]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iclass.c
added SoloKey certificate (#778)
[proxmark3-svn] / armsrc / iclass.c
1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
6 //
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
9 // the license.
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
15 //
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
18 //
19 // FIX:
20 // ====
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
23 //
24 // + 22279: : 0c 03 e8 01
25 //
26 // ...with an incorrect answer...
27 //
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
29 //
30 // We still left the error signalling bytes in the traces like 0xbb
31 //
32 // A correct trace should look like this:
33 //
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
36 //
37 //-----------------------------------------------------------------------------
38
39 #include "proxmark3.h"
40 #include "apps.h"
41 #include "util.h"
42 #include "string.h"
43 #include "common.h"
44 #include "cmd.h"
45 #include "iso14443a.h"
46 // Needed for CRC in emulation mode;
47 // same construction as in ISO 14443;
48 // different initial value (CRC_ICLASS)
49 #include "iso14443crc.h"
50 #include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
53 #include "usb_cdc.h" // for usb_poll_validate_length
54
55 static int timeout = 4096;
56
57
58 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
59
60 //-----------------------------------------------------------------------------
61 // The software UART that receives commands from the reader, and its state
62 // variables.
63 //-----------------------------------------------------------------------------
64 static struct {
65 enum {
66 STATE_UNSYNCD,
67 STATE_START_OF_COMMUNICATION,
68 STATE_RECEIVING
69 } state;
70 uint16_t shiftReg;
71 int bitCnt;
72 int byteCnt;
73 int byteCntMax;
74 int posCnt;
75 int nOutOfCnt;
76 int OutOfCnt;
77 int syncBit;
78 int samples;
79 int highCnt;
80 int swapper;
81 int counter;
82 int bitBuffer;
83 int dropPosition;
84 uint8_t *output;
85 } Uart;
86
87 static RAMFUNC int OutOfNDecoding(int bit)
88 {
89 //int error = 0;
90 int bitright;
91
92 if(!Uart.bitBuffer) {
93 Uart.bitBuffer = bit ^ 0xFF0;
94 return false;
95 }
96 else {
97 Uart.bitBuffer <<= 4;
98 Uart.bitBuffer ^= bit;
99 }
100
101 /*if(Uart.swapper) {
102 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
103 Uart.byteCnt++;
104 Uart.swapper = 0;
105 if(Uart.byteCnt > 15) { return true; }
106 }
107 else {
108 Uart.swapper = 1;
109 }*/
110
111 if(Uart.state != STATE_UNSYNCD) {
112 Uart.posCnt++;
113
114 if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
115 bit = 0x00;
116 }
117 else {
118 bit = 0x01;
119 }
120 if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
121 bitright = 0x00;
122 }
123 else {
124 bitright = 0x01;
125 }
126 if(bit != bitright) { bit = bitright; }
127
128
129 // So, now we only have to deal with *bit*, lets see...
130 if(Uart.posCnt == 1) {
131 // measurement first half bitperiod
132 if(!bit) {
133 // Drop in first half means that we are either seeing
134 // an SOF or an EOF.
135
136 if(Uart.nOutOfCnt == 1) {
137 // End of Communication
138 Uart.state = STATE_UNSYNCD;
139 Uart.highCnt = 0;
140 if(Uart.byteCnt == 0) {
141 // Its not straightforward to show single EOFs
142 // So just leave it and do not return true
143 Uart.output[0] = 0xf0;
144 Uart.byteCnt++;
145 }
146 else {
147 return true;
148 }
149 }
150 else if(Uart.state != STATE_START_OF_COMMUNICATION) {
151 // When not part of SOF or EOF, it is an error
152 Uart.state = STATE_UNSYNCD;
153 Uart.highCnt = 0;
154 //error = 4;
155 }
156 }
157 }
158 else {
159 // measurement second half bitperiod
160 // Count the bitslot we are in... (ISO 15693)
161 Uart.nOutOfCnt++;
162
163 if(!bit) {
164 if(Uart.dropPosition) {
165 if(Uart.state == STATE_START_OF_COMMUNICATION) {
166 //error = 1;
167 }
168 else {
169 //error = 7;
170 }
171 // It is an error if we already have seen a drop in current frame
172 Uart.state = STATE_UNSYNCD;
173 Uart.highCnt = 0;
174 }
175 else {
176 Uart.dropPosition = Uart.nOutOfCnt;
177 }
178 }
179
180 Uart.posCnt = 0;
181
182
183 if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
184 Uart.nOutOfCnt = 0;
185
186 if(Uart.state == STATE_START_OF_COMMUNICATION) {
187 if(Uart.dropPosition == 4) {
188 Uart.state = STATE_RECEIVING;
189 Uart.OutOfCnt = 256;
190 }
191 else if(Uart.dropPosition == 3) {
192 Uart.state = STATE_RECEIVING;
193 Uart.OutOfCnt = 4;
194 //Uart.output[Uart.byteCnt] = 0xdd;
195 //Uart.byteCnt++;
196 }
197 else {
198 Uart.state = STATE_UNSYNCD;
199 Uart.highCnt = 0;
200 }
201 Uart.dropPosition = 0;
202 }
203 else {
204 // RECEIVING DATA
205 // 1 out of 4
206 if(!Uart.dropPosition) {
207 Uart.state = STATE_UNSYNCD;
208 Uart.highCnt = 0;
209 //error = 9;
210 }
211 else {
212 Uart.shiftReg >>= 2;
213
214 // Swap bit order
215 Uart.dropPosition--;
216 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
217 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
218
219 Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
220 Uart.bitCnt += 2;
221 Uart.dropPosition = 0;
222
223 if(Uart.bitCnt == 8) {
224 Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
225 Uart.byteCnt++;
226 Uart.bitCnt = 0;
227 Uart.shiftReg = 0;
228 }
229 }
230 }
231 }
232 else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
233 // RECEIVING DATA
234 // 1 out of 256
235 if(!Uart.dropPosition) {
236 Uart.state = STATE_UNSYNCD;
237 Uart.highCnt = 0;
238 //error = 3;
239 }
240 else {
241 Uart.dropPosition--;
242 Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
243 Uart.byteCnt++;
244 Uart.bitCnt = 0;
245 Uart.shiftReg = 0;
246 Uart.nOutOfCnt = 0;
247 Uart.dropPosition = 0;
248 }
249 }
250
251 /*if(error) {
252 Uart.output[Uart.byteCnt] = 0xAA;
253 Uart.byteCnt++;
254 Uart.output[Uart.byteCnt] = error & 0xFF;
255 Uart.byteCnt++;
256 Uart.output[Uart.byteCnt] = 0xAA;
257 Uart.byteCnt++;
258 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
259 Uart.byteCnt++;
260 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
261 Uart.byteCnt++;
262 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
263 Uart.byteCnt++;
264 Uart.output[Uart.byteCnt] = 0xAA;
265 Uart.byteCnt++;
266 return true;
267 }*/
268 }
269
270 }
271 else {
272 bit = Uart.bitBuffer & 0xf0;
273 bit >>= 4;
274 bit ^= 0x0F; // drops become 1s ;-)
275 if(bit) {
276 // should have been high or at least (4 * 128) / fc
277 // according to ISO this should be at least (9 * 128 + 20) / fc
278 if(Uart.highCnt == 8) {
279 // we went low, so this could be start of communication
280 // it turns out to be safer to choose a less significant
