1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
45 #include "iso14443a.h"
46 // Needed for CRC in emulation mode;
47 // same construction as in ISO 14443;
48 // different initial value (CRC_ICLASS)
49 #include "iso14443crc.h"
50 #include "iso15693tools.h"
51 #include "protocols.h"
52 #include "optimized_cipher.h"
53 #include "usb_cdc.h" // for usb_poll_validate_length
55 static int timeout
= 4096;
58 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
60 //-----------------------------------------------------------------------------
61 // The software UART that receives commands from the reader, and its state
63 //-----------------------------------------------------------------------------
67 STATE_START_OF_COMMUNICATION
,
87 static RAMFUNC
int OutOfNDecoding(int bit
)
93 Uart
.bitBuffer
= bit
^ 0xFF0;
98 Uart
.bitBuffer
^= bit
;
102 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
105 if(Uart.byteCnt > 15) { return true; }
111 if(Uart
.state
!= STATE_UNSYNCD
) {
114 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
120 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
126 if(bit
!= bitright
) { bit
= bitright
; }
129 // So, now we only have to deal with *bit*, lets see...
130 if(Uart
.posCnt
== 1) {
131 // measurement first half bitperiod
133 // Drop in first half means that we are either seeing
136 if(Uart
.nOutOfCnt
== 1) {
137 // End of Communication
138 Uart
.state
= STATE_UNSYNCD
;
140 if(Uart
.byteCnt
== 0) {
141 // Its not straightforward to show single EOFs
142 // So just leave it and do not return true
143 Uart
.output
[0] = 0xf0;
150 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
151 // When not part of SOF or EOF, it is an error
152 Uart
.state
= STATE_UNSYNCD
;
159 // measurement second half bitperiod
160 // Count the bitslot we are in... (ISO 15693)
164 if(Uart
.dropPosition
) {
165 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
171 // It is an error if we already have seen a drop in current frame
172 Uart
.state
= STATE_UNSYNCD
;
176 Uart
.dropPosition
= Uart
.nOutOfCnt
;
183 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
186 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
187 if(Uart
.dropPosition
== 4) {
188 Uart
.state
= STATE_RECEIVING
;
191 else if(Uart
.dropPosition
== 3) {
192 Uart
.state
= STATE_RECEIVING
;
194 //Uart.output[Uart.byteCnt] = 0xdd;
198 Uart
.state
= STATE_UNSYNCD
;
201 Uart
.dropPosition
= 0;
206 if(!Uart
.dropPosition
) {
207 Uart
.state
= STATE_UNSYNCD
;
216 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
217 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
219 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
221 Uart
.dropPosition
= 0;
223 if(Uart
.bitCnt
== 8) {
224 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
232 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
235 if(!Uart
.dropPosition
) {
236 Uart
.state
= STATE_UNSYNCD
;
242 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
247 Uart
.dropPosition
= 0;
252 Uart.output[Uart.byteCnt] = 0xAA;
254 Uart.output[Uart.byteCnt] = error & 0xFF;
256 Uart.output[Uart.byteCnt] = 0xAA;
258 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
260 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
262 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
264 Uart.output[Uart.byteCnt] = 0xAA;
272 bit
= Uart
.bitBuffer
& 0xf0;
274 bit
^= 0x0F; // drops become 1s ;-)
276 // should have been high or at least (4 * 128) / fc
277 // according to ISO this should be at least (9 * 128 + 20) / fc
278 if(Uart
.highCnt
== 8) {
279 // we went low, so this could be start of communication
280 // it turns out to be safer to choose a less significant
281 // syncbit... so we check whether the neighbour also represents the drop
282 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
283 Uart
.syncBit
= bit
& 8;
285 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
286 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
287 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
288 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
289 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
290 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
293 // the first half bit period is expected in next sample
298 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
301 Uart
.state
= STATE_START_OF_COMMUNICATION
;
305 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
306 Uart
.dropPosition
= 0;
315 if(Uart
.highCnt
< 8) {
324 //=============================================================================
326 //=============================================================================
331 DEMOD_START_OF_COMMUNICATION
,
332 DEMOD_START_OF_COMMUNICATION2
,
333 DEMOD_START_OF_COMMUNICATION3
,
337 DEMOD_END_OF_COMMUNICATION
,
338 DEMOD_END_OF_COMMUNICATION2
,
361 static RAMFUNC
int ManchesterDecoding(int v
)
368 Demod
.buffer
= Demod
.buffer2
;
369 Demod
.buffer2
= Demod
.buffer3
;
377 if(Demod
.state
==DEMOD_UNSYNCD
) {
378 Demod
.output
[Demod
.len
] = 0xfa;
381 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
384 Demod
.syncBit
= 0x08;
391 Demod
.syncBit
= 0x04;
398 Demod
.syncBit
= 0x02;
401 if(bit
& 0x01 && Demod
.syncBit
) {
402 Demod
.syncBit
= 0x01;
407 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
408 Demod
.sub
= SUB_FIRST_HALF
;
413 //if(trigger) LED_A_OFF(); // Not useful in this case...
