Merge branch 'master' into iclass_MAC_speedup
authorpwpiwi <pwpiwi@users.noreply.github.com>
Sat, 24 Aug 2019 16:27:01 +0000 (18:27 +0200)
committerpwpiwi <pwpiwi@users.noreply.github.com>
Sat, 24 Aug 2019 16:27:01 +0000 (18:27 +0200)
armsrc/appmain.c
armsrc/apps.h
armsrc/iclass.c
armsrc/optimized_cipher.c
armsrc/optimized_cipher.h

index f5f3c23710c5a77543079d2a8aad0d018d8305b3..93f32f5fac72a6d29c5b1dd0507ffbc4d33a7f87 100644 (file)
@@ -24,6 +24,7 @@
 #include "legicrfsim.h"
 #include "hitag2.h"
 #include "hitagS.h"
+#include "iclass.h"
 #include "iso14443b.h"
 #include "iso15693.h"
 #include "lfsampling.h"
index 8aef19fb6f7edd0504d0ee528fd483cd71749061..5d3e3e59974e1078c90b8e37e35131741c4ff34b 100644 (file)
@@ -25,10 +25,6 @@ extern const uint8_t OddByteParity[256];
 extern int rsamples;   // = 0;
 extern uint8_t trigger;
 
-// This may be used (sparingly) to declare a function to be copied to
-// and executed from RAM
-#define RAMFUNC __attribute((long_call, section(".ramfunc")))
-
 /// appmain.h
 void ReadMem(int addr);
 void __attribute__((noreturn)) AppMain(void);
@@ -116,21 +112,6 @@ void    ReaderMifareDES(uint32_t param, uint32_t param2, uint8_t * datain);
 int     DesfireAPDU(uint8_t *cmd, size_t cmd_len, uint8_t *dataout);
 size_t  CreateAPDU( uint8_t *datain, size_t len, uint8_t *dataout);
 
-
-/// iclass.h
-void RAMFUNC SnoopIClass(void);
-void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
-void ReaderIClass(uint8_t arg0);
-void ReaderIClass_Replay(uint8_t arg0,uint8_t *MAC);
-void IClass_iso14443A_GetPublic(uint8_t arg0);
-void iClass_Authentication(uint8_t *MAC);
-void iClass_WriteBlock(uint8_t blockNo, uint8_t *data);
-void iClass_ReadBlk(uint8_t blockNo);
-bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata);
-void iClass_Dump(uint8_t blockno, uint8_t numblks);
-void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data);
-void iClass_ReadCheck(uint8_t   blockNo, uint8_t keyType);
-
 // cmd.h
 bool cmd_receive(UsbCommand* cmd);
 bool cmd_send(uint32_t cmd, uint32_t arg0, uint32_t arg1, uint32_t arg2, void* data, size_t len);
index 7ffac62d5cd3f296739c3e07663d0871f6c4081c..5d7375a7bd8ad982778ad41046925570e9fa33e0 100644 (file)
@@ -12,7 +12,7 @@
 //-----------------------------------------------------------------------------
 // Based on ISO14443a implementation. Still in experimental phase.
 // Contribution made during a security research at Radboud University Nijmegen
-// 
+//
 // Please feel free to contribute and extend iClass support!!
 //-----------------------------------------------------------------------------
 //
@@ -21,7 +21,7 @@
 // We still have sometimes a demodulation error when snooping iClass communication.
 // The resulting trace of a read-block-03 command may look something like this:
 //
-//  +  22279:    :     0c  03  e8  01    
+//  +  22279:    :     0c  03  e8  01
 //
 //    ...with an incorrect answer...
 //
 //
 // A correct trace should look like this:
 //
-// +  21112:    :     0c  03  e8  01    
-// +     85:   0: TAG ff  ff  ff  ff  ff  ff  ff  ff  ea  f5    
+// +  21112:    :     0c  03  e8  01
+// +     85:   0: TAG ff  ff  ff  ff  ff  ff  ff  ff  ea  f5
 //
 //-----------------------------------------------------------------------------
 
+#include "iclass.h"
+
 #include "proxmark3.h"
 #include "apps.h"
 #include "util.h"
 
 static int timeout = 4096;
 
-
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
-
 //-----------------------------------------------------------------------------
 // The software UART that receives commands from the reader, and its state
 // variables.
 //-----------------------------------------------------------------------------
 static struct {
-    enum {
-        STATE_UNSYNCD,
-        STATE_START_OF_COMMUNICATION,
-       STATE_RECEIVING
-    }       state;
-    uint16_t    shiftReg;
-    int     bitCnt;
-    int     byteCnt;
-    int     byteCntMax;
-    int     posCnt;
-    int     nOutOfCnt;
-    int     OutOfCnt;
-    int     syncBit;
-    int     samples;
-    int     highCnt;
-    int     swapper;
-    int     counter;
-    int     bitBuffer;
-    int     dropPosition;
-    uint8_t *output;
+       enum {
+               STATE_UNSYNCD,
+               STATE_START_OF_COMMUNICATION,
+               STATE_RECEIVING
+       }        state;
+       uint16_t shiftReg;
+       int      bitCnt;
+       int      byteCnt;
+       int      byteCntMax;
+       int      posCnt;
+       int      nOutOfCnt;
+       int      OutOfCnt;
+       int      syncBit;
+       int      samples;
+       int      highCnt;
+       int      swapper;
+       int      counter;
+       int      bitBuffer;
+       int      dropPosition;
+       uint8_t  *output;
 } Uart;
 
-static RAMFUNC int OutOfNDecoding(int bit)
-{
+static RAMFUNC int OutOfNDecoding(int bit) {
        //int error = 0;
        int bitright;
 
-       if(!Uart.bitBuffer) {
+       if (!Uart.bitBuffer) {
                Uart.bitBuffer = bit ^ 0xFF0;
                return false;
-       }
-       else {
+       } else {
                Uart.bitBuffer <<= 4;
                Uart.bitBuffer ^= bit;
        }
-       
-       /*if(Uart.swapper) {
+
+       /*if (Uart.swapper) {
                Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
                Uart.byteCnt++;
                Uart.swapper = 0;
-               if(Uart.byteCnt > 15) { return true; }
+               if (Uart.byteCnt > 15) { return true; }
        }
        else {
                Uart.swapper = 1;
        }*/
 
-       if(Uart.state != STATE_UNSYNCD) {
+       if (Uart.state != STATE_UNSYNCD) {
                Uart.posCnt++;
 
-               if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+               if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
                        bit = 0x00;
-               }
-               else {
+               } else {
                        bit = 0x01;
                }
-               if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+               if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
                        bitright = 0x00;
-               }
-               else {
+               } else {
                        bitright = 0x01;
                }
-               if(bit != bitright) { bit = bitright; }
+               if (bit != bitright) {
+                       bit = bitright;
+               }
+
 
-               
                // So, now we only have to deal with *bit*, lets see...
-               if(Uart.posCnt == 1) {
+               if (Uart.posCnt == 1) {
                        // measurement first half bitperiod
-                       if(!bit) {
+                       if (!bit) {
                                // Drop in first half means that we are either seeing
                                // an SOF or an EOF.
 
-                               if(Uart.nOutOfCnt == 1) {
+                               if (Uart.nOutOfCnt == 1) {
                                        // End of Communication
                                        Uart.state = STATE_UNSYNCD;
                                        Uart.highCnt = 0;
-                                       if(Uart.byteCnt == 0) {
+                                       if (Uart.byteCnt == 0) {
                                                // Its not straightforward to show single EOFs
                                                // So just leave it and do not return true
                                                Uart.output[0] = 0xf0;
                                                Uart.byteCnt++;
-                                       }
-                                       else {
+                                       } else {
                                                return true;
                                        }
-                               }
-                               else if(Uart.state != STATE_START_OF_COMMUNICATION) {
+                               } else if (Uart.state != STATE_START_OF_COMMUNICATION) {
                                        // When not part of SOF or EOF, it is an error
                                        Uart.state = STATE_UNSYNCD;
                                        Uart.highCnt = 0;
                                        //error = 4;
                                }
                        }
-               }
-               else {
+               } else {
                        // measurement second half bitperiod
                        // Count the bitslot we are in... (ISO 15693)
                        Uart.nOutOfCnt++;
-                       
-                       if(!bit) {
-                               if(Uart.dropPosition) {
-                                       if(Uart.state == STATE_START_OF_COMMUNICATION) {
+
+                       if (!bit) {
+                               if (Uart.dropPosition) {
+                                       if (Uart.state == STATE_START_OF_COMMUNICATION) {
                                                //error = 1;
-                                       }
-                                       else {
+                                       } else {
                                                //error = 7;
                                        }
                                        // It is an error if we already have seen a drop in current frame
                                        Uart.state = STATE_UNSYNCD;
                                        Uart.highCnt = 0;
-                               }
-                               else {
+                               } else {
                                        Uart.dropPosition = Uart.nOutOfCnt;
                                }
                        }
 
                        Uart.posCnt = 0;
 