281 // syncbit... so we check whether the neighbour also represents the drop
282 Uart.posCnt = 1; // apparently we are busy with our first half bit period
283 Uart.syncBit = bit & 8;
284 Uart.samples = 3;
285 if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
286 else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
287 if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
288 else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
289 if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
290 if(Uart.syncBit && (Uart.bitBuffer & 8)) {
291 Uart.syncBit = 8;
292
293 // the first half bit period is expected in next sample
294 Uart.posCnt = 0;
295 Uart.samples = 3;
296 }
297 }
298 else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
299
300 Uart.syncBit <<= 4;
301 Uart.state = STATE_START_OF_COMMUNICATION;
302 Uart.bitCnt = 0;
303 Uart.byteCnt = 0;
304 Uart.nOutOfCnt = 0;
305 Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
306 Uart.dropPosition = 0;
307 Uart.shiftReg = 0;
308 //error = 0;
309 }
310 else {
311 Uart.highCnt = 0;
312 }
313 }
314 else {
315 if(Uart.highCnt < 8) {
316 Uart.highCnt++;
317 }
318 }
319 }
320
321 return false;
322 }
323
324 //=============================================================================
325 // Manchester
326 //=============================================================================
327
328 static struct {
329 enum {
330 DEMOD_UNSYNCD,
331 DEMOD_START_OF_COMMUNICATION,
332 DEMOD_START_OF_COMMUNICATION2,
333 DEMOD_START_OF_COMMUNICATION3,
334 DEMOD_SOF_COMPLETE,
335 DEMOD_MANCHESTER_D,
336 DEMOD_MANCHESTER_E,
337 DEMOD_END_OF_COMMUNICATION,
338 DEMOD_END_OF_COMMUNICATION2,
339 DEMOD_MANCHESTER_F,
340 DEMOD_ERROR_WAIT
341 } state;
342 int bitCount;
343 int posCount;
344 int syncBit;
345 uint16_t shiftReg;
346 int buffer;
347 int buffer2;
348 int buffer3;
349 int buff;
350 int samples;
351 int len;
352 enum {
353 SUB_NONE,
354 SUB_FIRST_HALF,
355 SUB_SECOND_HALF,
356 SUB_BOTH
357 } sub;
358 uint8_t *output;
359 } Demod;
360
361 static RAMFUNC int ManchesterDecoding(int v)
362 {
363 int bit;
364 int modulation;
365 int error = 0;
366
367 bit = Demod.buffer;
368 Demod.buffer = Demod.buffer2;
369 Demod.buffer2 = Demod.buffer3;
370 Demod.buffer3 = v;
371
372 if(Demod.buff < 3) {
373 Demod.buff++;
374 return false;
375 }
376
377 if(Demod.state==DEMOD_UNSYNCD) {
378 Demod.output[Demod.len] = 0xfa;
379 Demod.syncBit = 0;
380 //Demod.samples = 0;
381 Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
382
383 if(bit & 0x08) {
384 Demod.syncBit = 0x08;
385 }
386
387 if(bit & 0x04) {
388 if(Demod.syncBit) {
389 bit <<= 4;
390 }
391 Demod.syncBit = 0x04;
392 }
393
394 if(bit & 0x02) {
395 if(Demod.syncBit) {
396 bit <<= 2;
397 }
398 Demod.syncBit = 0x02;
399 }
400
401 if(bit & 0x01 && Demod.syncBit) {
402 Demod.syncBit = 0x01;
403 }
404
405 if(Demod.syncBit) {
406 Demod.len = 0;
407 Demod.state = DEMOD_START_OF_COMMUNICATION;
408 Demod.sub = SUB_FIRST_HALF;
409 Demod.bitCount = 0;
410 Demod.shiftReg = 0;
411 Demod.samples = 0;
412 if(Demod.posCount) {
413 //if(trigger) LED_A_OFF(); // Not useful in this case...
414 switch(Demod.syncBit) {
415 case 0x08: Demod.samples = 3; break;
416 case 0x04: Demod.samples = 2; break;
417 case 0x02: Demod.samples = 1; break;
418 case 0x01: Demod.samples = 0; break;
419 }
420 // SOF must be long burst... otherwise stay unsynced!!!
421 if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
422 Demod.state = DEMOD_UNSYNCD;
423 }
424 }
425 else {
426 // SOF must be long burst... otherwise stay unsynced!!!
427 if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
428 Demod.state = DEMOD_UNSYNCD;
429 error = 0x88;
430 }
431
432 }
433 error = 0;
434
435 }
436 }
437 else {
438 modulation = bit & Demod.syncBit;
439 modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
440
441 Demod.samples += 4;
442
443 if(Demod.posCount==0) {
444 Demod.posCount = 1;
445 if(modulation) {
446 Demod.sub = SUB_FIRST_HALF;
447 }
448 else {
449 Demod.sub = SUB_NONE;
450 }
451 }
452 else {
453 Demod.posCount = 0;
454 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
455 if(Demod.state!=DEMOD_ERROR_WAIT) {
456 Demod.state = DEMOD_ERROR_WAIT;
457 Demod.output[Demod.len] = 0xaa;
458 error = 0x01;
459 }
460 }*/
461 //else if(modulation) {
462 if(modulation) {
463 if(Demod.sub == SUB_FIRST_HALF) {
464 Demod.sub = SUB_BOTH;
465 }
466 else {
467 Demod.sub = SUB_SECOND_HALF;
468 }
469 }
470 else if(Demod.sub == SUB_NONE) {
471 if(Demod.state == DEMOD_SOF_COMPLETE) {
472 Demod.output[Demod.len] = 0x0f;
473 Demod.len++;
474 Demod.state = DEMOD_UNSYNCD;
475 // error = 0x0f;
476 return true;
477 }
478 else {
479 Demod.state = DEMOD_ERROR_WAIT;
480 error = 0x33;
481 }
482 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
483 Demod.state = DEMOD_ERROR_WAIT;
484 Demod.output[Demod.len] = 0xaa;
485 error = 0x01;
486 }*/
487 }
488
489 switch(Demod.state) {
490 case DEMOD_START_OF_COMMUNICATION:
491 if(Demod.sub == SUB_BOTH) {
492 //Demod.state = DEMOD_MANCHESTER_D;
493 Demod.state = DEMOD_START_OF_COMMUNICATION2;
494 Demod.posCount = 1;
495 Demod.sub = SUB_NONE;
496 }
497 else {
498 Demod.output[Demod.len] = 0xab;
499 Demod.state = DEMOD_ERROR_WAIT;
500 error = 0xd2;
501 }
502 break;
503 case DEMOD_START_OF_COMMUNICATION2:
504 if(Demod.sub == SUB_SECOND_HALF) {
505 Demod.state = DEMOD_START_OF_COMMUNICATION3;
506 }
507 else {
508 Demod.output[Demod.len] = 0xab;
509 Demod.state = DEMOD_ERROR_WAIT;
510 error = 0xd3;
511 }
512 break;
513 case DEMOD_START_OF_COMMUNICATION3:
514 if(Demod.sub == SUB_SECOND_HALF) {
515 // Demod.state = DEMOD_MANCHESTER_D;
516 Demod.state = DEMOD_SOF_COMPLETE;
517 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
518 //Demod.len++;
519 }
520 else {
521 Demod.output[Demod.len] = 0xab;
522 Demod.state = DEMOD_ERROR_WAIT;
523 error = 0xd4;
524 }
525 break;
526 case DEMOD_SOF_COMPLETE:
527 case DEMOD_MANCHESTER_D:
528 case DEMOD_MANCHESTER_E:
529 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
530 // 00001111 = 1 (0 in 14443)
531 if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
532 Demod.bitCount++;
533 Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
534 Demod.state = DEMOD_MANCHESTER_D;
535 }
536 else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
537 Demod.bitCount++;
538 Demod.shiftReg >>= 1;
539 Demod.state = DEMOD_MANCHESTER_E;
540 }
541 else if(Demod.sub == SUB_BOTH) {
542 Demod.state = DEMOD_MANCHESTER_F;
543 }
544 else {
545 Demod.state = DEMOD_ERROR_WAIT;
546 error = 0x55;
547 }
548 break;
549
550 case DEMOD_MANCHESTER_F:
551 // Tag response does not need to be a complete byte!
