]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
fixed #395
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include "mifarehost.h"
12
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <pthread.h>
17
18 #include "crapto1/crapto1.h"
19 #include "proxmark3.h"
20 #include "usb_cmd.h"
21 #include "cmdmain.h"
22 #include "ui.h"
23 #include "util.h"
24 #include "iso14443crc.h"
25
26 #include "mifare.h"
27
28 // mifare tracer flags used in mfTraceDecode()
29 #define TRACE_IDLE 0x00
30 #define TRACE_AUTH1 0x01
31 #define TRACE_AUTH2 0x02
32 #define TRACE_AUTH_OK 0x03
33 #define TRACE_READ_DATA 0x04
34 #define TRACE_WRITE_OK 0x05
35 #define TRACE_WRITE_DATA 0x06
36 #define TRACE_ERROR 0xFF
37
38
39 static int compare_uint64(const void *a, const void *b) {
40 // didn't work: (the result is truncated to 32 bits)
41 //return (*(int64_t*)b - *(int64_t*)a);
42
43 // better:
44 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
45 else if (*(uint64_t*)b < *(uint64_t*)a) return 1;
46 else return -1;
47 }
48
49
50 // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
51 static uint32_t intersection(uint64_t *list1, uint64_t *list2)
52 {
53 if (list1 == NULL || list2 == NULL) {
54 return 0;
55 }
56 uint64_t *p1, *p2, *p3;
57 p1 = p3 = list1;
58 p2 = list2;
59
60 while ( *p1 != -1 && *p2 != -1 ) {
61 if (compare_uint64(p1, p2) == 0) {
62 *p3++ = *p1++;
63 p2++;
64 }
65 else {
66 while (compare_uint64(p1, p2) < 0) ++p1;
67 while (compare_uint64(p1, p2) > 0) ++p2;
68 }
69 }
70 *p3 = -1;
71 return p3 - list1;
72 }
73
74
75 // Darkside attack (hf mf mifare)
76 static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
77 struct Crypto1State *states;
78 uint32_t i, pos, rr; //nr_diff;
79 uint8_t bt, ks3x[8], par[8][8];
80 uint64_t key_recovered;
81 static uint64_t *keylist;
82 rr = 0;
83
84 // Reset the last three significant bits of the reader nonce
85 nr &= 0xffffff1f;
86
87 for (pos=0; pos<8; pos++) {
88 ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
89 bt = (par_info >> (pos*8)) & 0xff;
90 for (i=0; i<8; i++) {
91 par[7-pos][i] = (bt >> i) & 0x01;
92 }
93 }
94
95 states = lfsr_common_prefix(nr, rr, ks3x, par, (par_info == 0));
96
97 if (states == NULL) {
98 *keys = NULL;
99 return 0;
100 }
101
102 keylist = (uint64_t*)states;
103
104 for (i = 0; keylist[i]; i++) {
105 lfsr_rollback_word(states+i, uid^nt, 0);
106 crypto1_get_lfsr(states+i, &key_recovered);
107 keylist[i] = key_recovered;
108 }
109 keylist[i] = -1;
110
111 *keys = keylist;
112 return i;
113 }
114
115
116 int mfDarkside(uint64_t *key)
117 {
118 uint32_t uid = 0;
119 uint32_t nt = 0, nr = 0;
120 uint64_t par_list = 0, ks_list = 0;
121 uint64_t *keylist = NULL, *last_keylist = NULL;
122 uint32_t keycount = 0;
123 int16_t isOK = 0;
124
125 UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}};
126
127 // message
128 printf("-------------------------------------------------------------------------\n");
129 printf("Executing command. Expected execution time: 25sec on average\n");
130 printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
131 printf("-------------------------------------------------------------------------\n");
132
133
134 while (true) {
135 clearCommandBuffer();
136 SendCommand(&c);
137
138 //flush queue
139 while (ukbhit()) {
140 int c = getchar(); (void) c;
141 }
142
143 // wait cycle
144 while (true) {
145 printf(".");
146 fflush(stdout);
147 if (ukbhit()) {
148 return -5;
149 break;
150 }
151
152 UsbCommand resp;
153 if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) {
154 isOK = resp.arg[0];
155 if (isOK < 0) {
156 return isOK;
157 }
158 uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
159 nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
160 par_list = bytes_to_num(resp.d.asBytes + 8, 8);
161 ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
162 nr = bytes_to_num(resp.d.asBytes + 24, 4);
163 break;
164 }
165 }
166
167 if (par_list == 0 && c.arg[0] == true) {
168 PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
169 PrintAndLog("Attack will take a few seconds longer because we need two consecutive successful runs.");
170 }
171 c.arg[0] = false;
172