-                       
-                       if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
+
+                       if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
                                Uart.nOutOfCnt = 0;
-                               
-                               if(Uart.state == STATE_START_OF_COMMUNICATION) {
-                                       if(Uart.dropPosition == 4) {
+
+                               if (Uart.state == STATE_START_OF_COMMUNICATION) {
+                                       if (Uart.dropPosition == 4) {
                                                Uart.state = STATE_RECEIVING;
                                                Uart.OutOfCnt = 256;
-                                       }
-                                       else if(Uart.dropPosition == 3) {
+                                       } else if (Uart.dropPosition == 3) {
                                                Uart.state = STATE_RECEIVING;
                                                Uart.OutOfCnt = 4;
                                                //Uart.output[Uart.byteCnt] = 0xdd;
                                                //Uart.byteCnt++;
-                                       }
-                                       else {
+                                       } else {
                                                Uart.state = STATE_UNSYNCD;
                                                Uart.highCnt = 0;
                                        }
                                        Uart.dropPosition = 0;
-                               }
-                               else {
+                               } else {
                                        // RECEIVING DATA
                                        // 1 out of 4
-                                       if(!Uart.dropPosition) {
+                                       if (!Uart.dropPosition) {
                                                Uart.state = STATE_UNSYNCD;
                                                Uart.highCnt = 0;
                                                //error = 9;
-                                       }
-                                       else {
+                                       } else {
                                                Uart.shiftReg >>= 2;
-                                               
+
                                                // Swap bit order
                                                Uart.dropPosition--;
-                                               //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
-                                               //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
-                                               
+                                               //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
+                                               //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
+
                                                Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
                                                Uart.bitCnt += 2;
                                                Uart.dropPosition = 0;
 
-                                               if(Uart.bitCnt == 8) {
+                                               if (Uart.bitCnt == 8) {
                                                        Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
                                                        Uart.byteCnt++;
                                                        Uart.bitCnt = 0;
@@ -229,16 +217,14 @@ static RAMFUNC int OutOfNDecoding(int bit)
                                                }
                                        }
                                }
-                       }
-                       else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
+                       } else if (Uart.nOutOfCnt == Uart.OutOfCnt) {
                                // RECEIVING DATA
                                // 1 out of 256
-                               if(!Uart.dropPosition) {
+                               if (!Uart.dropPosition) {
                                        Uart.state = STATE_UNSYNCD;
                                        Uart.highCnt = 0;
                                        //error = 3;
-                               }
-                               else {
+                               } else {
                                        Uart.dropPosition--;
                                        Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
                                        Uart.byteCnt++;
@@ -249,7 +235,7 @@ static RAMFUNC int OutOfNDecoding(int bit)
                                }
                        }
 
-                       /*if(error) {
+                       /*if (error) {
                                Uart.output[Uart.byteCnt] = 0xAA;
                                Uart.byteCnt++;
                                Uart.output[Uart.byteCnt] = error & 0xFF;
@@ -268,35 +254,33 @@ static RAMFUNC int OutOfNDecoding(int bit)
                        }*/
                }
 
-       }
-       else {
+       } else {
                bit = Uart.bitBuffer & 0xf0;
                bit >>= 4;
                bit ^= 0x0F; // drops become 1s ;-)
-               if(bit) {
+               if (bit) {
                        // should have been high or at least (4 * 128) / fc
                        // according to ISO this should be at least (9 * 128 + 20) / fc
-                       if(Uart.highCnt == 8) {
+                       if (Uart.highCnt == 8) {
                                // we went low, so this could be start of communication
                                // it turns out to be safer to choose a less significant
                                // syncbit... so we check whether the neighbour also represents the drop
                                Uart.posCnt = 1;   // apparently we are busy with our first half bit period
                                Uart.syncBit = bit & 8;
                                Uart.samples = 3;
-                               if(!Uart.syncBit)       { Uart.syncBit = bit & 4; Uart.samples = 2; }
-                               else if(bit & 4)        { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
-                               if(!Uart.syncBit)       { Uart.syncBit = bit & 2; Uart.samples = 1; }
-                               else if(bit & 2)        { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
-                               if(!Uart.syncBit)       { Uart.syncBit = bit & 1; Uart.samples = 0;
-                                       if(Uart.syncBit && (Uart.bitBuffer & 8)) {
+                               if (!Uart.syncBit)  { Uart.syncBit = bit & 4; Uart.samples = 2; }
+                               else if (bit & 4)   { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+                               if (!Uart.syncBit)  { Uart.syncBit = bit & 2; Uart.samples = 1; }
+                               else if (bit & 2)   { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+                               if (!Uart.syncBit)  { Uart.syncBit = bit & 1; Uart.samples = 0;
+                                       if (Uart.syncBit && (Uart.bitBuffer & 8)) {
                                                Uart.syncBit = 8;
 
                                                // the first half bit period is expected in next sample
                                                Uart.posCnt = 0;
                                                Uart.samples = 3;
                                        }
-                               }
-                               else if(bit & 1)        { Uart.syncBit = bit & 1; Uart.samples = 0; }
+                               } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
 
                                Uart.syncBit <<= 4;
                                Uart.state = STATE_START_OF_COMMUNICATION;
@@ -307,28 +291,25 @@ static RAMFUNC int OutOfNDecoding(int bit)
                                Uart.dropPosition = 0;
                                Uart.shiftReg = 0;
                                //error = 0;
-                       }
-                       else {
+                       } else {
                                Uart.highCnt = 0;
                        }
-               }
-               else {
-                       if(Uart.highCnt < 8) {
-                               Uart.highCnt++;
-                       }
+               } else if (Uart.highCnt < 8) {
+                       Uart.highCnt++;
                }
        }
 
-    return false;
+       return false;
 }
 
+
 //=============================================================================
 // Manchester
 //=============================================================================
 
 static struct {
-    enum {
-        DEMOD_UNSYNCD,
+       enum {
+               DEMOD_UNSYNCD,
                DEMOD_START_OF_COMMUNICATION,
                DEMOD_START_OF_COMMUNICATION2,
                DEMOD_START_OF_COMMUNICATION3,
@@ -338,29 +319,28 @@ static struct {
                DEMOD_END_OF_COMMUNICATION,
                DEMOD_END_OF_COMMUNICATION2,
                DEMOD_MANCHESTER_F,
-        DEMOD_ERROR_WAIT
-    }       state;
-    int     bitCount;
-    int     posCount;
-       int     syncBit;
-    uint16_t    shiftReg;
-       int     buffer;
-       int     buffer2;
-       int     buffer3;
-       int     buff;
-       int     samples;
-    int     len;
+               DEMOD_ERROR_WAIT
+       }        state;
+       int      bitCount;
+       int      posCount;
+       int      syncBit;
+       uint16_t shiftReg;
+       int      buffer;
+       int      buffer2;
+       int      buffer3;
+       int      buff;
+       int      samples;
+       int      len;
        enum {
                SUB_NONE,
                SUB_FIRST_HALF,
                SUB_SECOND_HALF,
                SUB_BOTH
-       }               sub;
-    uint8_t *output;
+       }        sub;
+       uint8_t  *output;
 } Demod;
 
-static RAMFUNC int ManchesterDecoding(int v)
-{
+static RAMFUNC int ManchesterDecoding(int v) {
        int bit;
        int modulation;
        int error = 0;
@@ -370,48 +350,48 @@ static RAMFUNC int ManchesterDecoding(int v)
        Demod.buffer2 = Demod.buffer3;
        Demod.buffer3 = v;
 
-       if(Demod.buff < 3) {
+       if (Demod.buff < 3) {
                Demod.buff++;
                return false;
        }
 
-       if(Demod.state==DEMOD_UNSYNCD) {
+       if (Demod.state==DEMOD_UNSYNCD) {
                Demod.output[Demod.len] = 0xfa;
                Demod.syncBit = 0;
                //Demod.samples = 0;
-               Demod.posCount = 1;             // This is the first half bit period, so after syncing handle the second part
+               Demod.posCount = 1;     // This is the first half bit period, so after syncing handle the second part
 
-               if(bit & 0x08) {
+               if (bit & 0x08) {
                        Demod.syncBit = 0x08;
                }
 
-               if(bit & 0x04) {
-                       if(Demod.syncBit) {
+               if (bit & 0x04) {
+                       if (Demod.syncBit) {
                                bit <<= 4;
                        }
                        Demod.syncBit = 0x04;
                }
 
-               if(bit & 0x02) {
-                       if(Demod.syncBit) {
+               if (bit & 0x02) {
+                       if (Demod.syncBit) {
                                bit <<= 2;
                        }
                        Demod.syncBit = 0x02;
                }
 
-               if(bit & 0x01 && Demod.syncBit) {
+               if (bit & 0x01 && Demod.syncBit) {
                        Demod.syncBit = 0x01;
                }
-               
-               if(Demod.syncBit) {
+
+               if (Demod.syncBit) {
                        Demod.len = 0;
                        Demod.state = DEMOD_START_OF_COMMUNICATION;
                        Demod.sub = SUB_FIRST_HALF;
                        Demod.bitCount = 0;
                        Demod.shiftReg = 0;
                        Demod.samples = 0;
-                       if(Demod.posCount) {
-                               //if(trigger) LED_A_OFF();  // Not useful in this case...
+                       if (Demod.posCount) {
+                               //if (trigger) LED_A_OFF();  // Not useful in this case...
                                switch(Demod.syncBit) {
                                        case 0x08: Demod.samples = 3; break;
                                        case 0x04: Demod.samples = 2; break;
@@ -419,13 +399,12 @@ static RAMFUNC int ManchesterDecoding(int v)
                                        case 0x01: Demod.samples = 0; break;
                                }
                                // SOF must be long burst... otherwise stay unsynced!!!
-                               if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
+                               if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
                                        Demod.state = DEMOD_UNSYNCD;
                                }
-                       }
-                       else {
+                       } else {
                                // SOF must be long burst... otherwise stay unsynced!!!
-                               if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
+                               if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
                                        Demod.state = DEMOD_UNSYNCD;
                                        error = 0x88;
                                }
@@ -434,53 +413,47 @@ static RAMFUNC int ManchesterDecoding(int v)
                        error = 0;
 