414 switch(Demod
.syncBit
) {
415 case 0x08: Demod
.samples
= 3; break;
416 case 0x04: Demod
.samples
= 2; break;
417 case 0x02: Demod
.samples
= 1; break;
418 case 0x01: Demod
.samples
= 0; break;
420 // SOF must be long burst... otherwise stay unsynced!!!
421 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
422 Demod
.state
= DEMOD_UNSYNCD
;
426 // SOF must be long burst... otherwise stay unsynced!!!
427 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
428 Demod
.state
= DEMOD_UNSYNCD
;
438 modulation
= bit
& Demod
.syncBit
;
439 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
443 if(Demod
.posCount
==0) {
446 Demod
.sub
= SUB_FIRST_HALF
;
449 Demod
.sub
= SUB_NONE
;
454 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
455 if(Demod.state!=DEMOD_ERROR_WAIT) {
456 Demod.state = DEMOD_ERROR_WAIT;
457 Demod.output[Demod.len] = 0xaa;
461 //else if(modulation) {
463 if(Demod
.sub
== SUB_FIRST_HALF
) {
464 Demod
.sub
= SUB_BOTH
;
467 Demod
.sub
= SUB_SECOND_HALF
;
470 else if(Demod
.sub
== SUB_NONE
) {
471 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
472 Demod
.output
[Demod
.len
] = 0x0f;
474 Demod
.state
= DEMOD_UNSYNCD
;
479 Demod
.state
= DEMOD_ERROR_WAIT
;
482 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
483 Demod.state = DEMOD_ERROR_WAIT;
484 Demod.output[Demod.len] = 0xaa;
489 switch(Demod
.state
) {
490 case DEMOD_START_OF_COMMUNICATION
:
491 if(Demod
.sub
== SUB_BOTH
) {
492 //Demod.state = DEMOD_MANCHESTER_D;
493 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
495 Demod
.sub
= SUB_NONE
;
498 Demod
.output
[Demod
.len
] = 0xab;
499 Demod
.state
= DEMOD_ERROR_WAIT
;
503 case DEMOD_START_OF_COMMUNICATION2
:
504 if(Demod
.sub
== SUB_SECOND_HALF
) {
505 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
508 Demod
.output
[Demod
.len
] = 0xab;
509 Demod
.state
= DEMOD_ERROR_WAIT
;
513 case DEMOD_START_OF_COMMUNICATION3
:
514 if(Demod
.sub
== SUB_SECOND_HALF
) {
515 // Demod.state = DEMOD_MANCHESTER_D;
516 Demod
.state
= DEMOD_SOF_COMPLETE
;
517 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
521 Demod
.output
[Demod
.len
] = 0xab;
522 Demod
.state
= DEMOD_ERROR_WAIT
;
526 case DEMOD_SOF_COMPLETE
:
527 case DEMOD_MANCHESTER_D
:
528 case DEMOD_MANCHESTER_E
:
529 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
530 // 00001111 = 1 (0 in 14443)
531 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
533 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
534 Demod
.state
= DEMOD_MANCHESTER_D
;
536 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
538 Demod
.shiftReg
>>= 1;
539 Demod
.state
= DEMOD_MANCHESTER_E
;
541 else if(Demod
.sub
== SUB_BOTH
) {
542 Demod
.state
= DEMOD_MANCHESTER_F
;
545 Demod
.state
= DEMOD_ERROR_WAIT
;
550 case DEMOD_MANCHESTER_F
:
551 // Tag response does not need to be a complete byte!
552 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
553 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
554 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
555 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
559 Demod
.state
= DEMOD_UNSYNCD
;
563 Demod
.output
[Demod
.len
] = 0xad;
564 Demod
.state
= DEMOD_ERROR_WAIT
;
569 case DEMOD_ERROR_WAIT
:
570 Demod
.state
= DEMOD_UNSYNCD
;
574 Demod
.output
[Demod
.len
] = 0xdd;
575 Demod
.state
= DEMOD_UNSYNCD
;
579 /*if(Demod.bitCount>=9) {
580 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
583 Demod.parityBits <<= 1;
584 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
589 if(Demod
.bitCount
>=8) {
590 Demod
.shiftReg
>>= 1;
591 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
598 Demod
.output
[Demod
.len
] = 0xBB;
600 Demod
.output
[Demod
.len
] = error
& 0xFF;
602 Demod
.output
[Demod
.len
] = 0xBB;
604 Demod
.output
[Demod
.len
] = bit
& 0xFF;
606 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
609 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
611 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
613 Demod
.output
[Demod
.len
] = 0xBB;
620 } // end (state != UNSYNCED)
625 //=============================================================================
626 // Finally, a `sniffer' for iClass communication
627 // Both sides of communication!