173 keycount = nonce2key(uid, nt, nr, par_list, ks_list, &keylist);
174
175 if (keycount == 0) {
176 PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
177 PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
178 continue;
179 }
180
181 qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
182 keycount = intersection(last_keylist, keylist);
183 if (keycount == 0) {
184 free(last_keylist);
185 last_keylist = keylist;
186 continue;
187 }
188
189 if (keycount > 1) {
190 PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount);
191 } else {
192 PrintAndLog("Found a possible key. Trying to authenticate...\n");
193 }
194
195 *key = -1;
196 uint8_t keyBlock[USB_CMD_DATA_SIZE];
197 int max_keys = USB_CMD_DATA_SIZE/6;
198 for (int i = 0; i < keycount; i += max_keys) {
199 int size = keycount - i > max_keys ? max_keys : keycount - i;
200 for (int j = 0; j < size; j++) {
201 if (last_keylist == NULL) {
202 num_to_bytes(keylist[i*max_keys + j], 6, keyBlock);
203 } else {
204 num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock);
205 }
206 }
207 if (!mfCheckKeys(0, 0, false, size, keyBlock, key)) {
208 break;
209 }
210 }
211
212 if (*key != -1) {
213 free(last_keylist);
214 free(keylist);
215 break;
216 } else {
217 PrintAndLog("Authentication failed. Trying again...");
218 free(last_keylist);
219 last_keylist = keylist;
220 }
221 }
222
223 return 0;
224 }
225
226
227 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
228
229 *key = -1;
230
231 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
232 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
233 SendCommand(&c);
234
235 UsbCommand resp;
236 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
237 if ((resp.arg[0] & 0xff) != 0x01) return 2;
238 *key = bytes_to_num(resp.d.asBytes, 6);
239 return 0;
240 }
241
242 // Compare 16 Bits out of cryptostate
243 int Compare16Bits(const void * a, const void * b) {
244 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
245 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
246 else return -1;
247 }
248
249 typedef
250 struct {
251 union {
252 struct Crypto1State *slhead;
253 uint64_t *keyhead;
254 } head;
255 union {
256 struct Crypto1State *sltail;
257 uint64_t *keytail;
258 } tail;
259 uint32_t len;
260 uint32_t uid;
261 uint32_t blockNo;
262 uint32_t keyType;
263 uint32_t nt;
264 uint32_t ks1;
265 } StateList_t;
266
267
268 // wrapper function for multi-threaded lfsr_recovery32
269 void* nested_worker_thread(void *arg)
270 {
271 struct Crypto1State *p1;
272 StateList_t *statelist = arg;
273
274 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
275 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
276 statelist->len = p1 - statelist->head.slhead;
277 statelist->tail.sltail = --p1;
278 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
279
280 return statelist->head.slhead;
281 }
282
283 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
284 {
285 uint16_t i;
286 uint32_t uid;
287 UsbCommand resp;
288
289 StateList_t statelists[2];
290 struct Crypto1State *p1, *p2, *p3, *p4;
291
292 // flush queue
293 WaitForResponseTimeout(CMD_ACK, NULL, 100);
294
295 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
296 memcpy(c.d.asBytes, key, 6);
297 SendCommand(&c);
298
299 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
300 return -1;
301 }
302
303 if (resp.arg[0]) {
304 return resp.arg[0]; // error during nested
305 }
306
307 memcpy(&uid, resp.d.asBytes, 4);
308 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
309
310 for (i = 0; i < 2; i++) {
311 statelists[i].blockNo = resp.arg[2] & 0xff;
312 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
313 statelists[i].uid = uid;
314 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
315 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
316 }
317
318 // calc keys
319
320 pthread_t thread_id[2];
321
322 // create and run worker threads
323 for (i = 0; i < 2; i++) {
324 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
325 }
326
327 // wait for threads to terminate:
328 for (i = 0; i < 2; i++) {
329 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
330 }
331
332
333 // the first 16 Bits of the cryptostate already contain part of our key.