552 if(Demod.len > 0 || Demod.bitCount > 0) {
553 if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
554 Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
555 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
556 Demod.len++;
557 }
558
559 Demod.state = DEMOD_UNSYNCD;
560 return true;
561 }
562 else {
563 Demod.output[Demod.len] = 0xad;
564 Demod.state = DEMOD_ERROR_WAIT;
565 error = 0x03;
566 }
567 break;
568
569 case DEMOD_ERROR_WAIT:
570 Demod.state = DEMOD_UNSYNCD;
571 break;
572
573 default:
574 Demod.output[Demod.len] = 0xdd;
575 Demod.state = DEMOD_UNSYNCD;
576 break;
577 }
578
579 /*if(Demod.bitCount>=9) {
580 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
581 Demod.len++;
582
583 Demod.parityBits <<= 1;
584 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
585
586 Demod.bitCount = 0;
587 Demod.shiftReg = 0;
588 }*/
589 if(Demod.bitCount>=8) {
590 Demod.shiftReg >>= 1;
591 Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
592 Demod.len++;
593 Demod.bitCount = 0;
594 Demod.shiftReg = 0;
595 }
596
597 if(error) {
598 Demod.output[Demod.len] = 0xBB;
599 Demod.len++;
600 Demod.output[Demod.len] = error & 0xFF;
601 Demod.len++;
602 Demod.output[Demod.len] = 0xBB;
603 Demod.len++;
604 Demod.output[Demod.len] = bit & 0xFF;
605 Demod.len++;
606 Demod.output[Demod.len] = Demod.buffer & 0xFF;
607 Demod.len++;
608 // Look harder ;-)
609 Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
610 Demod.len++;
611 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
612 Demod.len++;
613 Demod.output[Demod.len] = 0xBB;
614 Demod.len++;
615 return true;
616 }
617
618 }
619
620 } // end (state != UNSYNCED)
621
622 return false;
623 }
624
625 //=============================================================================
626 // Finally, a `sniffer' for iClass communication
627 // Both sides of communication!
628 //=============================================================================
629
630 //-----------------------------------------------------------------------------
631 // Record the sequence of commands sent by the reader to the tag, with
632 // triggering so that we start recording at the point that the tag is moved
633 // near the reader.
634 //-----------------------------------------------------------------------------
635 void RAMFUNC SnoopIClass(void)
636 {
637
638
639 // We won't start recording the frames that we acquire until we trigger;
640 // a good trigger condition to get started is probably when we see a
641 // response from the tag.
642 //int triggered = false; // false to wait first for card
643
644 // The command (reader -> tag) that we're receiving.
645 // The length of a received command will in most cases be no more than 18 bytes.
646 // So 32 should be enough!
647 #define ICLASS_BUFFER_SIZE 32
648 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
649 // The response (tag -> reader) that we're receiving.
650 uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
651
652 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
653
654 // free all BigBuf memory
655 BigBuf_free();
656 // The DMA buffer, used to stream samples from the FPGA
657 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
658
659 set_tracing(true);
660 clear_trace();
661 iso14a_set_trigger(false);
662
663 int lastRxCounter;
664 uint8_t *upTo;
665 int smpl;
666 int maxBehindBy = 0;
667
668 // Count of samples received so far, so that we can include timing
669 // information in the trace buffer.
670 int samples = 0;
671 rsamples = 0;
672
673 // Set up the demodulator for tag -> reader responses.
674 Demod.output = tagToReaderResponse;
675 Demod.len = 0;
676 Demod.state = DEMOD_UNSYNCD;
677
678 // Setup for the DMA.
679 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
680 upTo = dmaBuf;
681 lastRxCounter = DMA_BUFFER_SIZE;
682 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
683
684 // And the reader -> tag commands
685 memset(&Uart, 0, sizeof(Uart));
686 Uart.output = readerToTagCmd;
687 Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
688 Uart.state = STATE_UNSYNCD;
689
690 // And put the FPGA in the appropriate mode
691 // Signal field is off with the appropriate LED
692 LED_D_OFF();
693 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
694 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
695
696 uint32_t time_0 = GetCountSspClk();
697 uint32_t time_start = 0;
698 uint32_t time_stop = 0;
699
700 int div = 0;
701 //int div2 = 0;
702 int decbyte = 0;
703 int decbyter = 0;
704
705 // And now we loop, receiving samples.
706 for(;;) {
707 LED_A_ON();
708 WDT_HIT();
709 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
710 (DMA_BUFFER_SIZE-1);
711 if(behindBy > maxBehindBy) {
712 maxBehindBy = behindBy;
713 if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
714 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
715 goto done;
716 }
717 }
718 if(behindBy < 1) continue;
719
720 LED_A_OFF();
721 smpl = upTo[0];
722 upTo++;
723 lastRxCounter -= 1;
724 if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
725 upTo -= DMA_BUFFER_SIZE;
726 lastRxCounter += DMA_BUFFER_SIZE;
727 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
728 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
729 }
730
731 //samples += 4;
732 samples += 1;
733
734 if(smpl & 0xF) {
735 decbyte ^= (1 << (3 - div));
736 }
737
738 // FOR READER SIDE COMMUMICATION...
739
740 decbyter <<= 2;
741 decbyter ^= (smpl & 0x30);
742
743 div++;
744
745 if((div + 1) % 2 == 0) {
746 smpl = decbyter;
747 if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
748 rsamples = samples - Uart.samples;
749 time_stop = (GetCountSspClk()-time_0) << 4;
750 LED_C_ON();
751
752 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
753 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
754 uint8_t parity[MAX_PARITY_SIZE];
755 GetParity(Uart.output, Uart.byteCnt, parity);
756 LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true);
757
758 /* And ready to receive another command. */
759 Uart.state = STATE_UNSYNCD;
760 /* And also reset the demod code, which might have been */
761 /* false-triggered by the commands from the reader. */
762 Demod.state = DEMOD_UNSYNCD;
763 LED_B_OFF();
764 Uart.byteCnt = 0;
765 }else{
766 time_start = (GetCountSspClk()-time_0) << 4;
767 }
768 decbyter = 0;
769 }
770
771 if(div > 3) {
772 smpl = decbyte;
773 if(ManchesterDecoding(smpl & 0x0F)) {
774 time_stop = (GetCountSspClk()-time_0) << 4;
775
776 rsamples = samples - Demod.samples;
777 LED_B_ON();
778
779 uint8_t parity[MAX_PARITY_SIZE];
780 GetParity(Demod.output, Demod.len, parity);
781 LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
782
783 // And ready to receive another response.