                }
-       }
-       else {
+       } else {
                modulation = bit & Demod.syncBit;
                modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
 
                Demod.samples += 4;
 
-               if(Demod.posCount==0) {
+               if (Demod.posCount==0) {
                        Demod.posCount = 1;
-                       if(modulation) {
+                       if (modulation) {
                                Demod.sub = SUB_FIRST_HALF;
-                       }
-                       else {
+                       } else {
                                Demod.sub = SUB_NONE;
                        }
-               }
-               else {
+               } else {
                        Demod.posCount = 0;
                        /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
-                               if(Demod.state!=DEMOD_ERROR_WAIT) {
+                               if (Demod.state!=DEMOD_ERROR_WAIT) {
                                        Demod.state = DEMOD_ERROR_WAIT;
                                        Demod.output[Demod.len] = 0xaa;
                                        error = 0x01;
                                }
                        }*/
-                       //else if(modulation) {
-                       if(modulation) {
-                               if(Demod.sub == SUB_FIRST_HALF) {
+                       //else if (modulation) {
+                       if (modulation) {
+                               if (Demod.sub == SUB_FIRST_HALF) {
                                        Demod.sub = SUB_BOTH;
-                               }
-                               else {
+                               } else {
                                        Demod.sub = SUB_SECOND_HALF;
                                }
-                       }
-                       else if(Demod.sub == SUB_NONE) {
-                               if(Demod.state == DEMOD_SOF_COMPLETE) {
+                       } else if (Demod.sub == SUB_NONE) {
+                               if (Demod.state == DEMOD_SOF_COMPLETE) {
                                        Demod.output[Demod.len] = 0x0f;
                                        Demod.len++;
                                        Demod.state = DEMOD_UNSYNCD;
-//                                     error = 0x0f;
+//                  error = 0x0f;
                                        return true;
-                               }
-                               else {
+                               } else {
                                        Demod.state = DEMOD_ERROR_WAIT;
                                        error = 0x33;
                                }
-                               /*if(Demod.state!=DEMOD_ERROR_WAIT) {
+                               /*if (Demod.state!=DEMOD_ERROR_WAIT) {
                                        Demod.state = DEMOD_ERROR_WAIT;
                                        Demod.output[Demod.len] = 0xaa;
                                        error = 0x01;
@@ -489,36 +462,33 @@ static RAMFUNC int ManchesterDecoding(int v)
 
                        switch(Demod.state) {
                                case DEMOD_START_OF_COMMUNICATION:
-                                       if(Demod.sub == SUB_BOTH) {
+                                       if (Demod.sub == SUB_BOTH) {
                                                //Demod.state = DEMOD_MANCHESTER_D;
                                                Demod.state = DEMOD_START_OF_COMMUNICATION2;
                                                Demod.posCount = 1;
                                                Demod.sub = SUB_NONE;
-                                       }
-                                       else {
+                                       } else {
                                                Demod.output[Demod.len] = 0xab;
                                                Demod.state = DEMOD_ERROR_WAIT;
                                                error = 0xd2;
                                        }
                                        break;
                                case DEMOD_START_OF_COMMUNICATION2:
-                                       if(Demod.sub == SUB_SECOND_HALF) {
+                                       if (Demod.sub == SUB_SECOND_HALF) {
                                                Demod.state = DEMOD_START_OF_COMMUNICATION3;
-                                       }
-                                       else {
+                                       } else {
                                                Demod.output[Demod.len] = 0xab;
                                                Demod.state = DEMOD_ERROR_WAIT;
                                                error = 0xd3;
                                        }
                                        break;
                                case DEMOD_START_OF_COMMUNICATION3:
-                                       if(Demod.sub == SUB_SECOND_HALF) {
-//                                             Demod.state = DEMOD_MANCHESTER_D;
+                                       if (Demod.sub == SUB_SECOND_HALF) {
+//                      Demod.state = DEMOD_MANCHESTER_D;
                                                Demod.state = DEMOD_SOF_COMPLETE;
                                                //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
                                                //Demod.len++;
-                                       }
-                                       else {
+                                       } else {
                                                Demod.output[Demod.len] = 0xab;
                                                Demod.state = DEMOD_ERROR_WAIT;
                                                error = 0xd4;
@@ -529,20 +499,17 @@ static RAMFUNC int ManchesterDecoding(int v)
                                case DEMOD_MANCHESTER_E:
                                        // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
                                        //                          00001111 = 1 (0 in 14443)
-                                       if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
+                                       if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
                                                Demod.bitCount++;
                                                Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
                                                Demod.state = DEMOD_MANCHESTER_D;
-                                       }
-                                       else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
+                                       } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
                                                Demod.bitCount++;
                                                Demod.shiftReg >>= 1;
                                                Demod.state = DEMOD_MANCHESTER_E;
-                                       }
-                                       else if(Demod.sub == SUB_BOTH) {
+                                       } else if (Demod.sub == SUB_BOTH) {
                                                Demod.state = DEMOD_MANCHESTER_F;
-                                       }
-                                       else {
+                                       } else {
                                                Demod.state = DEMOD_ERROR_WAIT;
                                                error = 0x55;
                                        }
@@ -550,17 +517,16 @@ static RAMFUNC int ManchesterDecoding(int v)
 
                                case DEMOD_MANCHESTER_F:
                                        // Tag response does not need to be a complete byte!
-                                       if(Demod.len > 0 || Demod.bitCount > 0) {
-                                               if(Demod.bitCount > 1) {  // was > 0, do not interpret last closing bit, is part of EOF
-                                                       Demod.shiftReg >>= (9 - Demod.bitCount);        // right align data
+                                       if (Demod.len > 0 || Demod.bitCount > 0) {
+                                               if (Demod.bitCount > 1) {  // was > 0, do not interpret last closing bit, is part of EOF
+                                                       Demod.shiftReg >>= (9 - Demod.bitCount);    // right align data
                                                        Demod.output[Demod.len] = Demod.shiftReg & 0xff;
                                                        Demod.len++;
                                                }
 
                                                Demod.state = DEMOD_UNSYNCD;
                                                return true;
-                                       }
-                                       else {
+                                       } else {
                                                Demod.output[Demod.len] = 0xad;
                                                Demod.state = DEMOD_ERROR_WAIT;
                                                error = 0x03;
@@ -577,7 +543,7 @@ static RAMFUNC int ManchesterDecoding(int v)
                                        break;
                        }
 
-                       /*if(Demod.bitCount>=9) {
+                       /*if (Demod.bitCount>=9) {
                                Demod.output[Demod.len] = Demod.shiftReg & 0xff;
                                Demod.len++;
 
@@ -587,7 +553,7 @@ static RAMFUNC int ManchesterDecoding(int v)
                                Demod.bitCount = 0;
                                Demod.shiftReg = 0;
                        }*/
-                       if(Demod.bitCount>=8) {
+                       if (Demod.bitCount >= 8) {
                                Demod.shiftReg >>= 1;
                                Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
                                Demod.len++;
@@ -595,7 +561,7 @@ static RAMFUNC int ManchesterDecoding(int v)
                                Demod.shiftReg = 0;
                        }
 
-                       if(error) {
+                       if (error) {
                                Demod.output[Demod.len] = 0xBB;
                                Demod.len++;
                                Demod.output[Demod.len] = error & 0xFF;
@@ -620,7 +586,7 @@ static RAMFUNC int ManchesterDecoding(int v)
 
        } // end (state != UNSYNCED)
 
-    return false;
+       return false;
 }
 
 //=============================================================================
@@ -633,189 +599,185 @@ static RAMFUNC int ManchesterDecoding(int v)
 // triggering so that we start recording at the point that the tag is moved
 // near the reader.
 //-----------------------------------------------------------------------------
-void RAMFUNC SnoopIClass(void)
-{
-
+void RAMFUNC SnoopIClass(void) {
 
-    // We won't start recording the frames that we acquire until we trigger;
-    // a good trigger condition to get started is probably when we see a
-    // response from the tag.
-    //int triggered = false; // false to wait first for card
+       // We won't start recording the frames that we acquire until we trigger;
+       // a good trigger condition to get started is probably when we see a
+       // response from the tag.
+       //int triggered = false; // false to wait first for card
 
-    // The command (reader -> tag) that we're receiving.
+       // The command (reader -> tag) that we're receiving.
        // The length of a received command will in most cases be no more than 18 bytes.
        // So 32 should be enough!
        #define ICLASS_BUFFER_SIZE 32
        uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
-    // The response (tag -> reader) that we're receiving.
+       // The response (tag -> reader) that we're receiving.
        uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
-       
-    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-       // free all BigBuf memory
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+       // free all BigBuf memory
        BigBuf_free();
-    // The DMA buffer, used to stream samples from the FPGA
-    uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+       // The DMA buffer, used to stream samples from the FPGA
+       uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
+
        set_tracing(true);
        clear_trace();
-    iso14a_set_trigger(false);
+       iso14a_set_trigger(false);
 
        int lastRxCounter;
-    uint8_t *upTo;
-    int smpl;
-    int maxBehindBy = 0;
+       uint8_t *upTo;
+       int smpl;
+       int maxBehindBy = 0;
 