334 // Create the intersection of the two lists based on these 16 Bits and
335 // roll back the cryptostate
336 p1 = p3 = statelists[0].head.slhead;
337 p2 = p4 = statelists[1].head.slhead;
338 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
339 if (Compare16Bits(p1, p2) == 0) {
340 struct Crypto1State savestate, *savep = &savestate;
341 savestate = *p1;
342 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
343 *p3 = *p1;
344 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
345 p3++;
346 p1++;
347 }
348 savestate = *p2;
349 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
350 *p4 = *p2;
351 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
352 p4++;
353 p2++;
354 }
355 }
356 else {
357 while (Compare16Bits(p1, p2) == -1) p1++;
358 while (Compare16Bits(p1, p2) == 1) p2++;
359 }
360 }
361 *(uint64_t*)p3 = -1;
362 *(uint64_t*)p4 = -1;
363 statelists[0].len = p3 - statelists[0].head.slhead;
364 statelists[1].len = p4 - statelists[1].head.slhead;
365 statelists[0].tail.sltail=--p3;
366 statelists[1].tail.sltail=--p4;
367
368 // the statelists now contain possible keys. The key we are searching for must be in the
369 // intersection of both lists. Create the intersection:
370 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
371 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
372 statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
373
374 memset(resultKey, 0, 6);
375 // The list may still contain several key candidates. Test each of them with mfCheckKeys
376 for (i = 0; i < statelists[0].len; i++) {
377 uint8_t keyBlock[6];
378 uint64_t key64;
379 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
380 num_to_bytes(key64, 6, keyBlock);
381 key64 = 0;
382 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
383 num_to_bytes(key64, 6, resultKey);
384 break;
385 }
386 }
387
388 free(statelists[0].head.slhead);
389 free(statelists[1].head.slhead);
390
391 return 0;
392 }
393
394 // EMULATOR
395
396 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
397 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
398 SendCommand(&c);
399
400 UsbCommand resp;
401 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
402 memcpy(data, resp.d.asBytes, blocksCount * 16);
403 return 0;
404 }
405
406 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
407 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
408 memcpy(c.d.asBytes, data, blocksCount * 16);
409 SendCommand(&c);
410 return 0;
411 }
412
413 // "MAGIC" CARD
414
415 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
416 uint8_t isOK = 0;
417
418 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
419 SendCommand(&c);
420
421 UsbCommand resp;
422 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
423 isOK = resp.arg[0] & 0xff;
424 memcpy(data, resp.d.asBytes, 16);
425 if (!isOK) return 2;
426 } else {
427 PrintAndLog("Command execute timeout");
428 return 1;
429 }
430 return 0;
431 }
432
433 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
434
435 uint8_t isOK = 0;
436 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
437 memcpy(c.d.asBytes, data, 16);
438 SendCommand(&c);
439
440 UsbCommand resp;
441 if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
442 isOK = resp.arg[0] & 0xff;
443 if (uid != NULL)
444 memcpy(uid, resp.d.asBytes, 4);
445 if (!isOK)
446 return 2;
447 } else {
448 PrintAndLog("Command execute timeout");
449 return 1;
450 }
451
452 return 0;
453 }
454
455 int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) {
456 uint8_t isOK = 0;
457 uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04;
458 UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}};