784 memset(&Demod, 0, sizeof(Demod));
785 Demod.output = tagToReaderResponse;
786 Demod.state = DEMOD_UNSYNCD;
787 LED_C_OFF();
788 }else{
789 time_start = (GetCountSspClk()-time_0) << 4;
790 }
791
792 div = 0;
793 decbyte = 0x00;
794 }
795 //}
796
797 if(BUTTON_PRESS()) {
798 DbpString("cancelled_a");
799 goto done;
800 }
801 }
802
803 DbpString("COMMAND FINISHED");
804
805 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
806 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
807
808 done:
809 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
810 Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
811 Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
812 LED_A_OFF();
813 LED_B_OFF();
814 LED_C_OFF();
815 LED_D_OFF();
816 }
817
818 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
819 int i;
820 for(i = 0; i < 8; i++) {
821 rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
822 }
823 }
824
825 //-----------------------------------------------------------------------------
826 // Wait for commands from reader
827 // Stop when button is pressed
828 // Or return true when command is captured
829 //-----------------------------------------------------------------------------
830 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
831 {
832 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
833 // only, since we are receiving, not transmitting).
834 // Signal field is off with the appropriate LED
835 LED_D_OFF();
836 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
837
838 // Now run a `software UART' on the stream of incoming samples.
839 Uart.output = received;
840 Uart.byteCntMax = maxLen;
841 Uart.state = STATE_UNSYNCD;
842
843 for(;;) {
844 WDT_HIT();
845
846 if(BUTTON_PRESS()) return false;
847
848 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
849 AT91C_BASE_SSC->SSC_THR = 0x00;
850 }
851 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
852 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
853
854 if(OutOfNDecoding(b & 0x0f)) {
855 *len = Uart.byteCnt;
856 return true;
857 }
858 }
859 }
860 }
861
862 static uint8_t encode4Bits(const uint8_t b)
863 {
864 uint8_t c = b & 0xF;
865 // OTA, the least significant bits first
866 // The columns are
867 // 1 - Bit value to send
868 // 2 - Reversed (big-endian)
869 // 3 - Encoded
870 // 4 - Hex values
871
872 switch(c){
873 // 1 2 3 4
874 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
875 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
876 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
877 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
878 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
879 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
880 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
881 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
882 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
883 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
884 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
885 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
886 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
887 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
888 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
889 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
890
891 }
892 }
893
894 //-----------------------------------------------------------------------------
895 // Prepare tag messages
896 //-----------------------------------------------------------------------------
897 static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
898 {
899
900 /*
901 * SOF comprises 3 parts;
902 * * An unmodulated time of 56.64 us
903 * * 24 pulses of 423.75 KHz (fc/32)
904 * * A logic 1, which starts with an unmodulated time of 18.88us
905 * followed by 8 pulses of 423.75kHz (fc/32)
906 *
907 *
908 * EOF comprises 3 parts:
909 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
910 * time of 18.88us.
911 * - 24 pulses of fc/32
912 * - An unmodulated time of 56.64 us
913 *
914 *
915 * A logic 0 starts with 8 pulses of fc/32
916 * followed by an unmodulated time of 256/fc (~18,88us).
917 *
918 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
919 * 8 pulses of fc/32 (also 18.88us)
920 *
921 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
922 * works like this.
923 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
924 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
925 *
926 * In this mode the SOF can be written as 00011101 = 0x1D
927 * The EOF can be written as 10111000 = 0xb8
928 * A logic 1 is 01
929 * A logic 0 is 10
930 *
931 * */
932
933 int i;
934
935 ToSendReset();
936
937 // Send SOF
938 ToSend[++ToSendMax] = 0x1D;
939
940 for(i = 0; i < len; i++) {
941 uint8_t b = cmd[i];
942 ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
943 ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
944 }
945
946 // Send EOF
947 ToSend[++ToSendMax] = 0xB8;
948 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
949 // Convert from last byte pos to length
950 ToSendMax++;
951 }
952
953 // Only SOF
954 static void CodeIClassTagSOF()
955 {
956 //So far a dummy implementation, not used
957 //int lastProxToAirDuration =0;
958
959 ToSendReset();
960 // Send SOF
961 ToSend[++ToSendMax] = 0x1D;
962 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
963
964 // Convert from last byte pos to length
965 ToSendMax++;
966 }
967 #define MODE_SIM_CSN 0
968 #define MODE_EXIT_AFTER_MAC 1
969 #define MODE_FULLSIM 2
970
971 int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
972 /**
973 * @brief SimulateIClass simulates an iClass card.
974 * @param arg0 type of simulation
975 * - 0 uses the first 8 bytes in usb data as CSN
976 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
977 * in the usb data. This mode collects MAC from the reader, in order to do an offline
978 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
979 * - Other : Uses the default CSN (031fec8af7ff12e0)
980 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
981 * @param arg2
982 * @param datain
983 */
984 void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
985 {
986 uint32_t simType = arg0;
987 uint32_t numberOfCSNS = arg1;
988 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
989
990 // Enable and clear the trace
991 set_tracing(true);
992 clear_trace();
993 //Use the emulator memory for SIM
994 uint8_t *emulator = BigBuf_get_EM_addr();
995
996 if(simType == 0) {
997 // Use the CSN from commandline
998 memcpy(emulator, datain, 8);
999 doIClassSimulation(MODE_SIM_CSN,NULL);
1000 }else if(simType == 1)
1001 {
1002 //Default CSN
1003 uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1004 // Use the CSN from commandline
1005 memcpy(emulator, csn_crc, 8);
1006 doIClassSimulation(MODE_SIM_CSN,NULL);
1007 }
1008 else if(simType == 2)
1009 {
1010
1011 uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
1012 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
1013 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1014 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1015 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1016 int i = 0;
1017 for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
1018 {
1019 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1020
1021 memcpy(emulator, datain+(i*8), 8);
1022 if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
1023 {
1024 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1025 return; // Button pressed
1026 }
1027 }
1028 cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
1029
1030 }else if(simType == 3){
1031 //This is 'full sim' mode, where we use the emulator storage for data.
1032 doIClassSimulation(MODE_FULLSIM, NULL);
1033 }
1034 else{
1035 // We may want a mode here where we hardcode the csns to use (from proxclone).
1036 // That will speed things up a little, but not required just yet.
