[256];
1480 uint8_t Blocks[8][16];
1481 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1482 int GraphTraceLen = sizeof(BigBuf);
1483 int i, j, lastval, bitidx, half_switch;
1484 int clock = 64;
1485 int tolerance = clock / 8;
1486 int pmc, block_done;
1487 int lc, warnings = 0;
1488 int num_blocks = 0;
1489 int lmin=128, lmax=128;
1490 uint8_t dir;
1491
1492 AcquireRawAdcSamples125k(0,0,0);
1493
1494 lmin = 64;
1495 lmax = 192;
1496
1497 i = 2;
1498
1499 /* Find first local max/min */
1500 if(GraphBuffer[1] > GraphBuffer[0]) {
1501 while(i < GraphTraceLen) {
1502 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1503 break;
1504 i++;
1505 }
1506 dir = 0;
1507 }
1508 else {
1509 while(i < GraphTraceLen) {
1510 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1511 break;
1512 i++;
1513 }
1514 dir = 1;
1515 }
1516
1517 lastval = i++;
1518 half_switch = 0;
1519 pmc = 0;
1520 block_done = 0;
1521
1522 for (bitidx = 0; i < GraphTraceLen; i++)
1523 {
1524 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1525 {
1526 lc = i - lastval;
1527 lastval = i;
1528
1529 // Switch depending on lc length:
1530 // Tolerance is 1/8 of clock rate (arbitrary)
1531 if (abs(lc-clock/4) < tolerance) {
1532 // 16T0
1533 if((i - pmc) == lc) { /* 16T0 was previous one */
1534 /* It's a PMC ! */
1535 i += (128+127+16+32+33+16)-1;
1536 lastval = i;
1537 pmc = 0;
1538 block_done = 1;
1539 }
1540 else {
1541 pmc = i;
1542 }
1543 } else if (abs(lc-clock/2) < tolerance) {
1544 // 32TO
1545 if((i - pmc) == lc) { /* 16T0 was previous one */
1546 /* It's a PMC ! */
1547 i += (128+127+16+32+33)-1;
1548 lastval = i;
1549 pmc = 0;
1550 block_done = 1;
1551 }
1552 else if(half_switch == 1) {
1553 BitStream[bitidx++] = 0;
1554 half_switch = 0;
1555 }
1556 else
1557 half_switch++;
1558 } else if (abs(lc-clock) < tolerance) {
1559 // 64TO
1560 BitStream[bitidx++] = 1;
1561 } else {
1562 // Error
1563 warnings++;
1564 if (warnings > 10)
1565 {
1566 Dbprintf("Error: too many detection errors, aborting.");
1567 return 0;
1568 }
1569 }
1570
1571 if(block_done == 1) {
1572 if(bitidx == 128) {
1573 for(j=0; j<16; j++) {
1574 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1575 64*BitStream[j*8+6]+
1576 32*BitStream[j*8+5]+
1577 16*BitStream[j*8+4]+
1578 8*BitStream[j*8+3]+
1579 4*BitStream[j*8+2]+
1580 2*BitStream[j*8+1]+
1581 BitStream[j*8];
1582 }
1583 num_blocks++;
1584 }
1585 bitidx = 0;
1586 block_done = 0;
1587 half_switch = 0;
1588 }
1589 if(i < GraphTraceLen)
1590 {
1591 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1592 else dir = 1;
1593 }
1594 }
1595 if(bitidx==255)
1596 bitidx=0;
1597 warnings = 0;
1598 if(num_blocks == 4) break;
1599 }
1600 memcpy(outBlocks, Blocks, 16*num_blocks);
1601 return num_blocks;
1602 }
1603
1604 int IsBlock0PCF7931(uint8_t *Block) {
1605 // Assume RFU means 0 :)
1606 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1607 return 1;
1608 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1609 return 1;
1610 return 0;
1611 }
1612
1613 int IsBlock1PCF7931(uint8_t *Block) {
1614 // Assume RFU means 0 :)
1615 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1616 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1617 return 1;
1618
1619 return 0;
1620 }
1621
1622 #define ALLOC 16
1623
1624 void ReadPCF7931() {
1625 uint8_t Blocks[8][17];
1626 uint8_t tmpBlocks[4][16];
1627 int i, j, ind, ind2, n;
1628 int num_blocks = 0;
1629 int max_blocks = 8;
1630 int ident = 0;
1631 int error = 0;
1632 int tries = 0;
1633
1634 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1635
1636 do {
1637 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1638 n = DemodPCF7931((uint8_t**)tmpBlocks);
1639 if(!n)
1640 error++;
1641 if(error==10 && num_blocks == 0) {
1642 Dbprintf("Error, no tag or bad tag");
1643 return;
1644 }
1645 else if (tries==20 || error==10) {
1646 Dbprintf("Error reading the tag");
1647 Dbprintf("Here is the partial content");
1648 goto end;
1649 }
1650
1651 for(i=0; i<n; i++)
1652 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1653 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1654 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1655 if(!ident) {
1656 for(i=0; i<n; i++) {
1657 if(IsBlock0PCF7931(tmpBlocks[i])) {
1658 // Found block 0 ?