628 //=============================================================================
630 //-----------------------------------------------------------------------------
631 // Record the sequence of commands sent by the reader to the tag, with
632 // triggering so that we start recording at the point that the tag is moved
634 //-----------------------------------------------------------------------------
635 void RAMFUNC
SnoopIClass(void)
639 // We won't start recording the frames that we acquire until we trigger;
640 // a good trigger condition to get started is probably when we see a
641 // response from the tag.
642 //int triggered = false; // false to wait first for card
644 // The command (reader -> tag) that we're receiving.
645 // The length of a received command will in most cases be no more than 18 bytes.
646 // So 32 should be enough!
647 #define ICLASS_BUFFER_SIZE 32
648 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
649 // The response (tag -> reader) that we're receiving.
650 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
652 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
654 // free all BigBuf memory
656 // The DMA buffer, used to stream samples from the FPGA
657 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
661 iso14a_set_trigger(false);
668 // Count of samples received so far, so that we can include timing
669 // information in the trace buffer.
673 // Set up the demodulator for tag -> reader responses.
674 Demod
.output
= tagToReaderResponse
;
676 Demod
.state
= DEMOD_UNSYNCD
;
678 // Setup for the DMA.
679 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
681 lastRxCounter
= DMA_BUFFER_SIZE
;
682 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
684 // And the reader -> tag commands
685 memset(&Uart
, 0, sizeof(Uart
));
686 Uart
.output
= readerToTagCmd
;
687 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
688 Uart
.state
= STATE_UNSYNCD
;
690 // And put the FPGA in the appropriate mode
691 // Signal field is off with the appropriate LED
693 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
694 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
696 uint32_t time_0
= GetCountSspClk();
697 uint32_t time_start
= 0;
698 uint32_t time_stop
= 0;
705 // And now we loop, receiving samples.
709 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
711 if(behindBy
> maxBehindBy
) {
712 maxBehindBy
= behindBy
;
713 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
714 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
718 if(behindBy
< 1) continue;
724 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
725 upTo
-= DMA_BUFFER_SIZE
;
726 lastRxCounter
+= DMA_BUFFER_SIZE
;
727 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
728 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
735 decbyte
^= (1 << (3 - div
));
738 // FOR READER SIDE COMMUMICATION...
741 decbyter
^= (smpl
& 0x30);
745 if((div
+ 1) % 2 == 0) {
747 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
748 rsamples
= samples
- Uart
.samples
;
749 time_stop
= (GetCountSspClk()-time_0
) << 4;
752 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
753 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
754 uint8_t parity
[MAX_PARITY_SIZE
];
755 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
756 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
758 /* And ready to receive another command. */
759 Uart
.state
= STATE_UNSYNCD
;
760 /* And also reset the demod code, which might have been */
761 /* false-triggered by the commands from the reader. */
762 Demod
.state
= DEMOD_UNSYNCD
;
766 time_start
= (GetCountSspClk()-time_0
) << 4;
773 if(ManchesterDecoding(smpl
& 0x0F)) {
774 time_stop
= (GetCountSspClk()-time_0
) << 4;
776 rsamples
= samples
- Demod
.samples
;
779 uint8_t parity
[MAX_PARITY_SIZE
];
780 GetParity(Demod
.output
, Demod
.len
, parity
);
781 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
783 // And ready to receive another response.
784 memset(&Demod
, 0, sizeof(Demod
));
785 Demod
.output
= tagToReaderResponse
;
786 Demod
.state
= DEMOD_UNSYNCD
;
789 time_start
= (GetCountSspClk()-time_0
) << 4;
798 DbpString("cancelled_a");
803 DbpString("COMMAND FINISHED");
805 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
806 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
809 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
810 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
811 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
818 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
820 for(i
= 0; i
< 8; i
++) {
821 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
825 //-----------------------------------------------------------------------------
826 // Wait for commands from reader
827 // Stop when button is pressed
828 // Or return true when command is captured
829 //-----------------------------------------------------------------------------
830 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
832 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
833 // only, since we are receiving, not transmitting).
834 // Signal field is off with the appropriate LED
836 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
838 // Now run a `software UART' on the stream of incoming samples.
839 Uart
.output
= received
;
840 Uart
.byteCntMax
= maxLen
;
841 Uart
.state
= STATE_UNSYNCD
;
846 if(BUTTON_PRESS()) return false;
848 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
849 AT91C_BASE_SSC
->SSC_THR
= 0x00;
851 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
852 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
854 if(OutOfNDecoding(b
& 0x0f)) {
862 static uint8_t encode4Bits(const uint8_t b
)
865 // OTA, the least significant bits first
867 // 1 - Bit value to send
868 // 2 - Reversed (big-endian)
874 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
875 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
876 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
877 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
878 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
879 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
880 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
881 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
882 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
883 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
884 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
885 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
886 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
887 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
888 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
889 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
894 //-----------------------------------------------------------------------------
895 // Prepare tag messages
896 //-----------------------------------------------------------------------------
897 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
901 * SOF comprises 3 parts;
902 * * An unmodulated time of 56.64 us
903 * * 24 pulses of 423.75 KHz (fc/32)
904 * * A logic 1, which starts with an unmodulated time of 18.88us
905 * followed by 8 pulses of 423.75kHz (fc/32)
908 * EOF comprises 3 parts:
909 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
911 * - 24 pulses of fc/32
912 * - An unmodulated time of 56.64 us
915 * A logic 0 starts with 8 pulses of fc/32
916 * followed by an unmodulated time of 256/fc (~18,88us).