1037 Dbprintf("The mode is not implemented, reserved for future use");
1038 }
1039 Dbprintf("Done...");
1040
1041 }
1042 void AppendCrc(uint8_t* data, int len)
1043 {
1044 ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
1045 }
1046
1047 /**
1048 * @brief Does the actual simulation
1049 * @param csn - csn to use
1050 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1051 */
1052 int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
1053 {
1054 // free eventually allocated BigBuf memory
1055 BigBuf_free_keep_EM();
1056
1057 State cipher_state;
1058 // State cipher_state_reserve;
1059 uint8_t *csn = BigBuf_get_EM_addr();
1060 uint8_t *emulator = csn;
1061 uint8_t sof_data[] = { 0x0F} ;
1062 // CSN followed by two CRC bytes
1063 uint8_t anticoll_data[10] = { 0 };
1064 uint8_t csn_data[10] = { 0 };
1065 memcpy(csn_data,csn,sizeof(csn_data));
1066 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1067
1068 // Construct anticollision-CSN
1069 rotateCSN(csn_data,anticoll_data);
1070
1071 // Compute CRC on both CSNs
1072 ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
1073 ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
1074
1075 uint8_t diversified_key[8] = { 0 };
1076 // e-Purse
1077 uint8_t card_challenge_data[8] = { 0x00 };
1078 if(simulationMode == MODE_FULLSIM)
1079 {
1080 //The diversified key should be stored on block 3
1081 //Get the diversified key from emulator memory
1082 memcpy(diversified_key, emulator+(8*3),8);
1083
1084 //Card challenge, a.k.a e-purse is on block 2
1085 memcpy(card_challenge_data,emulator + (8 * 2) , 8);
1086 //Precalculate the cipher state, feeding it the CC
1087 cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
1088
1089 }
1090
1091 int exitLoop = 0;
1092 // Reader 0a
1093 // Tag 0f
1094 // Reader 0c
1095 // Tag anticoll. CSN
1096 // Reader 81 anticoll. CSN
1097 // Tag CSN
1098
1099 uint8_t *modulated_response;
1100 int modulated_response_size = 0;
1101 uint8_t* trace_data = NULL;
1102 int trace_data_size = 0;
1103
1104
1105 // Respond SOF -- takes 1 bytes
1106 uint8_t *resp_sof = BigBuf_malloc(2);
1107 int resp_sof_Len;
1108
1109 // Anticollision CSN (rotated CSN)
1110 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1111 uint8_t *resp_anticoll = BigBuf_malloc(28);
1112 int resp_anticoll_len;
1113
1114 // CSN
1115 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1116 uint8_t *resp_csn = BigBuf_malloc(30);
1117 int resp_csn_len;
1118
1119 // e-Purse
1120 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1121 uint8_t *resp_cc = BigBuf_malloc(20);
1122 int resp_cc_len;
1123
1124 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1125 int len;
1126
1127 // Prepare card messages
1128 ToSendMax = 0;
1129
1130 // First card answer: SOF
1131 CodeIClassTagSOF();
1132 memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
1133
1134 // Anticollision CSN
1135 CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
1136 memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
1137
1138 // CSN
1139 CodeIClassTagAnswer(csn_data, sizeof(csn_data));
1140 memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
1141
1142 // e-Purse
1143 CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
1144 memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
1145
1146 //This is used for responding to READ-block commands or other data which is dynamically generated
1147 //First the 'trace'-data, not encoded for FPGA
1148 uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1149 //Then storage for the modulated data
1150 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1151 uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
1152
1153 // Start from off (no field generated)
1154 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1155 //SpinDelay(200);
1156 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1157 SpinDelay(100);
1158 StartCountSspClk();
1159 // We need to listen to the high-frequency, peak-detected path.
1160 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1161 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1162
1163 // To control where we are in the protocol
1164 int cmdsRecvd = 0;
1165 uint32_t time_0 = GetCountSspClk();
1166 uint32_t t2r_time =0;
1167 uint32_t r2t_time =0;
1168
1169 LED_A_ON();
1170 bool buttonPressed = false;
1171 uint8_t response_delay = 1;
1172 while(!exitLoop) {
1173 response_delay = 1;
1174 LED_B_OFF();
1175 //Signal tracer
1176 // Can be used to get a trigger for an oscilloscope..
1177 LED_C_OFF();
1178
1179 if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
1180 buttonPressed = true;
1181 break;
1182 }
1183 r2t_time = GetCountSspClk();
1184 //Signal tracer
1185 LED_C_ON();
1186
1187 // Okay, look at the command now.
1188 if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
1189 // Reader in anticollission phase
1190 modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
1191 trace_data = sof_data;
1192 trace_data_size = sizeof(sof_data);
1193 } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
1194 // Reader asks for anticollission CSN
1195 modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
1196 trace_data = anticoll_data;
1197 trace_data_size = sizeof(anticoll_data);
1198 //DbpString("Reader requests anticollission CSN:");
1199 } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
1200 // Reader selects anticollission CSN.
1201 // Tag sends the corresponding real CSN
1202 modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
1203 trace_data = csn_data;
1204 trace_data_size = sizeof(csn_data);
1205 //DbpString("Reader selects anticollission CSN:");
1206 } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
1207 // Read e-purse (88 02)
1208 modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
1209 trace_data = card_challenge_data;
1210 trace_data_size = sizeof(card_challenge_data);
1211 LED_B_ON();
1212 } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
1213 // Reader random and reader MAC!!!
1214 if(simulationMode == MODE_FULLSIM)
1215 {
1216 //NR, from reader, is in receivedCmd +1
1217 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
1218
1219 trace_data = data_generic_trace;
1220 trace_data_size = 4;
1221 CodeIClassTagAnswer(trace_data , trace_data_size);
1222 memcpy(data_response, ToSend, ToSendMax);
1223 modulated_response = data_response;
1224 modulated_response_size = ToSendMax;
1225 response_delay = 0;//We need to hurry here...
1226 //exitLoop = true;
1227 }else
1228 { //Not fullsim, we don't respond
1229 // We do not know what to answer, so lets keep quiet
1230 modulated_response = resp_sof; modulated_response_size = 0;
1231 trace_data = NULL;
1232 trace_data_size = 0;
1233 if (simulationMode == MODE_EXIT_AFTER_MAC){
1234 // dbprintf:ing ...
1235 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1236 ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
1237 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
1238 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1239 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1240 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1241 if (reader_mac_buf != NULL)
1242 {
1243 memcpy(reader_mac_buf,receivedCmd+1,8);
1244 }
1245 exitLoop = true;
1246 }
1247 }
1248
1249 } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
1250 // Reader ends the session
1251 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1252 trace_data = NULL;
1253 trace_data_size = 0;
1254 } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
1255 //Read block
1256 uint16_t blk = receivedCmd[1];
1257 //Take the data...
1258 memcpy(data_generic_trace, emulator+(blk << 3),8);
1259 //Add crc
1260 AppendCrc(data_generic_trace, 8);
1261 trace_data = data_generic_trace;
1262 trace_data_size = 10;
1263 CodeIClassTagAnswer(trace_data , trace_data_size);
1264 memcpy(data_response, ToSend, ToSendMax);
1265 modulated_response = data_response;
1266 modulated_response_size = ToSendMax;
1267 }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
1268 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1269 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1270 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1271 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1272
1273 //Take the data...
1274 memcpy(data_generic_trace, receivedCmd+2,8);
1275 //Add crc
1276 AppendCrc(data_generic_trace, 8);
1277 trace_data = data_generic_trace;
1278 trace_data_size = 10;
1279 CodeIClassTagAnswer(trace_data , trace_data_size);
1280 memcpy(data_response, ToSend, ToSendMax);
1281 modulated_response = data_response;
1282 modulated_response_size = ToSendMax;
1283 }
1284 else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
1285 {//Pagesel
1286 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1287 //Chips with a single page will not answer to this command
1288 // It appears we're fine ignoring this.