1659 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1660 // Found block 1!
1661 // \o/
1662 ident = 1;
1663 memcpy(Blocks[0], tmpBlocks[i], 16);
1664 Blocks[0][ALLOC] = 1;
1665 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1666 Blocks[1][ALLOC] = 1;
1667 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1668 // Debug print
1669 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1670 num_blocks = 2;
1671 // Handle following blocks
1672 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1673 if(j==n) j=0;
1674 if(j==i) break;
1675 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1676 Blocks[ind2][ALLOC] = 1;
1677 }
1678 break;
1679 }
1680 }
1681 }
1682 }
1683 else {
1684 for(i=0; i<n; i++) { // Look for identical block in known blocks
1685 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1686 for(j=0; j<max_blocks; j++) {
1687 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1688 // Found an identical block
1689 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1690 if(ind2 < 0)
1691 ind2 = max_blocks;
1692 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1693 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1694 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1695 Blocks[ind2][ALLOC] = 1;
1696 num_blocks++;
1697 if(num_blocks == max_blocks) goto end;
1698 }
1699 }
1700 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1701 if(ind2 > max_blocks)
1702 ind2 = 0;
1703 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1704 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1705 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1706 Blocks[ind2][ALLOC] = 1;
1707 num_blocks++;
1708 if(num_blocks == max_blocks) goto end;
1709 }
1710 }
1711 }
1712 }
1713 }
1714 }
1715 }
1716 tries++;
1717 if (BUTTON_PRESS()) return;
1718 } while (num_blocks != max_blocks);
1719 end:
1720 Dbprintf("-----------------------------------------");
1721 Dbprintf("Memory content:");
1722 Dbprintf("-----------------------------------------");
1723 for(i=0; i<max_blocks; i++) {
1724 if(Blocks[i][ALLOC]==1)
1725 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1726 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1727 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1728 else
1729 Dbprintf("<missing block %d>", i);
1730 }
1731 Dbprintf("-----------------------------------------");
1732
1733 return ;
1734 }
1735
1736
1737 //-----------------------------------
1738 // EM4469 / EM4305 routines
1739 //-----------------------------------
1740 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1741 #define FWD_CMD_WRITE 0xA
1742 #define FWD_CMD_READ 0x9
1743 #define FWD_CMD_DISABLE 0x5
1744
1745
1746 uint8_t forwardLink_data[64]; //array of forwarded bits
1747 uint8_t * forward_ptr; //ptr for forward message preparation
1748 uint8_t fwd_bit_sz; //forwardlink bit counter
1749 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1750
1751 //====================================================================
1752 // prepares command bits
1753 // see EM4469 spec
1754 //====================================================================
1755 //--------------------------------------------------------------------
1756 uint8_t Prepare_Cmd( uint8_t cmd ) {
1757 //--------------------------------------------------------------------
1758
1759 *forward_ptr++ = 0; //start bit
1760 *forward_ptr++ = 0; //second pause for 4050 code
1761
1762 *forward_ptr++ = cmd;
1763 cmd >>= 1;
1764 *forward_ptr++ = cmd;
1765 cmd >>= 1;
1766 *forward_ptr++ = cmd;
1767 cmd >>= 1;
1768 *forward_ptr++ = cmd;
1769
1770 return 6; //return number of emited bits
1771 }
1772
1773 //====================================================================
1774 // prepares address bits
1775 // see EM4469 spec
1776 //====================================================================
1777
1778 //--------------------------------------------------------------------
1779 uint8_t Prepare_Addr( uint8_t addr ) {
1780 //--------------------------------------------------------------------
1781
1782 register uint8_t line_parity;
1783
1784 uint8_t i;
1785 line_parity = 0;
1786 for(i=0;i<6;i++) {
1787 *forward_ptr++ = addr;
1788 line_parity ^= addr;
1789 addr >>= 1;
1790 }
1791
1792 *forward_ptr++ = (line_parity & 1);
1793
1794 return 7; //return number of emited bits
1795 }
1796
1797 //====================================================================
1798 // prepares data bits intreleaved with parity bits
1799 // see EM4469 spec
1800 //====================================================================
1801
1802 //--------------------------------------------------------------------