459 SendCommand(&c);
460
461 UsbCommand resp;
462 WaitForResponse(CMD_ACK,&resp);
463 isOK = resp.arg[0] & 0xff;
464
465 return isOK;
466 }
467
468 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) {
469 uint8_t oldblock0[16] = {0x00};
470 uint8_t block0[16] = {0x00};
471 int gen = 0, res;
472
473 gen = mfCIdentify();
474
475 /* generation 1a magic card by default */
476 uint8_t cmdParams = CSETBLOCK_SINGLE_OPER;
477 if (gen == 2) {
478 /* generation 1b magic card */
479 cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B;
480 }
481
482 res = mfCGetBlock(0, oldblock0, cmdParams);
483
484 if (res == 0) {
485 memcpy(block0, oldblock0, 16);
486 PrintAndLog("old block 0: %s", sprint_hex(block0,16));
487 } else {
488 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
489 }
490
491 // fill in the new values
492 // UID
493 memcpy(block0, uid, 4);
494 // Mifare UID BCC
495 block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
496 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
497 if (sak != NULL)
498 block0[5] = sak[0];
499 if (atqa != NULL) {
500 block0[6] = atqa[1];
501 block0[7] = atqa[0];
502 }
503 PrintAndLog("new block 0: %s", sprint_hex(block0, 16));
504
505 res = mfCSetBlock(0, block0, oldUID, false, cmdParams);
506 if (res) {
507 PrintAndLog("Can't set block 0. Error: %d", res);
508 return res;
509 }
510
511 return 0;
512 }
513
514 int mfCIdentify()
515 {
516 UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}};
517 SendCommand(&c);
518
519 UsbCommand resp;
520 WaitForResponse(CMD_ACK,&resp);
521
522 iso14a_card_select_t card;
523 memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t));
524
525 uint64_t select_status = resp.arg[0]; // 0: couldn't read, 1: OK, with ATS, 2: OK, no ATS, 3: proprietary Anticollision
526
527 if(select_status != 0) {
528 uint8_t rats[] = { 0xE0, 0x80 }; // FSDI=8 (FSD=256), CID=0
529 c.arg[0] = ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_DISCONNECT;
530 c.arg[1] = 2;
531 c.arg[2] = 0;
532 memcpy(c.d.asBytes, rats, 2);
533 SendCommand(&c);
534 WaitForResponse(CMD_ACK,&resp);
535 }
536
537 c.cmd = CMD_MIFARE_CIDENT;
538 c.arg[0] = 0;
539 c.arg[1] = 0;
540 c.arg[2] = 0;
541 SendCommand(&c);
542 WaitForResponse(CMD_ACK,&resp);
543
544 uint8_t isGeneration = resp.arg[0] & 0xff;
545 switch( isGeneration ){
546 case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break;
547 case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break;
548 default: PrintAndLog("No chinese magic backdoor command detected"); break;
549 }
550
551 // disconnect
552 c.cmd = CMD_READER_ISO_14443a;
553 c.arg[0] = 0;
554 c.arg[1] = 0;
555 c.arg[2] = 0;
556 SendCommand(&c);
557
558 return (int) isGeneration;
559 }
560
561
562 // SNIFFER
563
564 // constants
565 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
566
567 // variables
568 char logHexFileName[FILE_PATH_SIZE] = {0x00};
569 static uint8_t traceCard[4096] = {0x00};
570 static char traceFileName[FILE_PATH_SIZE] = {0x00};
571 static int traceState = TRACE_IDLE;
572 static uint8_t traceCurBlock = 0;
573 static uint8_t traceCurKey = 0;
574
575 struct Crypto1State *traceCrypto1 = NULL;
576
577 struct Crypto1State *revstate;
578 uint64_t lfsr;
579 uint32_t ks2;
580 uint32_t ks3;
581
582 uint32_t uid; // serial number
583 uint32_t nt; // tag challenge
584 uint32_t nr_enc; // encrypted reader challenge
585 uint32_t ar_enc; // encrypted reader response
586 uint32_t at_enc; // encrypted tag response
587
588 int isTraceCardEmpty(void) {
589 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
590 }
591
592 int isBlockEmpty(int blockN) {
593 for (int i = 0; i < 16; i++)