-    // Count of samples received so far, so that we can include timing
-    // information in the trace buffer.
-    int samples = 0;
-    rsamples = 0;
+       // Count of samples received so far, so that we can include timing
+       // information in the trace buffer.
+       int samples = 0;
+       rsamples = 0;
 
-    // Set up the demodulator for tag -> reader responses.
+       // Set up the demodulator for tag -> reader responses.
        Demod.output = tagToReaderResponse;
-    Demod.len = 0;
-    Demod.state = DEMOD_UNSYNCD;
+       Demod.len = 0;
+       Demod.state = DEMOD_UNSYNCD;
 
-    // Setup for the DMA.
-    FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-    upTo = dmaBuf;
-    lastRxCounter = DMA_BUFFER_SIZE;
-    FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+       // Setup for the DMA.
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+       upTo = dmaBuf;
+       lastRxCounter = DMA_BUFFER_SIZE;
+       FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
 
-    // And the reader -> tag commands
-    memset(&Uart, 0, sizeof(Uart));
+       // And the reader -> tag commands
+       memset(&Uart, 0, sizeof(Uart));
        Uart.output = readerToTagCmd;
-    Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
-    Uart.state = STATE_UNSYNCD;
+       Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
+       Uart.state = STATE_UNSYNCD;
 
-    // And put the FPGA in the appropriate mode
-    // Signal field is off with the appropriate LED
-    LED_D_OFF();
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+       // And put the FPGA in the appropriate mode
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
 
        uint32_t time_0 = GetCountSspClk();
        uint32_t time_start = 0;
        uint32_t time_stop  = 0;
 
-    int div = 0;
-    //int div2 = 0;
-    int decbyte = 0;
-    int decbyter = 0;
-
-    // And now we loop, receiving samples.
-    for(;;) {
-        LED_A_ON();
-        WDT_HIT();
-        int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
-                                (DMA_BUFFER_SIZE-1);
-        if(behindBy > maxBehindBy) {
-            maxBehindBy = behindBy;
-            if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
-                Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
-                goto done;
-            }
-        }
-        if(behindBy < 1) continue;
+       int div = 0;
+       //int div2 = 0;
+       int decbyte = 0;
+       int decbyter = 0;
 
-       LED_A_OFF();
-        smpl = upTo[0];
-        upTo++;
-        lastRxCounter -= 1;
-        if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
-            upTo -= DMA_BUFFER_SIZE;
-            lastRxCounter += DMA_BUFFER_SIZE;
-            AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
-            AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
-        }
-
-        //samples += 4;
-       samples += 1;
-
-       if(smpl & 0xF) {
-               decbyte ^= (1 << (3 - div));
-       }
-       
-       // FOR READER SIDE COMMUMICATION...
-
-       decbyter <<= 2;
-       decbyter ^= (smpl & 0x30);
-
-       div++;
-       
-       if((div + 1) % 2 == 0) {
-               smpl = decbyter;        
-               if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
-                   rsamples = samples - Uart.samples;
-                       time_stop = (GetCountSspClk()-time_0) << 4;
-                   LED_C_ON();
-
-                       //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
-                       //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
-                       uint8_t parity[MAX_PARITY_SIZE];
-                       GetParity(Uart.output, Uart.byteCnt, parity);
-                       LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true);
-
-                       /* And ready to receive another command. */
-                   Uart.state = STATE_UNSYNCD;
-                   /* And also reset the demod code, which might have been */
-                   /* false-triggered by the commands from the reader. */
-                   Demod.state = DEMOD_UNSYNCD;
-                   LED_B_OFF();
-                   Uart.byteCnt = 0;
-               }else{
-                       time_start = (GetCountSspClk()-time_0) << 4;
+       // And now we loop, receiving samples.
+       for (;;) {
+               LED_A_ON();
+               WDT_HIT();
+               int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
+               if (behindBy > maxBehindBy) {
+                       maxBehindBy = behindBy;
+                       if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
+                               Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
+                               goto done;
+                       }
                }
-               decbyter = 0;
-       }
+               if (behindBy < 1) continue;
 
-       if(div > 3) {
-               smpl = decbyte;
-               if(ManchesterDecoding(smpl & 0x0F)) {
-                       time_stop = (GetCountSspClk()-time_0) << 4;
-
-                       rsamples = samples - Demod.samples;
-                   LED_B_ON();
-
-                       uint8_t parity[MAX_PARITY_SIZE];
-                       GetParity(Demod.output, Demod.len, parity);
-                       LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
-
-                   // And ready to receive another response.
-                   memset(&Demod, 0, sizeof(Demod));
-                       Demod.output = tagToReaderResponse;
-                   Demod.state = DEMOD_UNSYNCD;
-                   LED_C_OFF();
-               }else{
-                       time_start = (GetCountSspClk()-time_0) << 4;
+               LED_A_OFF();
+               smpl = upTo[0];
+               upTo++;
+               lastRxCounter -= 1;
+               if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
+                       upTo -= DMA_BUFFER_SIZE;
+                       lastRxCounter += DMA_BUFFER_SIZE;
+                       AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+                       AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+               }
+
+               //samples += 4;
+               samples += 1;
+
+               if (smpl & 0xF) {
+                       decbyte ^= (1 << (3 - div));
+               }
+
+               // FOR READER SIDE COMMUMICATION...
+
+               decbyter <<= 2;
+               decbyter ^= (smpl & 0x30);
+
+               div++;
+
+               if ((div + 1) % 2 == 0) {
+                       smpl = decbyter;
+                       if (OutOfNDecoding((smpl & 0xF0) >> 4)) {
+                               rsamples = samples - Uart.samples;
+                               time_stop = (GetCountSspClk()-time_0) << 4;
+                               LED_C_ON();
+
+                               //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
+                               //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
+                               uint8_t parity[MAX_PARITY_SIZE];
+                               GetParity(Uart.output, Uart.byteCnt, parity);
+                               LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true);
+
+                               /* And ready to receive another command. */
+                               Uart.state = STATE_UNSYNCD;
+                               /* And also reset the demod code, which might have been */
+                               /* false-triggered by the commands from the reader. */
+                               Demod.state = DEMOD_UNSYNCD;
+                               LED_B_OFF();
+                               Uart.byteCnt = 0;
+                       } else {
+                               time_start = (GetCountSspClk()-time_0) << 4;
+                       }
+                       decbyter = 0;
+               }
+
+               if (div > 3) {
+                       smpl = decbyte;
+                       if (ManchesterDecoding(smpl & 0x0F)) {
+                               time_stop = (GetCountSspClk()-time_0) << 4;
+
+                               rsamples = samples - Demod.samples;
+                               LED_B_ON();
+
+                               uint8_t parity[MAX_PARITY_SIZE];
+                               GetParity(Demod.output, Demod.len, parity);
+                               LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
+
+                               // And ready to receive another response.
+                               memset(&Demod, 0, sizeof(Demod));
+                               Demod.output = tagToReaderResponse;
+                               Demod.state = DEMOD_UNSYNCD;
+                               LED_C_OFF();
+                       } else {
+                               time_start = (GetCountSspClk()-time_0) << 4;
+                       }
+
+                       div = 0;
+                       decbyte = 0x00;
                }
-               
-               div = 0;
-               decbyte = 0x00;
-       }
-       //}
 
-        if(BUTTON_PRESS()) {
-            DbpString("cancelled_a");
-            goto done;
-        }
-    }
+               if (BUTTON_PRESS()) {
+                       DbpString("cancelled_a");
+                       goto done;
+               }
+       }
 
-    DbpString("COMMAND FINISHED");
+       DbpString("COMMAND FINISHED");
 
-    Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+       Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
        Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
 
 done:
-    AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
-    Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
+       AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+       Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
        Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
-    LEDsoff();
+       LEDsoff();
 }
 
 void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
-       int i; 
-       for(i = 0; i < 8; i++) {
+       int i;
+       for (i = 0; i < 8; i++) {
                rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
        }
 }
@@ -827,38 +789,37 @@ void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
 //-----------------------------------------------------------------------------
 static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
 {
-    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
-    // only, since we are receiving, not transmitting).
-    // Signal field is off with the appropriate LED
-    LED_D_OFF();
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+       // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+       // only, since we are receiving, not transmitting).
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
 
-    // Now run a `software UART' on the stream of incoming samples.
-    Uart.output = received;
-    Uart.byteCntMax = maxLen;
-    Uart.state = STATE_UNSYNCD;
+       // Now run a `software UART' on the stream of incoming samples.
+       Uart.output = received;
+       Uart.byteCntMax = maxLen;
+       Uart.state = STATE_UNSYNCD;
 
-    for(;;) {
-        WDT_HIT();
+       for (;;) {
+               WDT_HIT();
 
-        if(BUTTON_PRESS()) return false;
+               if (BUTTON_PRESS()) return false;
 
-        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-            AT91C_BASE_SSC->SSC_THR = 0x00;
-        }
-        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-            uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                       AT91C_BASE_SSC->SSC_THR = 0x00;
+               }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 
-                       if(OutOfNDecoding(b & 0x0f)) {
+                       if (OutOfNDecoding(b & 0x0f)) {
                                *len = Uart.byteCnt;
                                return true;
                        }
-        }
-    }
+               }
+       }
 }
 