918 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
919 * 8 pulses of fc/32 (also 18.88us)
921 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
923 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
924 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
926 * In this mode the SOF can be written as 00011101 = 0x1D
927 * The EOF can be written as 10111000 = 0xb8
938 ToSend
[++ToSendMax
] = 0x1D;
940 for(i
= 0; i
< len
; i
++) {
942 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
943 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
947 ToSend
[++ToSendMax
] = 0xB8;
948 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
949 // Convert from last byte pos to length
954 static void CodeIClassTagSOF()
956 //So far a dummy implementation, not used
957 //int lastProxToAirDuration =0;
961 ToSend
[++ToSendMax
] = 0x1D;
962 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
964 // Convert from last byte pos to length
967 #define MODE_SIM_CSN 0
968 #define MODE_EXIT_AFTER_MAC 1
969 #define MODE_FULLSIM 2
971 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
);
973 * @brief SimulateIClass simulates an iClass card.
974 * @param arg0 type of simulation
975 * - 0 uses the first 8 bytes in usb data as CSN
976 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
977 * in the usb data. This mode collects MAC from the reader, in order to do an offline
978 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
979 * - Other : Uses the default CSN (031fec8af7ff12e0)
980 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
984 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
986 uint32_t simType
= arg0
;
987 uint32_t numberOfCSNS
= arg1
;
988 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
990 // Enable and clear the trace
993 //Use the emulator memory for SIM
994 uint8_t *emulator
= BigBuf_get_EM_addr();
997 // Use the CSN from commandline
998 memcpy(emulator
, datain
, 8);
999 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1000 }else if(simType
== 1)
1003 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1004 // Use the CSN from commandline
1005 memcpy(emulator
, csn_crc
, 8);
1006 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1008 else if(simType
== 2)
1011 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1012 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1013 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1014 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1015 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1017 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1019 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1021 memcpy(emulator
, datain
+(i
*8), 8);
1022 if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8))
1024 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1025 return; // Button pressed
1028 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1030 }else if(simType
== 3){
1031 //This is 'full sim' mode, where we use the emulator storage for data.
1032 doIClassSimulation(MODE_FULLSIM
, NULL
);
1035 // We may want a mode here where we hardcode the csns to use (from proxclone).
1036 // That will speed things up a little, but not required just yet.
1037 Dbprintf("The mode is not implemented, reserved for future use");
1039 Dbprintf("Done...");
1042 void AppendCrc(uint8_t* data
, int len
)
1044 ComputeCrc14443(CRC_ICLASS
,data
,len
,data
+len
,data
+len
+1);
1048 * @brief Does the actual simulation
1049 * @param csn - csn to use
1050 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1052 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
)
1054 // free eventually allocated BigBuf memory
1055 BigBuf_free_keep_EM();
1058 // State cipher_state_reserve;
1059 uint8_t *csn
= BigBuf_get_EM_addr();
1060 uint8_t *emulator
= csn
;
1061 uint8_t sof_data
[] = { 0x0F} ;
1062 // CSN followed by two CRC bytes
1063 uint8_t anticoll_data
[10] = { 0 };
1064 uint8_t csn_data
[10] = { 0 };
1065 memcpy(csn_data
,csn
,sizeof(csn_data
));
1066 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1068 // Construct anticollision-CSN
1069 rotateCSN(csn_data
,anticoll_data
);
1071 // Compute CRC on both CSNs
1072 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
1073 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
1075 uint8_t diversified_key
[8] = { 0 };
1077 uint8_t card_challenge_data
[8] = { 0x00 };
1078 if(simulationMode
== MODE_FULLSIM
)
1080 //The diversified key should be stored on block 3
1081 //Get the diversified key from emulator memory
1082 memcpy(diversified_key
, emulator
+(8*3),8);
1084 //Card challenge, a.k.a e-purse is on block 2
1085 memcpy(card_challenge_data
,emulator
+ (8 * 2) , 8);
1086 //Precalculate the cipher state, feeding it the CC
1087 cipher_state
= opt_doTagMAC_1(card_challenge_data
,diversified_key
);
1095 // Tag anticoll. CSN
1096 // Reader 81 anticoll. CSN
1099 uint8_t *modulated_response
;
1100 int modulated_response_size
= 0;
1101 uint8_t* trace_data
= NULL
;
1102 int trace_data_size
= 0;
1105 // Respond SOF -- takes 1 bytes
1106 uint8_t *resp_sof
= BigBuf_malloc(2);
1109 // Anticollision CSN (rotated CSN)
1110 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1111 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1112 int resp_anticoll_len
;
1115 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1116 uint8_t *resp_csn
= BigBuf_malloc(30);
1120 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1121 uint8_t *resp_cc
= BigBuf_malloc(20);
1124 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1127 // Prepare card messages
1130 // First card answer: SOF
1132 memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len
= ToSendMax
;
1134 // Anticollision CSN
1135 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1136 memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len
= ToSendMax
;
1139 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1140 memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len
= ToSendMax
;
1143 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1144 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1146 //This is used for responding to READ-block commands or other data which is dynamically generated
1147 //First the 'trace'-data, not encoded for FPGA
1148 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
1149 //Then storage for the modulated data
1150 //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
1151 uint8_t *data_response
= BigBuf_malloc( (8+2) * 2 + 2);
1153 // Start from off (no field generated)
1154 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1156 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1159 // We need to listen to the high-frequency, peak-detected path.