594 if (traceCard[blockN * 16 + i] != 0) return 0;
595
596 return 1;
597 }
598
599 int isBlockTrailer(int blockN) {
600 return ((blockN & 0x03) == 0x03);
601 }
602
603 int saveTraceCard(void) {
604 FILE * f;
605
606 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
607
608 f = fopen(traceFileName, "w+");
609 if ( !f ) return 1;
610
611 for (int i = 0; i < 64; i++) { // blocks
612 for (int j = 0; j < 16; j++) // bytes
613 fprintf(f, "%02x", *(traceCard + i * 16 + j));
614 fprintf(f,"\n");
615 }
616 fclose(f);
617 return 0;
618 }
619
620 int loadTraceCard(uint8_t *tuid) {
621 FILE * f;
622 char buf[64] = {0x00};
623 uint8_t buf8[64] = {0x00};
624 int i, blockNum;
625
626 if (!isTraceCardEmpty())
627 saveTraceCard();
628
629 memset(traceCard, 0x00, 4096);
630 memcpy(traceCard, tuid + 3, 4);
631
632 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
633
634 f = fopen(traceFileName, "r");
635 if (!f) return 1;
636
637 blockNum = 0;
638
639 while(!feof(f)){
640
641 memset(buf, 0, sizeof(buf));
642 if (fgets(buf, sizeof(buf), f) == NULL) {
643 PrintAndLog("File reading error.");
644 fclose(f);
645 return 2;
646 }
647
648 if (strlen(buf) < 32){
649 if (feof(f)) break;
650 PrintAndLog("File content error. Block data must include 32 HEX symbols");
651 fclose(f);
652 return 2;
653 }
654 for (i = 0; i < 32; i += 2)
655 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
656
657 memcpy(traceCard + blockNum * 16, buf8, 16);
658
659 blockNum++;
660 }
661 fclose(f);
662
663 return 0;
664 }
665
666 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
667
668 if (traceCrypto1)
669 crypto1_destroy(traceCrypto1);
670
671 traceCrypto1 = NULL;
672
673 if (wantSaveToEmlFile)
674 loadTraceCard(tuid);
675
676 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
677 traceCard[5] = sak;
678 memcpy(&traceCard[6], atqa, 2);
679 traceCurBlock = 0;
680 uid = bytes_to_num(tuid + 3, 4);
681
682 traceState = TRACE_IDLE;
683
684 return 0;
685 }
686
687 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
688 uint8_t bt = 0;
689 int i;
690
691 if (len != 1) {
692 for (i = 0; i < len; i++)
693 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
694 } else {
695 bt = 0;
696 for (i = 0; i < 4; i++)
697 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
698
699 data[0] = bt;
700 }
701 return;
702 }
703
704
705 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
706 uint8_t data[64];
707
708 if (traceState == TRACE_ERROR) return 1;
709 if (len > 64) {
710 traceState = TRACE_ERROR;
711 return 1;
712 }
713
714 memcpy(data, data_src, len);
715 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
716 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
717 PrintAndLog("dec> %s", sprint_hex(data, len));
718 AddLogHex(logHexFileName, "dec> ", data, len);
719 }
720
721 switch (traceState) {
722 case TRACE_IDLE:
723 // check packet crc16!
724 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
725 PrintAndLog("dec> CRC ERROR!!!");
726 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
727 traceState = TRACE_ERROR; // do not decrypt the next commands
728 return 1;
729 }
730
731 // AUTHENTICATION
732 if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
733 traceState = TRACE_AUTH1;
734 traceCurBlock = data[1];
735 traceCurKey = data[0] == 60 ? 1:0;
736 return 0;
737 }
738
739 // READ
740 if ((len ==4) && ((data[0] == 0x30))) {
741 traceState = TRACE_READ_DATA;
742 traceCurBlock = data[1];
743 return 0;
744 }
745
746 // WRITE
747 if ((len ==4) && ((data[0] == 0xA0))) {
748 traceState = TRACE_WRITE_OK;
749 traceCurBlock = data[1];
750 return 0;
751 }
752
753 // HALT