1803 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1804 //--------------------------------------------------------------------
1805
1806 register uint8_t line_parity;
1807 register uint8_t column_parity;
1808 register uint8_t i, j;
1809 register uint16_t data;
1810
1811 data = data_low;
1812 column_parity = 0;
1813
1814 for(i=0; i<4; i++) {
1815 line_parity = 0;
1816 for(j=0; j<8; j++) {
1817 line_parity ^= data;
1818 column_parity ^= (data & 1) << j;
1819 *forward_ptr++ = data;
1820 data >>= 1;
1821 }
1822 *forward_ptr++ = line_parity;
1823 if(i == 1)
1824 data = data_hi;
1825 }
1826
1827 for(j=0; j<8; j++) {
1828 *forward_ptr++ = column_parity;
1829 column_parity >>= 1;
1830 }
1831 *forward_ptr = 0;
1832
1833 return 45; //return number of emited bits
1834 }
1835
1836 //====================================================================
1837 // Forward Link send function
1838 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1839 // fwd_bit_count set with number of bits to be sent
1840 //====================================================================
1841 void SendForward(uint8_t fwd_bit_count) {
1842
1843 fwd_write_ptr = forwardLink_data;
1844 fwd_bit_sz = fwd_bit_count;
1845
1846 LED_D_ON();
1847
1848 //Field on
1849 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1850 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1852
1853 // Give it a bit of time for the resonant antenna to settle.
1854 // And for the tag to fully power up
1855 SpinDelay(150);
1856
1857 // force 1st mod pulse (start gap must be longer for 4305)
1858 fwd_bit_sz--; //prepare next bit modulation
1859 fwd_write_ptr++;
1860 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1861 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1862 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1863 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1864 SpinDelayUs(16*8); //16 cycles on (8us each)
1865
1866 // now start writting
1867 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1868 if(((*fwd_write_ptr++) & 1) == 1)
1869 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1870 else {
1871 //These timings work for 4469/4269/4305 (with the 55*8 above)
1872 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1873 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1874 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1875 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1876 SpinDelayUs(9*8); //16 cycles on (8us each)
1877 }
1878 }
1879 }
1880
1881 void EM4xLogin(uint32_t Password) {
1882
1883 uint8_t fwd_bit_count;
1884
1885 forward_ptr = forwardLink_data;
1886 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1887 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1888
1889 SendForward(fwd_bit_count);
1890
1891 //Wait for command to complete
1892 SpinDelay(20);
1893
1894 }
1895
1896 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1897
1898 uint8_t fwd_bit_count;
1899 uint8_t *dest = (uint8_t *)BigBuf;
1900 int m=0, i=0;
1901
1902 //If password mode do login
1903 if (PwdMode == 1) EM4xLogin(Pwd);
1904
1905 forward_ptr = forwardLink_data;
1906 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1907 fwd_bit_count += Prepare_Addr( Address );
1908
1909 m = sizeof(BigBuf);
1910 // Clear destination buffer before sending the command
1911 memset(dest, 128, m);
1912 // Connect the A/D to the peak-detected low-frequency path.
1913 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1914 // Now set up the SSC to get the ADC samples that are now streaming at us.
1915 FpgaSetupSsc();
1916
1917 SendForward(fwd_bit_count);
1918
1919 // Now do the acquisition
1920 i = 0;
1921 for(;;) {
1922 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1923 AT91C_BASE_SSC->SSC_THR = 0x43;
1924 }
1925 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1926 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1927 i++;
1928 if (i >= m) break;
1929 }
1930 }
1931 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1932 LED_D_OFF();
1933 }
1934
1935 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1936
1937 uint8_t fwd_bit_count;
1938
1939 //If password mode do login
1940 if (PwdMode == 1) EM4xLogin(Pwd);
1941
1942 forward_ptr = forwardLink_data;
1943 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1944 fwd_bit_count += Prepare_Addr( Address );
1945 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1946
1947 SendForward(fwd_bit_count);
1948
1949 //Wait for write to complete
1950 SpinDelay(20);
1951 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1952 LED_D_OFF();
1953 }
Impressum, Datenschutz