1289 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1290 }
1291 else {
1292 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1293 // Never seen this command before
1294 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1295 len,
1296 receivedCmd[0], receivedCmd[1], receivedCmd[2],
1297 receivedCmd[3], receivedCmd[4], receivedCmd[5],
1298 receivedCmd[6], receivedCmd[7], receivedCmd[8]);
1299 // Do not respond
1300 modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
1301 trace_data = NULL;
1302 trace_data_size = 0;
1303 }
1304
1305 if(cmdsRecvd > 100) {
1306 //DbpString("100 commands later...");
1307 //break;
1308 }
1309 else {
1310 cmdsRecvd++;
1311 }
1312 /**
1313 A legit tag has about 380us delay between reader EOT and tag SOF.
1314 **/
1315 if(modulated_response_size > 0) {
1316 SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
1317 t2r_time = GetCountSspClk();
1318 }
1319
1320 uint8_t parity[MAX_PARITY_SIZE];
1321 GetParity(receivedCmd, len, parity);
1322 LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true);
1323
1324 if (trace_data != NULL) {
1325 GetParity(trace_data, trace_data_size, parity);
1326 LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false);
1327 }
1328 if(!get_tracing()) {
1329 DbpString("Trace full");
1330 //break;
1331 }
1332 }
1333
1334 //Dbprintf("%x", cmdsRecvd);
1335 LED_A_OFF();
1336 LED_B_OFF();
1337 LED_C_OFF();
1338
1339 if(buttonPressed)
1340 {
1341 DbpString("Button pressed");
1342 }
1343 return buttonPressed;
1344 }
1345
1346 static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
1347 {
1348 int i = 0, d=0;//, u = 0, d = 0;
1349 uint8_t b = 0;
1350
1351 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1352 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
1353
1354 AT91C_BASE_SSC->SSC_THR = 0x00;
1355 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
1356 while(!BUTTON_PRESS()) {
1357 if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
1358 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1359 }
1360 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
1361 b = 0x00;
1362 if(d < delay) {
1363 d++;
1364 }
1365 else {
1366 if( i < respLen){
1367 b = resp[i];
1368 //Hack
1369 //b = 0xAC;
1370 }
1371 i++;
1372 }
1373 AT91C_BASE_SSC->SSC_THR = b;
1374 }
1375
1376 // if (i > respLen +4) break;
1377 if (i > respLen +1) break;
1378 }
1379
1380 return 0;
1381 }
1382
1383 /// THE READER CODE
1384
1385 //-----------------------------------------------------------------------------
1386 // Transmit the command (to the tag) that was placed in ToSend[].
1387 //-----------------------------------------------------------------------------
1388 static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
1389 {
1390 int c;
1391 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1392 AT91C_BASE_SSC->SSC_THR = 0x00;
1393 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1394
1395 if (wait)
1396 {
1397 if(*wait < 10) *wait = 10;
1398
1399 for(c = 0; c < *wait;) {
1400 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1401 AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
1402 c++;
1403 }
1404 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1405 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1406 (void)r;
1407 }
1408 WDT_HIT();
1409 }
1410
1411 }
1412
1413
1414 uint8_t sendbyte;
1415 bool firstpart = true;
1416 c = 0;
1417 for(;;) {
1418 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1419
1420 // DOUBLE THE SAMPLES!
1421 if(firstpart) {
1422 sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
1423 }
1424 else {
1425 sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
1426 c++;
1427 }
1428 if(sendbyte == 0xff) {
1429 sendbyte = 0xfe;
1430 }
1431 AT91C_BASE_SSC->SSC_THR = sendbyte;
1432 firstpart = !firstpart;
1433
1434 if(c >= len) {
1435 break;
1436 }
1437 }
1438 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1439 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1440 (void)r;
1441 }
1442 WDT_HIT();
1443 }
1444 if (samples && wait) *samples = (c + *wait) << 3;
1445 }
1446
1447
1448 //-----------------------------------------------------------------------------
1449 // Prepare iClass reader command to send to FPGA
1450 //-----------------------------------------------------------------------------
1451 void CodeIClassCommand(const uint8_t * cmd, int len)
1452 {
1453 int i, j, k;
1454 uint8_t b;
1455
1456 ToSendReset();
1457
1458 // Start of Communication: 1 out of 4
1459 ToSend[++ToSendMax] = 0xf0;
1460 ToSend[++ToSendMax] = 0x00;
1461 ToSend[++ToSendMax] = 0x0f;
1462 ToSend[++ToSendMax] = 0x00;
1463
1464 // Modulate the bytes
1465 for (i = 0; i < len; i++) {
1466 b = cmd[i];
1467 for(j = 0; j < 4; j++) {
1468 for(k = 0; k < 4; k++) {
1469 if(k == (b & 3)) {
1470 ToSend[++ToSendMax] = 0xf0;
1471 }
1472 else {
1473 ToSend[++ToSendMax] = 0x00;
1474 }
1475 }
1476 b >>= 2;
1477 }
1478 }
1479
1480 // End of Communication
1481 ToSend[++ToSendMax] = 0x00;
1482 ToSend[++ToSendMax] = 0x00;
1483 ToSend[++ToSendMax] = 0xf0;
1484 ToSend[++ToSendMax] = 0x00;
1485
1486 // Convert from last character reference to length
1487 ToSendMax++;
1488 }
1489
1490 void ReaderTransmitIClass(uint8_t* frame, int len)
1491 {
1492 int wait = 0;
1493 int samples = 0;
1494
1495 // This is tied to other size changes
1496 CodeIClassCommand(frame,len);
1497
1498 // Select the card
1499 TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
1500 if(trigger)
1501 LED_A_ON();
1502
1503 // Store reader command in buffer
1504 uint8_t par[MAX_PARITY_SIZE];
1505 GetParity(frame, len, par);
1506 LogTrace(frame, len, rsamples, rsamples, par, true);
1507 }
1508
1509 //-----------------------------------------------------------------------------
1510 // Wait a certain time for tag response
1511 // If a response is captured return true
1512 // If it takes too long return false
1513 //-----------------------------------------------------------------------------
1514 static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
1515 {
1516 // buffer needs to be 512 bytes
1517 int c;
1518
1519 // Set FPGA mode to "reader listen mode", no modulation (listen
1520 // only, since we are receiving, not transmitting).
1521 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1522
1523 // Now get the answer from the card
1524 Demod.output = receivedResponse;
1525 Demod.len = 0;
1526 Demod.state = DEMOD_UNSYNCD;
1527
1528 uint8_t b;
1529 if (elapsed) *elapsed = 0;
1530
1531 bool skip = false;
1532
1533 c = 0;
1534 for(;;) {
1535 WDT_HIT();
1536
1537 if(BUTTON_PRESS()) return false;
1538
1539 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1540 AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
1541 if (elapsed) (*elapsed)++;
1542 }
1543 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1544 if(c < timeout) { c++; } else { return false; }
1545 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1546 skip = !skip;
1547 if(skip) continue;
1548
1549 if(ManchesterDecoding(b & 0x0f)) {
1550 *samples = c << 3;
1551 return true;
1552 }
1553 }
1554 }
1555 }
1556
1557 int ReaderReceiveIClass(uint8_t* receivedAnswer)
1558 {
1559 int samples = 0;
1560 if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false;
1561 rsamples += samples;
1562 uint8_t parity[MAX_PARITY_SIZE];
1563 GetParity(receivedAnswer, Demod.len, parity);
1564 LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false);
1565 if(samples == 0) return false;
1566 return Demod.len;
1567 }
1568
1569 void setupIclassReader()
1570 {
1571 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1572 // Reset trace buffer
1573 set_tracing(true);
1574 clear_trace();
1575
1576 // Setup SSC
1577 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
1578 // Start from off (no field generated)
1579 // Signal field is off with the appropriate LED
1580 LED_D_OFF();
1581 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1582 SpinDelay(200);
1583
1584 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1585
1586 // Now give it time to spin up.