754 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
755 traceState = TRACE_ERROR; // do not decrypt the next commands
756 return 0;
757 }
758
759 return 0;
760 break;
761
762 case TRACE_READ_DATA:
763 if (len == 18) {
764 traceState = TRACE_IDLE;
765
766 if (isBlockTrailer(traceCurBlock)) {
767 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
768 } else {
769 memcpy(traceCard + traceCurBlock * 16, data, 16);
770 }
771 if (wantSaveToEmlFile) saveTraceCard();
772 return 0;
773 } else {
774 traceState = TRACE_ERROR;
775 return 1;
776 }
777 break;
778
779 case TRACE_WRITE_OK:
780 if ((len == 1) && (data[0] == 0x0a)) {
781 traceState = TRACE_WRITE_DATA;
782
783 return 0;
784 } else {
785 traceState = TRACE_ERROR;
786 return 1;
787 }
788 break;
789
790 case TRACE_WRITE_DATA:
791 if (len == 18) {
792 traceState = TRACE_IDLE;
793
794 memcpy(traceCard + traceCurBlock * 16, data, 16);
795 if (wantSaveToEmlFile) saveTraceCard();
796 return 0;
797 } else {
798 traceState = TRACE_ERROR;
799 return 1;
800 }
801 break;
802
803 case TRACE_AUTH1:
804 if (len == 4) {
805 traceState = TRACE_AUTH2;
806 nt = bytes_to_num(data, 4);
807 return 0;
808 } else {
809 traceState = TRACE_ERROR;
810 return 1;
811 }
812 break;
813
814 case TRACE_AUTH2:
815 if (len == 8) {
816 traceState = TRACE_AUTH_OK;
817
818 nr_enc = bytes_to_num(data, 4);
819 ar_enc = bytes_to_num(data + 4, 4);
820 return 0;
821 } else {
822 traceState = TRACE_ERROR;
823 return 1;
824 }
825 break;
826
827 case TRACE_AUTH_OK:
828 if (len ==4) {
829 traceState = TRACE_IDLE;
830
831 at_enc = bytes_to_num(data, 4);
832
833 // decode key here)
834 ks2 = ar_enc ^ prng_successor(nt, 64);
835 ks3 = at_enc ^ prng_successor(nt, 96);
836 revstate = lfsr_recovery64(ks2, ks3);
837 lfsr_rollback_word(revstate, 0, 0);
838 lfsr_rollback_word(revstate, 0, 0);
839 lfsr_rollback_word(revstate, nr_enc, 1);
840 lfsr_rollback_word(revstate, uid ^ nt, 0);
841
842 crypto1_get_lfsr(revstate, &lfsr);
843 printf("key> %x%x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF));
844 AddLogUint64(logHexFileName, "key> ", lfsr);
845
846 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
847 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
848
849 if (traceCurKey) {
850 num_to_bytes(lfsr, 6, traceCard + blockShift + 10);
851 } else {
852 num_to_bytes(lfsr, 6, traceCard + blockShift);
853 }
854 if (wantSaveToEmlFile) saveTraceCard();
855
856 if (traceCrypto1) {
857 crypto1_destroy(traceCrypto1);
858 }
859
860 // set cryptosystem state
861 traceCrypto1 = lfsr_recovery64(ks2, ks3);
862
863 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
864
865 /* traceCrypto1 = crypto1_create(lfsr); // key in lfsr
866 crypto1_word(traceCrypto1, nt ^ uid, 0);
867 crypto1_word(traceCrypto1, ar, 1);
868 crypto1_word(traceCrypto1, 0, 0);
869 crypto1_word(traceCrypto1, 0, 0);*/
870
871 return 0;
872 } else {
873 traceState = TRACE_ERROR;
874 return 1;
875 }
876 break;
877
878 default:
879 traceState = TRACE_ERROR;
880 return 1;
881 }
882
883 return 0;
884 }
885
886 // DECODING
887
888 int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
889 /*
890 uint32_t nt; // tag challenge
891 uint32_t ar_enc; // encrypted reader response
892 uint32_t at_enc; // encrypted tag response
893 */
894 if (traceCrypto1) {
895 crypto1_destroy(traceCrypto1);
896 }
897 ks2 = ar_enc ^ prng_successor(nt, 64);
898 ks3 = at_enc ^ prng_successor(nt, 96);
899 traceCrypto1 = lfsr_recovery64(ks2, ks3);
900
901 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
902
903 PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) );
904 crypto1_destroy(traceCrypto1);
905 return 0;
906 }
907
Impressum, Datenschutz