1160 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1161 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1163 // To control where we are in the protocol
1165 uint32_t time_0
= GetCountSspClk();
1166 uint32_t t2r_time
=0;
1167 uint32_t r2t_time
=0;
1170 bool buttonPressed
= false;
1171 uint8_t response_delay
= 1;
1176 // Can be used to get a trigger for an oscilloscope..
1179 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1180 buttonPressed
= true;
1183 r2t_time
= GetCountSspClk();
1187 // Okay, look at the command now.
1188 if(receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1189 // Reader in anticollission phase
1190 modulated_response
= resp_sof
; modulated_response_size
= resp_sof_Len
; //order = 1;
1191 trace_data
= sof_data
;
1192 trace_data_size
= sizeof(sof_data
);
1193 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1194 // Reader asks for anticollission CSN
1195 modulated_response
= resp_anticoll
; modulated_response_size
= resp_anticoll_len
; //order = 2;
1196 trace_data
= anticoll_data
;
1197 trace_data_size
= sizeof(anticoll_data
);
1198 //DbpString("Reader requests anticollission CSN:");
1199 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1200 // Reader selects anticollission CSN.
1201 // Tag sends the corresponding real CSN
1202 modulated_response
= resp_csn
; modulated_response_size
= resp_csn_len
; //order = 3;
1203 trace_data
= csn_data
;
1204 trace_data_size
= sizeof(csn_data
);
1205 //DbpString("Reader selects anticollission CSN:");
1206 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1207 // Read e-purse (88 02)
1208 modulated_response
= resp_cc
; modulated_response_size
= resp_cc_len
; //order = 4;
1209 trace_data
= card_challenge_data
;
1210 trace_data_size
= sizeof(card_challenge_data
);
1212 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1213 // Reader random and reader MAC!!!
1214 if(simulationMode
== MODE_FULLSIM
)
1216 //NR, from reader, is in receivedCmd +1
1217 opt_doTagMAC_2(cipher_state
,receivedCmd
+1,data_generic_trace
,diversified_key
);
1219 trace_data
= data_generic_trace
;
1220 trace_data_size
= 4;
1221 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1222 memcpy(data_response
, ToSend
, ToSendMax
);
1223 modulated_response
= data_response
;
1224 modulated_response_size
= ToSendMax
;
1225 response_delay
= 0;//We need to hurry here...
1228 { //Not fullsim, we don't respond
1229 // We do not know what to answer, so lets keep quiet
1230 modulated_response
= resp_sof
; modulated_response_size
= 0;
1232 trace_data_size
= 0;
1233 if (simulationMode
== MODE_EXIT_AFTER_MAC
){
1235 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1236 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1237 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1238 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1239 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1240 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1241 if (reader_mac_buf
!= NULL
)
1243 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1249 } else if(receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1250 // Reader ends the session
1251 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1253 trace_data_size
= 0;
1254 } else if(simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4){
1256 uint16_t blk
= receivedCmd
[1];
1258 memcpy(data_generic_trace
, emulator
+(blk
<< 3),8);
1260 AppendCrc(data_generic_trace
, 8);
1261 trace_data
= data_generic_trace
;
1262 trace_data_size
= 10;
1263 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1264 memcpy(data_response
, ToSend
, ToSendMax
);
1265 modulated_response
= data_response
;
1266 modulated_response_size
= ToSendMax
;
1267 }else if(receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== MODE_FULLSIM
)
1268 {//Probably the reader wants to update the nonce. Let's just ignore that for now.
1269 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1270 //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
1271 //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
1274 memcpy(data_generic_trace
, receivedCmd
+2,8);
1276 AppendCrc(data_generic_trace
, 8);
1277 trace_data
= data_generic_trace
;
1278 trace_data_size
= 10;
1279 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1280 memcpy(data_response
, ToSend
, ToSendMax
);
1281 modulated_response
= data_response
;
1282 modulated_response_size
= ToSendMax
;
1284 else if(receivedCmd
[0] == ICLASS_CMD_PAGESEL
)
1286 //Pagesel enables to select a page in the selected chip memory and return its configuration block
1287 //Chips with a single page will not answer to this command
1288 // It appears we're fine ignoring this.