1587 // Signal field is on with the appropriate LED
1588 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1589 SpinDelay(200);
1590 LED_A_ON();
1591
1592 }
1593
1594 bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
1595 {
1596 while(retries-- > 0)
1597 {
1598 ReaderTransmitIClass(command, cmdsize);
1599 if(expected_size == ReaderReceiveIClass(resp)){
1600 return true;
1601 }
1602 }
1603 return false;//Error
1604 }
1605
1606 /**
1607 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1608 * @param card_data where the CSN and CC are stored for return
1609 * @return 0 = fail
1610 * 1 = Got CSN
1611 * 2 = Got CSN and CC
1612 */
1613 uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
1614 {
1615 static uint8_t act_all[] = { 0x0a };
1616 //static uint8_t identify[] = { 0x0c };
1617 static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
1618 static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1619 static uint8_t readcheck_cc[]= { 0x88, 0x02 };
1620 if (use_credit_key)
1621 readcheck_cc[0] = 0x18;
1622 else
1623 readcheck_cc[0] = 0x88;
1624
1625 uint8_t resp[ICLASS_BUFFER_SIZE];
1626
1627 uint8_t read_status = 0;
1628
1629 // Send act_all
1630 ReaderTransmitIClass(act_all, 1);
1631 // Card present?
1632 if(!ReaderReceiveIClass(resp)) return read_status;//Fail
1633 //Send Identify
1634 ReaderTransmitIClass(identify, 1);
1635 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1636 uint8_t len = ReaderReceiveIClass(resp);
1637 if(len != 10) return read_status;//Fail
1638
1639 //Copy the Anti-collision CSN to our select-packet
1640 memcpy(&select[1],resp,8);
1641 //Select the card
1642 ReaderTransmitIClass(select, sizeof(select));
1643 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1644 len = ReaderReceiveIClass(resp);
1645 if(len != 10) return read_status;//Fail
1646
1647 //Success - level 1, we got CSN
1648 //Save CSN in response data
1649 memcpy(card_data,resp,8);
1650
1651 //Flag that we got to at least stage 1, read CSN
1652 read_status = 1;
1653
1654 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1655 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1656 if(ReaderReceiveIClass(resp) == 8) {
1657 //Save CC (e-purse) in response data
1658 memcpy(card_data+8,resp,8);
1659 read_status++;
1660 }
1661
1662 return read_status;
1663 }
1664 uint8_t handshakeIclassTag(uint8_t *card_data) {
1665 return handshakeIclassTag_ext(card_data, false);
1666 }
1667
1668
1669 // Reader iClass Anticollission
1670 void ReaderIClass(uint8_t arg0) {
1671
1672 uint8_t card_data[6 * 8]={0};
1673 memset(card_data, 0xFF, sizeof(card_data));
1674 uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
1675 uint8_t resp[ICLASS_BUFFER_SIZE];
1676 memset(resp, 0xFF, sizeof(resp));
1677 //Read conf block CRC(0x01) => 0xfa 0x22
1678 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
1679 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1680 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
1681
1682 int read_status= 0;
1683 uint8_t result_status = 0;
1684 // flag to read until one tag is found successfully
1685 bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
1686 // flag to only try 5 times to find one tag then return
1687 bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
1688 // if neither abort_after_read nor try_once then continue reading until button pressed.
1689
1690 bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
1691 // test flags for what blocks to be sure to read
1692 uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
1693 uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
1694 uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
1695
1696 set_tracing(true);
1697 setupIclassReader();
1698
1699 uint16_t tryCnt=0;
1700 bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
1701 while(!userCancelled)
1702 {
1703 // if only looking for one card try 2 times if we missed it the first time
1704 if (try_once && tryCnt > 2) break;
1705 tryCnt++;
1706 if(!get_tracing()) {
1707 DbpString("Trace full");
1708 break;
1709 }
1710 WDT_HIT();
1711
1712 read_status = handshakeIclassTag_ext(card_data, use_credit_key);
1713
1714 if(read_status == 0) continue;
1715 if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
1716 if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
1717
1718 // handshakeIclass returns CSN|CC, but the actual block
1719 // layout is CSN|CONFIG|CC, so here we reorder the data,
1720 // moving CC forward 8 bytes
1721 memcpy(card_data+16,card_data+8, 8);
1722 //Read block 1, config
1723 if(flagReadConfig) {
1724 if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
1725 {
1726 result_status |= FLAG_ICLASS_READER_CONF;
1727 memcpy(card_data+8, resp, 8);
1728 } else {
1729 Dbprintf("Failed to dump config block");
1730 }
1731 }
1732
1733 //Read block 5, AA
1734 if(flagReadAA) {
1735 if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
1736 {
1737 result_status |= FLAG_ICLASS_READER_AA;
1738 memcpy(card_data+(8*5), resp, 8);
1739 } else {
1740 //Dbprintf("Failed to dump AA block");
1741 }
1742 }
1743
1744 // 0 : CSN
1745 // 1 : Configuration
1746 // 2 : e-purse
1747 // (3,4 write-only, kc and kd)
1748 // 5 Application issuer area
1749 //
1750 //Then we can 'ship' back the 8 * 6 bytes of data,
1751 // with 0xFF:s in block 3 and 4.
1752
1753 LED_B_ON();
1754 //Send back to client, but don't bother if we already sent this -
1755 // only useful if looping in arm (not try_once && not abort_after_read)
1756 if(memcmp(last_csn, card_data, 8) != 0)
1757 {
1758 // If caller requires that we get Conf, CC, AA, continue until we got it
1759 if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
1760 cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
1761 if(abort_after_read) {
1762 LED_A_OFF();
1763 LED_B_OFF();
1764 return;
1765 }
1766 //Save that we already sent this....