-static uint8_t encode4Bits(const uint8_t b)
-{
+static uint8_t encode4Bits(const uint8_t b) {
        uint8_t c = b & 0xF;
        // OTA, the least significant bits first
        //         The columns are
@@ -892,13 +853,12 @@ static uint8_t encode4Bits(const uint8_t b)
 //-----------------------------------------------------------------------------
 // Prepare tag messages
 //-----------------------------------------------------------------------------
-static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
-{
+static void CodeIClassTagAnswer(const uint8_t *cmd, int len) {
 
        /*
         * SOF comprises 3 parts;
         * * An unmodulated time of 56.64 us
-        * * 24 pulses of 423.75 KHz (fc/32)
+        * * 24 pulses of 423.75 kHz (fc/32)
         * * A logic 1, which starts with an unmodulated time of 18.88us
         *   followed by 8 pulses of 423.75kHz (fc/32)
         *
@@ -919,7 +879,7 @@ static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
         * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
         * works like this.
         * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
-        * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
+        * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
         *
         * In this mode the SOF can be written as 00011101 = 0x1D
         * The EOF can be written as 10111000 = 0xb8
@@ -935,10 +895,10 @@ static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
        // Send SOF
        ToSend[++ToSendMax] = 0x1D;
 
-       for(i = 0; i < len; i++) {
+       for (i = 0; i < len; i++) {
                uint8_t b = cmd[i];
-               ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
-               ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
+               ToSend[++ToSendMax] = encode4Bits(b & 0xF);       // Least significant half
+               ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF); // Most significant half
        }
 
        // Send EOF
@@ -948,123 +908,87 @@ static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
        ToSendMax++;
 }
 
-// Only SOF 
-static void CodeIClassTagSOF()
-{
+// Only SOF
+static void CodeIClassTagSOF() {
        //So far a dummy implementation, not used
        //int lastProxToAirDuration =0;
 
        ToSendReset();
        // Send SOF
        ToSend[++ToSendMax] = 0x1D;
-//     lastProxToAirDuration  = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
+//  lastProxToAirDuration  = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
 
        // Convert from last byte pos to length
        ToSendMax++;
 }
-#define MODE_SIM_CSN        0
-#define MODE_EXIT_AFTER_MAC 1
-#define MODE_FULLSIM        2
-
-int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
-/**
- * @brief SimulateIClass simulates an iClass card.
- * @param arg0 type of simulation
- *                     - 0 uses the first 8 bytes in usb data as CSN
- *                     - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
- *                     in the usb data. This mode collects MAC from the reader, in order to do an offline
- *                     attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
- *                     - Other : Uses the default CSN (031fec8af7ff12e0)
- * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
- * @param arg2
- * @param datain
- */
-void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
-{
-       uint32_t simType = arg0;
-       uint32_t numberOfCSNS = arg1;
-       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 
-       // Enable and clear the trace
-       set_tracing(true);
-       clear_trace();
-       //Use the emulator memory for SIM
-       uint8_t *emulator = BigBuf_get_EM_addr();
+static void AppendCrc(uint8_t *data, int len) {
+       ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
+}
 
-       if(simType == 0) {
-               // Use the CSN from commandline
-               memcpy(emulator, datain, 8);
-               doIClassSimulation(MODE_SIM_CSN,NULL);
-       }else if(simType == 1)
-       {
-               //Default CSN
-               uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
-               // Use the CSN from commandline
-               memcpy(emulator, csn_crc, 8);
-               doIClassSimulation(MODE_SIM_CSN,NULL);
-       }
-       else if(simType == 2)
-       {
+static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) {
+       int i = 0, d = 0;//, u = 0, d = 0;
+       uint8_t b = 0;
 
-               uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
-               Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
-               // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
-               // in order to collect MAC's from the reader. This can later be used in an offlne-attack
-               // in order to obtain the keys, as in the "dismantling iclass"-paper.
-               int i = 0;
-               for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
-               {
-                       // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
+       //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
 
-                       memcpy(emulator, datain+(i*8), 8);
-                       if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
-                       {
-                               cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
-                               return; // Button pressed
+       AT91C_BASE_SSC->SSC_THR = 0x00;
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
+       while (!BUTTON_PRESS()) {
+               if ((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
+                       b = AT91C_BASE_SSC->SSC_RHR; (void) b;
+               }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
+                       b = 0x00;
+                       if (d < delay) {
+                               d++;
                        }
+                       else {
+                               if (i < respLen) {
+                                       b = resp[i];
+                                       //Hack
+                                       //b = 0xAC;
+                               }
+                               i++;
+                       }
+                       AT91C_BASE_SSC->SSC_THR = b;
                }
-               cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
 
-       }else if(simType == 3){
-               //This is 'full sim' mode, where we use the emulator storage for data.
-               doIClassSimulation(MODE_FULLSIM, NULL);
+//      if (i > respLen +4) break;
+               if (i > respLen + 1) break;
        }
-       else{
-               // We may want a mode here where we hardcode the csns to use (from proxclone).
-               // That will speed things up a little, but not required just yet.
-               Dbprintf("The mode is not implemented, reserved for future use");
-       }
-       Dbprintf("Done...");
 
+       return 0;
 }
-void AppendCrc(uint8_t* data, int len)
-{
-       ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
-}
+
+
+#define MODE_SIM_CSN        0
+#define MODE_EXIT_AFTER_MAC 1
+#define MODE_FULLSIM        2
 
 /**
  * @brief Does the actual simulation
  * @param csn - csn to use
  * @param breakAfterMacReceived if true, returns after reader MAC has been received.
  */
-int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
-{
+int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
        // free eventually allocated BigBuf memory
        BigBuf_free_keep_EM();
 
        State cipher_state;
-//     State cipher_state_reserve;
+//  State cipher_state_reserve;
        uint8_t *csn = BigBuf_get_EM_addr();
        uint8_t *emulator = csn;
        uint8_t sof_data[] = { 0x0F} ;
        // CSN followed by two CRC bytes
        uint8_t anticoll_data[10] = { 0 };
        uint8_t csn_data[10] = { 0 };
-       memcpy(csn_data,csn,sizeof(csn_data));
-       Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
+       memcpy(csn_data, csn, sizeof(csn_data));
+       Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
 
        // Construct anticollision-CSN
-       rotateCSN(csn_data,anticoll_data);
+       rotateCSN(csn_data, anticoll_data);
 
        // Compute CRC on both CSNs
        ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
@@ -1073,17 +997,14 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
        uint8_t diversified_key[8] = { 0 };
        // e-Purse
        uint8_t card_challenge_data[8] = { 0x00 };
-       if(simulationMode == MODE_FULLSIM)
-       {
+       if (simulationMode == MODE_FULLSIM) {
                //The diversified key should be stored on block 3
                //Get the diversified key from emulator memory
-               memcpy(diversified_key, emulator+(8*3),8);
-
+               memcpy(diversified_key, emulator + (8*3), 8);
                //Card challenge, a.k.a e-purse is on block 2
-               memcpy(card_challenge_data,emulator + (8 * 2) , 8);
+               memcpy(card_challenge_data, emulator + (8 * 2), 8);
                //Precalculate the cipher state, feeding it the CC
-               cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
-
+               cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key);
        }
 
        int exitLoop = 0;
@@ -1096,10 +1017,9 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
 
        uint8_t *modulated_response;
        int modulated_response_size = 0;
-       uint8_ttrace_data = NULL;
+       uint8_t *trace_data = NULL;
        int trace_data_size = 0;
 
-
        // Respond SOF -- takes 1 bytes
        uint8_t *resp_sof = BigBuf_malloc(2);
        int resp_sof_Len;
@@ -1127,15 +1047,18 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
 
        // First card answer: SOF
        CodeIClassTagSOF();
-       memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
+       memcpy(resp_sof, ToSend, ToSendMax);
+       resp_sof_Len = ToSendMax;
 
        // Anticollision CSN
        CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
-       memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
+       memcpy(resp_anticoll, ToSend, ToSendMax);
+       resp_anticoll_len = ToSendMax;
 
        // CSN
        CodeIClassTagAnswer(csn_data, sizeof(csn_data));
-       memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
+       memcpy(resp_csn, ToSend, ToSendMax);
+       resp_csn_len = ToSendMax;
 
        // e-Purse
        CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
@@ -1167,14 +1090,14 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
        LED_A_ON();
        bool buttonPressed = false;
        uint8_t response_delay = 1;
-       while(!exitLoop) {
+       while (!exitLoop) {
                response_delay = 1;
                LED_B_OFF();
                //Signal tracer
                // Can be used to get a trigger for an oscilloscope..
                LED_C_OFF();
 
-               if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
+               if (!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
                        buttonPressed = true;
                        break;
                }
@@ -1183,52 +1106,55 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
                LED_C_ON();
 