1289 //Otherwise, we should answer 8bytes (block) + 2bytes CRC
1292 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1293 // Never seen this command before
1294 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1296 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1297 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1298 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1300 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1302 trace_data_size
= 0;
1305 if(cmdsRecvd
> 100) {
1306 //DbpString("100 commands later...");
1313 A legit tag has about 380us delay between reader EOT and tag SOF.
1315 if(modulated_response_size
> 0) {
1316 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1317 t2r_time
= GetCountSspClk();
1320 uint8_t parity
[MAX_PARITY_SIZE
];
1321 GetParity(receivedCmd
, len
, parity
);
1322 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, true);
1324 if (trace_data
!= NULL
) {
1325 GetParity(trace_data
, trace_data_size
, parity
);
1326 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, false);
1328 if(!get_tracing()) {
1329 DbpString("Trace full");
1334 //Dbprintf("%x", cmdsRecvd);
1341 DbpString("Button pressed");
1343 return buttonPressed
;
1346 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1348 int i
= 0, d
=0;//, u = 0, d = 0;
1351 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1352 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1354 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1355 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1356 while(!BUTTON_PRESS()) {
1357 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1358 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1360 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1373 AT91C_BASE_SSC
->SSC_THR
= b
;
1376 // if (i > respLen +4) break;
1377 if (i
> respLen
+1) break;
1385 //-----------------------------------------------------------------------------
1386 // Transmit the command (to the tag) that was placed in ToSend[].
1387 //-----------------------------------------------------------------------------
1388 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1391 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1392 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1393 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1397 if(*wait
< 10) *wait
= 10;
1399 for(c
= 0; c
< *wait
;) {
1400 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1401 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1404 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1405 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1415 bool firstpart
= true;
1418 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1420 // DOUBLE THE SAMPLES!
1422 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1425 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1428 if(sendbyte
== 0xff) {
1431 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1432 firstpart
= !firstpart
;
1438 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1439 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1444 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1448 //-----------------------------------------------------------------------------
1449 // Prepare iClass reader command to send to FPGA
1450 //-----------------------------------------------------------------------------
1451 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1458 // Start of Communication: 1 out of 4
1459 ToSend
[++ToSendMax
] = 0xf0;
1460 ToSend
[++ToSendMax
] = 0x00;
1461 ToSend
[++ToSendMax
] = 0x0f;
1462 ToSend
[++ToSendMax
] = 0x00;
1464 // Modulate the bytes
1465 for (i
= 0; i
< len
; i
++) {
1467 for(j
= 0; j
< 4; j
++) {
1468 for(k
= 0; k
< 4; k
++) {
1470 ToSend
[++ToSendMax
] = 0xf0;
1473 ToSend
[++ToSendMax
] = 0x00;
1480 // End of Communication
1481 ToSend
[++ToSendMax
] = 0x00;
1482 ToSend
[++ToSendMax
] = 0x00;
1483 ToSend
[++ToSendMax
] = 0xf0;
1484 ToSend
[++ToSendMax
] = 0x00;
1486 // Convert from last character reference to length
1490 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1495 // This is tied to other size changes
1496 CodeIClassCommand(frame
,len
);
1499 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1503 // Store reader command in buffer
1504 uint8_t par
[MAX_PARITY_SIZE
];
1505 GetParity(frame
, len
, par
);
1506 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1509 //-----------------------------------------------------------------------------
1510 // Wait a certain time for tag response
1511 // If a response is captured return true
1512 // If it takes too long return false
1513 //-----------------------------------------------------------------------------
1514 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1516 // buffer needs to be 512 bytes
1519 // Set FPGA mode to "reader listen mode", no modulation (listen
1520 // only, since we are receiving, not transmitting).
1521 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1523 // Now get the answer from the card
1524 Demod
.output
= receivedResponse
;
1526 Demod
.state
= DEMOD_UNSYNCD
;
1529 if (elapsed
) *elapsed
= 0;
1537 if(BUTTON_PRESS()) return false;
1539 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1540 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1541 if (elapsed
) (*elapsed
)++;
1543 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1544 if(c
< timeout
) { c
++; } else { return false; }
1545 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1549 if(ManchesterDecoding(b
& 0x0f)) {
1557 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1560 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return false;
1561 rsamples
+= samples
;
1562 uint8_t parity
[MAX_PARITY_SIZE
];
1563 GetParity(receivedAnswer
, Demod
.len
, parity
);
1564 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,false);
1565 if(samples
== 0) return false;
1569 void setupIclassReader()
1571 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1572 // Reset trace buffer
1577 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1578 // Start from off (no field generated)
1579 // Signal field is off with the appropriate LED
1581 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1584 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1586 // Now give it time to spin up.