1767 memcpy(last_csn, card_data, 8);
1768 }
1769
1770 }
1771 LED_B_OFF();
1772 userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
1773 }
1774 if (userCancelled) {
1775 cmd_send(CMD_ACK,0xFF,0,0,card_data, 0);
1776 } else {
1777 cmd_send(CMD_ACK,0,0,0,card_data, 0);
1778 }
1779 LED_A_OFF();
1780 }
1781
1782 void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
1783
1784 uint8_t card_data[USB_CMD_DATA_SIZE]={0};
1785 uint16_t block_crc_LUT[255] = {0};
1786
1787 {//Generate a lookup table for block crc
1788 for(int block = 0; block < 255; block++){
1789 char bl = block;
1790 block_crc_LUT[block] = iclass_crc16(&bl ,1);
1791 }
1792 }
1793 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1794
1795 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1796 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1797
1798 uint16_t crc = 0;
1799 uint8_t cardsize=0;
1800 uint8_t mem=0;
1801
1802 static struct memory_t{
1803 int k16;
1804 int book;
1805 int k2;
1806 int lockauth;
1807 int keyaccess;
1808 } memory;
1809
1810 uint8_t resp[ICLASS_BUFFER_SIZE];
1811
1812 setupIclassReader();
1813 set_tracing(true);
1814
1815 while(!BUTTON_PRESS()) {
1816
1817 WDT_HIT();
1818
1819 if(!get_tracing()) {
1820 DbpString("Trace full");
1821 break;
1822 }
1823
1824 uint8_t read_status = handshakeIclassTag(card_data);
1825 if(read_status < 2) continue;
1826
1827 //for now replay captured auth (as cc not updated)
1828 memcpy(check+5,MAC,4);
1829
1830 if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
1831 {
1832 Dbprintf("Error: Authentication Fail!");
1833 continue;
1834 }
1835
1836 //first get configuration block (block 1)
1837 crc = block_crc_LUT[1];
1838 read[1]=1;
1839 read[2] = crc >> 8;
1840 read[3] = crc & 0xff;
1841
1842 if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
1843 {
1844 Dbprintf("Dump config (block 1) failed");
1845 continue;
1846 }
1847
1848 mem=resp[5];
1849 memory.k16= (mem & 0x80);
1850 memory.book= (mem & 0x20);
1851 memory.k2= (mem & 0x8);
1852 memory.lockauth= (mem & 0x2);
1853 memory.keyaccess= (mem & 0x1);
1854
1855 cardsize = memory.k16 ? 255 : 32;
1856 WDT_HIT();
1857 //Set card_data to all zeroes, we'll fill it with data
1858 memset(card_data,0x0,USB_CMD_DATA_SIZE);
1859 uint8_t failedRead =0;
1860 uint32_t stored_data_length =0;
1861 //then loop around remaining blocks
1862 for(int block=0; block < cardsize; block++){
1863
1864 read[1]= block;
1865 crc = block_crc_LUT[block];
1866 read[2] = crc >> 8;
1867 read[3] = crc & 0xff;
1868
1869 if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
1870 {
1871 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1872 block, resp[0], resp[1], resp[2],
1873 resp[3], resp[4], resp[5],
1874 resp[6], resp[7]);
1875
1876 //Fill up the buffer
1877 memcpy(card_data+stored_data_length,resp,8);
1878 stored_data_length += 8;
1879 if(stored_data_length +8 > USB_CMD_DATA_SIZE)
1880 {//Time to send this off and start afresh
1881 cmd_send(CMD_ACK,
1882 stored_data_length,//data length
1883 failedRead,//Failed blocks?
1884 0,//Not used ATM
1885 card_data, stored_data_length);
1886 //reset
1887 stored_data_length = 0;
1888 failedRead = 0;
1889 }
1890
1891 }else{
1892 failedRead = 1;
1893 stored_data_length +=8;//Otherwise, data becomes misaligned
1894 Dbprintf("Failed to dump block %d", block);
1895 }
1896 }
1897
1898 //Send off any remaining data
1899 if(stored_data_length > 0)
1900 {
1901 cmd_send(CMD_ACK,
1902 stored_data_length,//data length
1903 failedRead,//Failed blocks?
1904 0,//Not used ATM
1905 card_data, stored_data_length);
1906 }
1907 //If we got here, let's break
1908 break;
1909 }
1910 //Signal end of transmission
1911 cmd_send(CMD_ACK,
1912 0,//data length
1913 0,//Failed blocks?
1914 0,//Not used ATM
1915 card_data, 0);
1916
1917 LED_A_OFF();
1918 }
1919
1920 void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
1921 uint8_t readcheck[] = { keyType, blockNo };
1922 uint8_t resp[] = {0,0,0,0,0,0,0,0};
1923 size_t isOK = 0;
1924 isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
1925 cmd_send(CMD_ACK,isOK,0,0,0,0);
1926 }
1927
1928 void iClass_Authentication(uint8_t *MAC) {
1929 uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1930 uint8_t resp[ICLASS_BUFFER_SIZE];
1931 memcpy(check+5,MAC,4);
1932 bool isOK;
1933 isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
1934 cmd_send(CMD_ACK,isOK,0,0,0,0);
1935 }
1936 bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
1937 uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1938 char bl = blockNo;
1939 uint16_t rdCrc = iclass_crc16(&bl, 1);
1940 readcmd[2] = rdCrc >> 8;
1941 readcmd[3] = rdCrc & 0xff;
1942 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
1943 bool isOK = false;
1944
1945 //readcmd[1] = blockNo;
1946 isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
1947 memcpy(readdata, resp, sizeof(resp));
1948
1949 return isOK;
1950 }
1951
1952 void iClass_ReadBlk(uint8_t blockno) {
1953 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1954 bool isOK = false;
1955 isOK = iClass_ReadBlock(blockno, readblockdata);
1956 cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
1957 }
1958
1959 void iClass_Dump(uint8_t blockno, uint8_t numblks) {
1960 uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
1961 bool isOK = false;
1962 uint8_t blkCnt = 0;
1963
1964 BigBuf_free();
1965 uint8_t *dataout = BigBuf_malloc(255*8);
1966 if (dataout == NULL){
1967 Dbprintf("out of memory");
1968 OnError(1);
1969 return;
1970 }
1971 memset(dataout,0xFF,255*8);
1972
1973 for (;blkCnt < numblks; blkCnt++) {
1974 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1975 if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
1976 isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
1977 if (!isOK) {
1978 Dbprintf("Block %02X failed to read", blkCnt+blockno);
1979 break;
1980 }
1981 }
1982 memcpy(dataout+(blkCnt*8),readblockdata,8);
1983 }
1984 //return pointer to dump memory in arg3
1985 cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1987 LEDsoff();
1988 BigBuf_free();
1989 }
1990
1991 bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
1992 uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1993 //uint8_t readblockdata[10];
1994 //write[1] = blockNo;
1995 memcpy(write+2, data, 12); // data + mac
1996 char *wrCmd = (char *)(write+1);
1997 uint16_t wrCrc = iclass_crc16(wrCmd, 13);
1998 write[14] = wrCrc >> 8;
1999 write[15] = wrCrc & 0xff;
2000 uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
2001 bool isOK = false;
2002
2003 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
2004 if (isOK) { //if reader responded correctly
2005 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
2006 if (memcmp(write+2,resp,8)) { //if response is not equal to write values
2007 if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2008 //error try again
2009 isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
2010 }
2011
2012 }
2013 }
2014 return isOK;
2015 }
2016
2017 void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
2018 bool isOK = iClass_WriteBlock_ext(blockNo, data);
2019 if (isOK){
2020 Dbprintf("Write block [%02x] successful",blockNo);
2021 } else {
2022 Dbprintf("Write block [%02x] failed",blockNo);
2023 }
2024 cmd_send(CMD_ACK,isOK,0,0,0,0);
2025 }
2026
2027 void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
2028 int i;
2029 int written = 0;
2030 int total_block = (endblock - startblock) + 1;
2031 for (i = 0; i < total_block;i++){
2032 // block number
2033 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2034 Dbprintf("Write block [%02x] successful",i + startblock);
2035 written++;
2036 } else {
2037 if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
2038 Dbprintf("Write block [%02x] successful",i + startblock);
2039 written++;
2040 } else {
2041 Dbprintf("Write block [%02x] failed",i + startblock);
2042 }
2043 }
2044 }
2045 if (written == total_block)
2046 Dbprintf("Clone complete");
2047 else
2048 Dbprintf("Clone incomplete");
2049
2050 cmd_send(CMD_ACK,1,0,0,0,0);
2051 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2052 LEDsoff();
2053 }
Impressum, Datenschutz