                // Okay, look at the command now.
-               if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
+               if (receivedCmd[0] == ICLASS_CMD_ACTALL) {
                        // Reader in anticollission phase
-                       modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
+                       modulated_response = resp_sof;
+                       modulated_response_size = resp_sof_Len; //order = 1;
                        trace_data = sof_data;
                        trace_data_size = sizeof(sof_data);
-               } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
+               } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
                        // Reader asks for anticollission CSN
-                       modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
+                       modulated_response = resp_anticoll;
+                       modulated_response_size = resp_anticoll_len; //order = 2;
                        trace_data = anticoll_data;
                        trace_data_size = sizeof(anticoll_data);
                        //DbpString("Reader requests anticollission CSN:");
-               } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
+               } else if (receivedCmd[0] == ICLASS_CMD_SELECT) {
                        // Reader selects anticollission CSN.
                        // Tag sends the corresponding real CSN
-                       modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
+                       modulated_response = resp_csn;
+                       modulated_response_size = resp_csn_len; //order = 3;
                        trace_data = csn_data;
                        trace_data_size = sizeof(csn_data);
                        //DbpString("Reader selects anticollission CSN:");
-               } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
+               } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
                        // Read e-purse (88 02)
-                       modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
+                       modulated_response = resp_cc;
+                       modulated_response_size = resp_cc_len; //order = 4;
                        trace_data = card_challenge_data;
                        trace_data_size = sizeof(card_challenge_data);
                        LED_B_ON();
-               } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
+               } else if (receivedCmd[0] == ICLASS_CMD_CHECK) {
                        // Reader random and reader MAC!!!
-                       if(simulationMode == MODE_FULLSIM)
-                       {
+                       if (simulationMode == MODE_FULLSIM) {
                                //NR, from reader, is in receivedCmd +1
-                               opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
+                               opt_doTagMAC_2(cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
 
                                trace_data = data_generic_trace;
                                trace_data_size = 4;
-                               CodeIClassTagAnswer(trace_data , trace_data_size);
+                               CodeIClassTagAnswer(trace_data, trace_data_size);
                                memcpy(data_response, ToSend, ToSendMax);
                                modulated_response = data_response;
                                modulated_response_size = ToSendMax;
-                               response_delay = 0;//We need to hurry here...
+                               response_delay = 0; //We need to hurry here... (but maybe not too much... ??)
                                //exitLoop = true;
-                       }else
-                       {       //Not fullsim, we don't respond
+                       } else {    //Not fullsim, we don't respond
                                // We do not know what to answer, so lets keep quiet
-                               modulated_response = resp_sof; modulated_response_size = 0;
+                               modulated_response = resp_sof;
+                               modulated_response_size = 0;
                                trace_data = NULL;
                                trace_data_size = 0;
-                               if (simulationMode == MODE_EXIT_AFTER_MAC){
+                               if (simulationMode == MODE_EXIT_AFTER_MAC) {
                                        // dbprintf:ing ...
                                        Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
                                                           ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
@@ -1236,57 +1162,55 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
                                                        receivedCmd[0], receivedCmd[1], receivedCmd[2],
                                                        receivedCmd[3], receivedCmd[4], receivedCmd[5],
                                                        receivedCmd[6], receivedCmd[7], receivedCmd[8]);
-                                       if (reader_mac_buf != NULL)
-                                       {
-                                               memcpy(reader_mac_buf,receivedCmd+1,8);
+                                       if (reader_mac_buf != NULL) {
+                                               memcpy(reader_mac_buf, receivedCmd+1, 8);
                                        }
                                        exitLoop = true;
                                }
                        }
 
-               } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
+               } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
                        // Reader ends the session
-                       modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
+                       modulated_response = resp_sof;
+                       modulated_response_size = 0; //order = 0;
                        trace_data = NULL;
                        trace_data_size = 0;
-               } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
+               } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) {
                        //Read block
                        uint16_t blk = receivedCmd[1];
                        //Take the data...
-                       memcpy(data_generic_trace, emulator+(blk << 3),8);
+                       memcpy(data_generic_trace, emulator + (blk << 3), 8);
                        //Add crc
                        AppendCrc(data_generic_trace, 8);
                        trace_data = data_generic_trace;
                        trace_data_size = 10;
-                       CodeIClassTagAnswer(trace_data , trace_data_size);
+                       CodeIClassTagAnswer(trace_data, trace_data_size);
                        memcpy(data_response, ToSend, ToSendMax);
                        modulated_response = data_response;
                        modulated_response_size = ToSendMax;
-               }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
-               {//Probably the reader wants to update the nonce. Let's just ignore that for now.
+               } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) {
+                       //Probably the reader wants to update the nonce. Let's just ignore that for now.
                        // OBS! If this is implemented, don't forget to regenerate the cipher_state
                        //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
                        //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
 
                        //Take the data...
-                       memcpy(data_generic_trace, receivedCmd+2,8);
+                       memcpy(data_generic_trace, receivedCmd+2, 8);
                        //Add crc
                        AppendCrc(data_generic_trace, 8);
                        trace_data = data_generic_trace;
                        trace_data_size = 10;
-                       CodeIClassTagAnswer(trace_data , trace_data_size);
+                       CodeIClassTagAnswer(trace_data, trace_data_size);
                        memcpy(data_response, ToSend, ToSendMax);
                        modulated_response = data_response;
                        modulated_response_size = ToSendMax;
-               }
-               else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
-               {//Pagesel
+               } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL) {
+                       //Pagesel
                        //Pagesel enables to select a page in the selected chip memory and return its configuration block
                        //Chips with a single page will not answer to this command
                        // It appears we're fine ignoring this.
                        //Otherwise, we should answer 8bytes (block) + 2bytes CRC
-               }
-               else {
+               } else {
                        //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
                        // Never seen this command before
                        Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
@@ -1295,35 +1219,35 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
                        receivedCmd[3], receivedCmd[4], receivedCmd[5],
                        receivedCmd[6], receivedCmd[7], receivedCmd[8]);
                        // Do not respond
-                       modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
+                       modulated_response = resp_sof;
+                       modulated_response_size = 0; //order = 0;
                        trace_data = NULL;
                        trace_data_size = 0;
                }
 
-               if(cmdsRecvd >  100) {
+               if (cmdsRecvd >  100) {
                        //DbpString("100 commands later...");
                        //break;
-               }
-               else {
+               } else {
                        cmdsRecvd++;
                }
                /**
                A legit tag has about 380us delay between reader EOT and tag SOF.
                **/
-               if(modulated_response_size > 0) {
+               if (modulated_response_size > 0) {
                        SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
                        t2r_time = GetCountSspClk();
                }
 
                uint8_t parity[MAX_PARITY_SIZE];
                GetParity(receivedCmd, len, parity);
-               LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true);
+               LogTrace(receivedCmd, len, (r2t_time-time_0) << 4, (r2t_time-time_0) << 4, parity, true);
 
                if (trace_data != NULL) {
                        GetParity(trace_data, trace_data_size, parity);
                        LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false);
                }
-               if(!get_tracing()) {
+               if (!get_tracing()) {
                        DbpString("Trace full");
                        //break;
                }
@@ -1334,168 +1258,184 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
        LED_B_OFF();
        LED_C_OFF();
 
-       if(buttonPressed)
+       if (buttonPressed)
        {
                DbpString("Button pressed");
        }
        return buttonPressed;
 }
 
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
-{
-       int i = 0, d=0;//, u = 0, d = 0;
-       uint8_t b = 0;
+/**
+ * @brief SimulateIClass simulates an iClass card.
+ * @param arg0 type of simulation
+ *          - 0 uses the first 8 bytes in usb data as CSN
+ *          - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
+ *          in the usb data. This mode collects MAC from the reader, in order to do an offline
+ *          attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
+ *          - Other : Uses the default CSN (031fec8af7ff12e0)
+ * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
+ * @param arg2
+ * @param datain
+ */
+void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
+       uint32_t simType = arg0;
+       uint32_t numberOfCSNS = arg1;
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 
-       //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
+       // Enable and clear the trace
+       set_tracing(true);
+       clear_trace();
+       //Use the emulator memory for SIM
+       uint8_t *emulator = BigBuf_get_EM_addr();
 
-       AT91C_BASE_SSC->SSC_THR = 0x00;
-       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
-       while(!BUTTON_PRESS()) {
-               if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
-                       b = AT91C_BASE_SSC->SSC_RHR; (void) b;
-               }
-               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
-                       b = 0x00;
-                       if(d < delay) {
-                               d++;
-                       }
-                       else {
-                               if( i < respLen){
-                                       b = resp[i];
-                                       //Hack
-                                       //b = 0xAC;
-                               }
-                               i++;
+       if (simType == 0) {
+               // Use the CSN from commandline
+               memcpy(emulator, datain, 8);
+               doIClassSimulation(MODE_SIM_CSN,NULL);
+       } else if (simType == 1) {
+               //Default CSN
+               uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
+               // Use the CSN from commandline
+               memcpy(emulator, csn_crc, 8);
+               doIClassSimulation(MODE_SIM_CSN,NULL);
+       } else if (simType == 2) {
+               uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
+               Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
+               // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
+               // in order to collect MAC's from the reader. This can later be used in an offlne-attack
+               // in order to obtain the keys, as in the "dismantling iclass"-paper.
+               int i = 0;
+               for ( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) {
+                       // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
+                       memcpy(emulator, datain+(i*8), 8);
+                       if (doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) {
+                               cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8);
+                               return; // Button pressed
                        }
-                       AT91C_BASE_SSC->SSC_THR = b;
                }
-
-//             if (i > respLen +4) break;
-               if (i > respLen +1) break;
+               cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8);
+       } else if (simType == 3) {
+               //This is 'full sim' mode, where we use the emulator storage for data.
+               doIClassSimulation(MODE_FULLSIM, NULL);
+       } else {
+               // We may want a mode here where we hardcode the csns to use (from proxclone).
+               // That will speed things up a little, but not required just yet.
+               Dbprintf("The mode is not implemented, reserved for future use");
        }
+       Dbprintf("Done...");
 