1587 // Signal field is on with the appropriate LED
1588 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1594 bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1596 while(retries
-- > 0)
1598 ReaderTransmitIClass(command
, cmdsize
);
1599 if(expected_size
== ReaderReceiveIClass(resp
)){
1603 return false;//Error
1607 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1608 * @param card_data where the CSN and CC are stored for return
1611 * 2 = Got CSN and CC
1613 uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
)
1615 static uint8_t act_all
[] = { 0x0a };
1616 //static uint8_t identify[] = { 0x0c };
1617 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1618 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1619 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1621 readcheck_cc
[0] = 0x18;
1623 readcheck_cc
[0] = 0x88;
1625 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1627 uint8_t read_status
= 0;
1630 ReaderTransmitIClass(act_all
, 1);
1632 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1634 ReaderTransmitIClass(identify
, 1);
1635 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1636 uint8_t len
= ReaderReceiveIClass(resp
);
1637 if(len
!= 10) return read_status
;//Fail
1639 //Copy the Anti-collision CSN to our select-packet
1640 memcpy(&select
[1],resp
,8);
1642 ReaderTransmitIClass(select
, sizeof(select
));
1643 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1644 len
= ReaderReceiveIClass(resp
);
1645 if(len
!= 10) return read_status
;//Fail
1647 //Success - level 1, we got CSN
1648 //Save CSN in response data
1649 memcpy(card_data
,resp
,8);
1651 //Flag that we got to at least stage 1, read CSN
1654 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1655 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1656 if(ReaderReceiveIClass(resp
) == 8) {
1657 //Save CC (e-purse) in response data
1658 memcpy(card_data
+8,resp
,8);
1664 uint8_t handshakeIclassTag(uint8_t *card_data
) {
1665 return handshakeIclassTag_ext(card_data
, false);
1669 // Reader iClass Anticollission
1670 void ReaderIClass(uint8_t arg0
) {
1672 uint8_t card_data
[6 * 8]={0};
1673 memset(card_data
, 0xFF, sizeof(card_data
));
1674 uint8_t last_csn
[8]={0,0,0,0,0,0,0,0};
1675 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1676 memset(resp
, 0xFF, sizeof(resp
));
1677 //Read conf block CRC(0x01) => 0xfa 0x22
1678 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x01, 0xfa, 0x22};
1679 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1680 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
,0x05, 0xde, 0x64};
1683 uint8_t result_status
= 0;
1684 // flag to read until one tag is found successfully
1685 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1686 // flag to only try 5 times to find one tag then return
1687 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1688 // if neither abort_after_read nor try_once then continue reading until button pressed.
1690 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1691 // test flags for what blocks to be sure to read
1692 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1693 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1694 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1697 setupIclassReader();
1700 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1701 while(!userCancelled
)
1703 // if only looking for one card try 2 times if we missed it the first time
1704 if (try_once
&& tryCnt
> 2) break;
1706 if(!get_tracing()) {
1707 DbpString("Trace full");
1712 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1714 if(read_status
== 0) continue;
1715 if(read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1716 if(read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
|FLAG_ICLASS_READER_CC
;
1718 // handshakeIclass returns CSN|CC, but the actual block
1719 // layout is CSN|CONFIG|CC, so here we reorder the data,
1720 // moving CC forward 8 bytes
1721 memcpy(card_data
+16,card_data
+8, 8);
1722 //Read block 1, config
1723 if(flagReadConfig
) {
1724 if(sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10))
1726 result_status
|= FLAG_ICLASS_READER_CONF
;
1727 memcpy(card_data
+8, resp
, 8);
1729 Dbprintf("Failed to dump config block");
1735 if(sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10))
1737 result_status
|= FLAG_ICLASS_READER_AA
;
1738 memcpy(card_data
+(8*5), resp
, 8);
1740 //Dbprintf("Failed to dump AA block");
1745 // 1 : Configuration
1747 // (3,4 write-only, kc and kd)
1748 // 5 Application issuer area
1750 //Then we can 'ship' back the 8 * 6 bytes of data,
1751 // with 0xFF:s in block 3 and 4.
1754 //Send back to client, but don't bother if we already sent this -
1755 // only useful if looping in arm (not try_once && not abort_after_read)
1756 if(memcmp(last_csn
, card_data
, 8) != 0)
1758 // If caller requires that we get Conf, CC, AA, continue until we got it
1759 if( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1760 cmd_send(CMD_ACK
,result_status
,0,0,card_data
,sizeof(card_data
));
1761 if(abort_after_read
) {
1766 //Save that we already sent this....