-       return 0;
 }
 
+
 /// THE READER CODE
 
 //-----------------------------------------------------------------------------
 // Transmit the command (to the tag) that was placed in ToSend[].
 //-----------------------------------------------------------------------------
-static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
-{
-  int c;
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-  AT91C_BASE_SSC->SSC_THR = 0x00;
-  FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-
-   if (wait)
-   {
-     if(*wait < 10) *wait = 10;
-     
-     for(c = 0; c < *wait;) {
-       if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-         AT91C_BASE_SSC->SSC_THR = 0x00;               // For exact timing!
-         c++;
-       }
-       if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-         volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
-         (void)r;
-       }
-       WDT_HIT();
-     }
-
-   }
-
-
-  uint8_t sendbyte;
-  bool firstpart = true;
-  c = 0;
-  for(;;) {
-    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-
-      // DOUBLE THE SAMPLES!
-      if(firstpart) {
-       sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); 
-      }
-      else {
-       sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
-        c++;
-      }
-      if(sendbyte == 0xff) {
-       sendbyte = 0xfe;
-      }
-      AT91C_BASE_SSC->SSC_THR = sendbyte;
-      firstpart = !firstpart;
-
-      if(c >= len) {
-        break;
-      }
-    }
-    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
-      (void)r;
-    }
-    WDT_HIT();
-  }
-  if (samples && wait) *samples = (c + *wait) << 3;
+static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) {
+       int c;
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+       AT91C_BASE_SSC->SSC_THR = 0x00;
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+
+       if (wait) {
+               if (*wait < 10) *wait = 10;
+
+               for (c = 0; c < *wait;) {
+                       if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+                               AT91C_BASE_SSC->SSC_THR = 0x00;     // For exact timing!
+                               c++;
+                       }
+                       if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                               volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+                               (void)r;
+                       }
+                       WDT_HIT();
+               }
+       }
+
+       uint8_t sendbyte;
+       bool firstpart = true;
+       c = 0;
+       for (;;) {
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+
+                       // DOUBLE THE SAMPLES!
+                       if (firstpart) {
+                               sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
+                       } else {
+                               sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
+                               c++;
+                       }
+                       if (sendbyte == 0xff) {
+                               sendbyte = 0xfe;
+                       }
+                       AT91C_BASE_SSC->SSC_THR = sendbyte;
+                       firstpart = !firstpart;
+
+                       if (c >= len) {
+                               break;
+                       }
+               }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+                       (void)r;
+               }
+               WDT_HIT();
+       }
+       if (samples && wait) *samples = (c + *wait) << 3;
 }
 
 
 //-----------------------------------------------------------------------------
 // Prepare iClass reader command to send to FPGA
 //-----------------------------------------------------------------------------
-void CodeIClassCommand(const uint8_t * cmd, int len)
-{
-  int i, j, k;
-  uint8_t b;
-
-  ToSendReset();
-
-  // Start of Communication: 1 out of 4
-  ToSend[++ToSendMax] = 0xf0;
-  ToSend[++ToSendMax] = 0x00;
-  ToSend[++ToSendMax] = 0x0f;
-  ToSend[++ToSendMax] = 0x00;
-
-  // Modulate the bytes 
-  for (i = 0; i < len; i++) {
-    b = cmd[i];
-    for(j = 0; j < 4; j++) {
-      for(k = 0; k < 4; k++) {
-                       if(k == (b & 3)) {
-                               ToSend[++ToSendMax] = 0xf0;
-                       }
-                       else {
-                               ToSend[++ToSendMax] = 0x00;
+void CodeIClassCommand(const uint8_t *cmd, int len) {
+       int i, j, k;
+
+       ToSendReset();
+
+       // Start of Communication: 1 out of 4
+       ToSend[++ToSendMax] = 0xf0;
+       ToSend[++ToSendMax] = 0x00;
+       ToSend[++ToSendMax] = 0x0f;
+       ToSend[++ToSendMax] = 0x00;
+
+       // Modulate the bytes
+       for (i = 0; i < len; i++) {
+               uint8_t b = cmd[i];
+               for (j = 0; j < 4; j++) {
+                       for (k = 0; k < 4; k++) {
+                               if (k == (b & 3)) {
+                                       ToSend[++ToSendMax] = 0xf0;
+                               } else {
+                                       ToSend[++ToSendMax] = 0x00;
+                               }
                        }
-      }
-      b >>= 2;
-    }
-  }
-
-  // End of Communication
-  ToSend[++ToSendMax] = 0x00;
-  ToSend[++ToSendMax] = 0x00;
-  ToSend[++ToSendMax] = 0xf0;
-  ToSend[++ToSendMax] = 0x00;
-
-  // Convert from last character reference to length
-  ToSendMax++;
+                       b >>= 2;
+               }
+       }
+
+       // End of Communication
+       ToSend[++ToSendMax] = 0x00;
+       ToSend[++ToSendMax] = 0x00;
+       ToSend[++ToSendMax] = 0xf0;
+       ToSend[++ToSendMax] = 0x00;
+
+       // Convert from last character reference to length
+       ToSendMax++;
 }
 
-void ReaderTransmitIClass(uint8_t* frame, int len)
-{
+static void ReaderTransmitIClass(uint8_t *frame, int len) {
        int wait = 0;
        int samples = 0;
 
        // This is tied to other size changes
-       CodeIClassCommand(frame,len);
+       CodeIClassCommand(frame, len);
 
        // Select the card
        TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
-       if(trigger)
+       if (trigger)
                LED_A_ON();
 
        // Store reader command in buffer
@@ -1509,8 +1449,8 @@ void ReaderTransmitIClass(uint8_t* frame, int len)
 //  If a response is captured return true
 //  If it takes too long return false
 //-----------------------------------------------------------------------------
-static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
-{
+static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) {
+       //uint8_t *buffer
        // buffer needs to be 512 bytes
        int c;
 
@@ -1529,22 +1469,26 @@ static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples,
        bool skip = false;
 
        c = 0;
-       for(;;) {
+       for (;;) {
                WDT_HIT();
 
-               if(BUTTON_PRESS()) return false;
+               if (BUTTON_PRESS()) return false;
 
-               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                        AT91C_BASE_SSC->SSC_THR = 0x00;  // To make use of exact timing of next command from reader!!
                        if (elapsed) (*elapsed)++;
                }
-               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-                       if(c < timeout) { c++; } else { return false; }
+               if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+                       if (c < timeout) { 
+                               c++; 
+                       } else { 
+                               return false; 
+                       }
                        b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        skip = !skip;
-                       if(skip) continue;
-               
-                       if(ManchesterDecoding(b & 0x0f)) {
+                       if (skip) continue;
+
+                       if (ManchesterDecoding(b & 0x0f)) {
                                *samples = c << 3;
                                return  true;
                        }
@@ -1552,49 +1496,47 @@ static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples,
        }
 }
 
-int ReaderReceiveIClass(uint8_t* receivedAnswer)
-{
-  int samples = 0;
-  if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false;
-  rsamples += samples;
-  uint8_t parity[MAX_PARITY_SIZE];
-  GetParity(receivedAnswer, Demod.len, parity);
-  LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false);
-  if(samples == 0) return false;
-  return Demod.len;
+static int ReaderReceiveIClass(uint8_t *receivedAnswer) {
+       int samples = 0;
+       if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) {
+               return false;
+       }
+       rsamples += samples;
+       uint8_t parity[MAX_PARITY_SIZE];
+       GetParity(receivedAnswer, Demod.len, parity);
+       LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false);
+       if (samples == 0) return false;
+       return Demod.len;
 }
 
-void setupIclassReader()
-{
-    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-    // Reset trace buffer
-         set_tracing(true);
-         clear_trace();
-
-    // Setup SSC
-    FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-    // Start from off (no field generated)
-    // Signal field is off with the appropriate LED
-    LED_D_OFF();
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelay(200);
-
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
-    // Now give it time to spin up.
-    // Signal field is on with the appropriate LED
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-    SpinDelay(200);
-    LED_A_ON();
+static void setupIclassReader() {
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       // Reset trace buffer
+       set_tracing(true);
+       clear_trace();
+
+       // Setup SSC
+       FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+       // Start from off (no field generated)
+       // Signal field is off with the appropriate LED
+       LED_D_OFF();
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       SpinDelay(200);
+
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       // Now give it time to spin up.
+       // Signal field is on with the appropriate LED
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+       SpinDelay(200);
+       LED_A_ON();
 