1767 memcpy(last_csn
, card_data
, 8);
1772 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1774 if (userCancelled
) {
1775 cmd_send(CMD_ACK
,0xFF,0,0,card_data
, 0);
1777 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1782 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1784 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1785 uint16_t block_crc_LUT
[255] = {0};
1787 {//Generate a lookup table for block crc
1788 for(int block
= 0; block
< 255; block
++){
1790 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1793 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1795 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1796 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1802 static struct memory_t
{
1810 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1812 setupIclassReader();
1815 while(!BUTTON_PRESS()) {
1819 if(!get_tracing()) {
1820 DbpString("Trace full");
1824 uint8_t read_status
= handshakeIclassTag(card_data
);
1825 if(read_status
< 2) continue;
1827 //for now replay captured auth (as cc not updated)
1828 memcpy(check
+5,MAC
,4);
1830 if(!sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1832 Dbprintf("Error: Authentication Fail!");
1836 //first get configuration block (block 1)
1837 crc
= block_crc_LUT
[1];
1840 read
[3] = crc
& 0xff;
1842 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1844 Dbprintf("Dump config (block 1) failed");
1849 memory
.k16
= (mem
& 0x80);
1850 memory
.book
= (mem
& 0x20);
1851 memory
.k2
= (mem
& 0x8);
1852 memory
.lockauth
= (mem
& 0x2);
1853 memory
.keyaccess
= (mem
& 0x1);
1855 cardsize
= memory
.k16
? 255 : 32;
1857 //Set card_data to all zeroes, we'll fill it with data
1858 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1859 uint8_t failedRead
=0;
1860 uint32_t stored_data_length
=0;
1861 //then loop around remaining blocks
1862 for(int block
=0; block
< cardsize
; block
++){
1865 crc
= block_crc_LUT
[block
];
1867 read
[3] = crc
& 0xff;
1869 if(sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1871 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1872 block
, resp
[0], resp
[1], resp
[2],
1873 resp
[3], resp
[4], resp
[5],
1876 //Fill up the buffer
1877 memcpy(card_data
+stored_data_length
,resp
,8);
1878 stored_data_length
+= 8;
1879 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1880 {//Time to send this off and start afresh
1882 stored_data_length
,//data length
1883 failedRead
,//Failed blocks?
1885 card_data
, stored_data_length
);
1887 stored_data_length
= 0;
1893 stored_data_length
+=8;//Otherwise, data becomes misaligned
1894 Dbprintf("Failed to dump block %d", block
);
1898 //Send off any remaining data
1899 if(stored_data_length
> 0)
1902 stored_data_length
,//data length
1903 failedRead
,//Failed blocks?
1905 card_data
, stored_data_length
);
1907 //If we got here, let's break
1910 //Signal end of transmission
1920 void iClass_ReadCheck(uint8_t blockNo
, uint8_t keyType
) {
1921 uint8_t readcheck
[] = { keyType
, blockNo
};
1922 uint8_t resp
[] = {0,0,0,0,0,0,0,0};
1924 isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6);
1925 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1928 void iClass_Authentication(uint8_t *MAC
) {
1929 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1930 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1931 memcpy(check
+5,MAC
,4);
1933 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1934 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
1936 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1937 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1939 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1940 readcmd
[2] = rdCrc
>> 8;
1941 readcmd
[3] = rdCrc
& 0xff;
1942 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1945 //readcmd[1] = blockNo;
1946 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1947 memcpy(readdata
, resp
, sizeof(resp
));
1952 void iClass_ReadBlk(uint8_t blockno
) {
1953 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1955 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1956 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1959 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1960 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1965 uint8_t *dataout
= BigBuf_malloc(255*8);
1966 if (dataout
== NULL
){
1967 Dbprintf("out of memory");
1971 memset(dataout
,0xFF,255*8);
1973 for (;blkCnt
< numblks
; blkCnt
++) {
1974 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1975 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1976 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1978 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1982 memcpy(dataout
+(blkCnt
*8),readblockdata
,8);
1984 //return pointer to dump memory in arg3
1985 cmd_send(CMD_ACK
,isOK
,blkCnt
,BigBuf_max_traceLen(),0,0);
1986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1991 bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1992 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1993 //uint8_t readblockdata[10];
1994 //write[1] = blockNo;
1995 memcpy(write
+2, data
, 12); // data + mac
1996 char *wrCmd
= (char *)(write
+1);
1997 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1998 write
[14] = wrCrc
>> 8;
1999 write
[15] = wrCrc
& 0xff;
2000 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
2003 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2004 if (isOK
) { //if reader responded correctly
2005 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
2006 if (memcmp(write
+2,resp
,8)) { //if response is not equal to write values
2007 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
2009 isOK
= sendCmdGetResponseWithRetries(write
,sizeof(write
),resp
,sizeof(resp
),10);
2017 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
2018 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
2020 Dbprintf("Write block [%02x] successful",blockNo
);
2022 Dbprintf("Write block [%02x] failed",blockNo
);
2024 cmd_send(CMD_ACK
,isOK
,0,0,0,0);
2027 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
2030 int total_block
= (endblock
- startblock
) + 1;
2031 for (i
= 0; i
< total_block
;i
++){
2033 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2034 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2037 if (iClass_WriteBlock_ext(i
+startblock
, data
+(i
*12))){
2038 Dbprintf("Write block [%02x] successful",i
+ startblock
);
2041 Dbprintf("Write block [%02x] failed",i
+ startblock
);
2045 if (written
== total_block
)
2046 Dbprintf("Clone complete");
2048 Dbprintf("Clone incomplete");
2050 cmd_send(CMD_ACK
,1,0,0,0,0);
2051 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);