 }
 
-bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
-{
-       while(retries-- > 0)
-       {
+static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) {
+       while (retries-- > 0) {
                ReaderTransmitIClass(command, cmdsize);
-               if(expected_size == ReaderReceiveIClass(resp)){
+               if (expected_size == ReaderReceiveIClass(resp)) {
                        return true;
                }
        }
@@ -1608,8 +1550,7 @@ bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* re
  *         1 = Got CSN
  *         2 = Got CSN and CC
  */
-uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
-{
+static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) {
        static uint8_t act_all[]     = { 0x0a };
        //static uint8_t identify[]    = { 0x0c };
        static uint8_t identify[]    = { 0x0c, 0x00, 0x73, 0x33 };
@@ -1627,39 +1568,40 @@ uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
        // Send act_all
        ReaderTransmitIClass(act_all, 1);
        // Card present?
-       if(!ReaderReceiveIClass(resp)) return read_status;//Fail
+       if (!ReaderReceiveIClass(resp)) return read_status;//Fail
        //Send Identify
        ReaderTransmitIClass(identify, 1);
        //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
-       uint8_t len  = ReaderReceiveIClass(resp);
-       if(len != 10) return read_status;//Fail
+       uint8_t len = ReaderReceiveIClass(resp);
+       if (len != 10) return read_status;//Fail
 
        //Copy the Anti-collision CSN to our select-packet
-       memcpy(&select[1],resp,8);
+       memcpy(&select[1], resp, 8);
        //Select the card
        ReaderTransmitIClass(select, sizeof(select));
        //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
-       len  = ReaderReceiveIClass(resp);
-       if(len != 10) return read_status;//Fail
+       len = ReaderReceiveIClass(resp);
+       if (len != 10) return read_status;//Fail
 
        //Success - level 1, we got CSN
        //Save CSN in response data
-       memcpy(card_data,resp,8);
+       memcpy(card_data, resp, 8);
 
        //Flag that we got to at least stage 1, read CSN
        read_status = 1;
 
        // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
        ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
-       if(ReaderReceiveIClass(resp) == 8) {
+       if (ReaderReceiveIClass(resp) == 8) {
                //Save CC (e-purse) in response data
-               memcpy(card_data+8,resp,8);
+               memcpy(card_data+8, resp, 8);
                read_status++;
        }
 
        return read_status;
 }
-uint8_t handshakeIclassTag(uint8_t *card_data) {
+
+static uint8_t handshakeIclassTag(uint8_t *card_data) {
        return handshakeIclassTag_ext(card_data, false);
 }
 
@@ -1667,15 +1609,15 @@ uint8_t handshakeIclassTag(uint8_t *card_data) {
 // Reader iClass Anticollission
 void ReaderIClass(uint8_t arg0) {
 
-       uint8_t card_data[6 * 8]={0};
+       uint8_t card_data[6 * 8] = {0};
        memset(card_data, 0xFF, sizeof(card_data));
-       uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
+       uint8_t last_csn[8] = {0,0,0,0,0,0,0,0};
        uint8_t resp[ICLASS_BUFFER_SIZE];
        memset(resp, 0xFF, sizeof(resp));
        //Read conf block CRC(0x01) => 0xfa 0x22
-       uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
+       uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
        //Read App Issuer Area block CRC(0x05) => 0xde  0x64
-       uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
+       uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
 
        int read_status= 0;
        uint8_t result_status = 0;
@@ -1694,14 +1636,15 @@ void ReaderIClass(uint8_t arg0) {
        set_tracing(true);
        setupIclassReader();
 
-       uint16_t tryCnt=0;
+       uint16_t tryCnt = 0;
        bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
-       while(!userCancelled)
-       {
+       while (!userCancelled) {
                // if only looking for one card try 2 times if we missed it the first time
-               if (try_once && tryCnt > 2) break; 
+               if (try_once && tryCnt > 2) {
+                       break;
+               }
                tryCnt++;
-               if(!get_tracing()) {
+               if (!get_tracing()) {
                        DbpString("Trace full");
                        break;
                }
@@ -1709,18 +1652,17 @@ void ReaderIClass(uint8_t arg0) {
 
                read_status = handshakeIclassTag_ext(card_data, use_credit_key);
 
-               if(read_status == 0) continue;
-               if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
-               if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
+               if (read_status == 0) continue;
+               if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
+               if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
 
                // handshakeIclass returns CSN|CC, but the actual block
                // layout is CSN|CONFIG|CC, so here we reorder the data,
                // moving CC forward 8 bytes
-               memcpy(card_data+16,card_data+8, 8);
+               memcpy(card_data+16, card_data+8, 8);
                //Read block 1, config
-               if(flagReadConfig) {
-                       if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
-                       {
+               if (flagReadConfig) {
+                       if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) {
                                result_status |= FLAG_ICLASS_READER_CONF;
                                memcpy(card_data+8, resp, 8);
                        } else {
@@ -1729,11 +1671,10 @@ void ReaderIClass(uint8_t arg0) {
                }
 
                //Read block 5, AA
-               if(flagReadAA) {
-                       if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
-                       {
+               if (flagReadAA) {
+                       if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) {
                                result_status |= FLAG_ICLASS_READER_AA;
-                               memcpy(card_data+(8*5), resp, 8);
+                               memcpy(card_data + (8*5), resp, 8);
                        } else {
                                //Dbprintf("Failed to dump AA block");
                        }
@@ -1749,14 +1690,13 @@ void ReaderIClass(uint8_t arg0) {
                // with 0xFF:s in block 3 and 4.
 
                LED_B_ON();
-               //Send back to client, but don't bother if we already sent this - 
+               //Send back to client, but don't bother if we already sent this -
                //  only useful if looping in arm (not try_once && not abort_after_read)
-               if(memcmp(last_csn, card_data, 8) != 0)
-               {
+               if (memcmp(last_csn, card_data, 8) != 0) {
                        // If caller requires that we get Conf, CC, AA, continue until we got it
-                       if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
-                               cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
-                               if(abort_after_read) {
+                       if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
+                               cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
+                               if (abort_after_read) {
                                        LED_A_OFF();
                                        LED_B_OFF();
                                        return;
@@ -1770,9 +1710,9 @@ void ReaderIClass(uint8_t arg0) {
                userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
        }
        if (userCancelled) {
-               cmd_send(CMD_ACK,0xFF,0,0,card_data, 0);
+               cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0);
        } else {
-               cmd_send(CMD_ACK,0,0,0,card_data, 0);
+               cmd_send(CMD_ACK, 0, 0, 0, card_data, 0);
        }
        LED_A_OFF();
 }
@@ -1782,100 +1722,95 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
        uint8_t card_data[USB_CMD_DATA_SIZE]={0};
        uint16_t block_crc_LUT[255] = {0};
 
-       {//Generate a lookup table for block crc
-               for(int block = 0; block < 255; block++){
-                       char bl = block;
-                       block_crc_LUT[block] = iclass_crc16(&bl ,1);
-               }
+       //Generate a lookup table for block crc
+       for (int block = 0; block < 255; block++){
+               char bl = block;
+               block_crc_LUT[block] = iclass_crc16(&bl ,1);
        }
        //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
 
        uint8_t check[]       = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
        uint8_t read[]        = { 0x0c, 0x00, 0x00, 0x00 };
-       
-    uint16_t crc = 0;
-       uint8_t cardsize=0;
-       uint8_t mem=0;
-       
-       static struct memory_t{
-         int k16;
-         int book;
-         int k2;
-         int lockauth;
-         int keyaccess;
+
+       uint16_t crc = 0;
+       uint8_t cardsize = 0;
+       uint8_t mem = 0;
+
+       static struct memory_t {
+               int k16;
+               int book;
+               int k2;
+               int lockauth;
+               int keyaccess;
        } memory;
-       
+
        uint8_t resp[ICLASS_BUFFER_SIZE];
-       
-    setupIclassReader();
+
+       setupIclassReader();
        set_tracing(true);
 
-       while(!BUTTON_PRESS()) {
-       
+       while (!BUTTON_PRESS()) {
+
                WDT_HIT();
 
-               if(!get_tracing()) {
+               if (!get_tracing()) {
                        DbpString("Trace full");
                        break;
                }
-               
+
                uint8_t read_status = handshakeIclassTag(card_data);
-               if(read_status < 2) continue;
+               if (read_status < 2) continue;
 
                //for now replay captured auth (as cc not updated)
-               memcpy(check+5,MAC,4);
+               memcpy(check+5, MAC, 4);
 
-               if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
-               {
+               if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) {
                        Dbprintf("Error: Authentication Fail!");
                        continue;
                }
 
                //first get configuration block (block 1)
                crc = block_crc_LUT[1];
-               read[1]=1;
+               read[1] = 1;
                read[2] = crc >> 8;
                read[3] = crc & 0xff;
 
-               if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
-               {
+               if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) {
                        Dbprintf("Dump config (block 1) failed");
                        continue;
                }
 
-               mem=resp[5];
-               memory.k16= (mem & 0x80);
-               memory.book= (mem & 0x20);
-               memory.k2= (mem & 0x8);
-               memory.lockauth= (mem & 0x2);
-               memory.keyaccess= (mem & 0x1);
+               mem = resp[5];
+               memory.k16 = (mem & 0x80);
+               memory.book = (mem & 0x20);
+               memory.k2 = (mem & 0x8);
+               memory.lockauth = (mem & 0x2);
+               memory.keyaccess = (mem & 0x1);
 
                cardsize = memory.k16 ? 255 : 32;
                WDT_HIT();
                //Set card_data to all zeroes, we'll fill it with data
-               memset(card_data,0x0,USB_CMD_DATA_SIZE);
-               uint8_t failedRead =0;
-               uint32_t stored_data_length =0;
+               memset(card_data, 0x0, USB_CMD_DATA_SIZE);
+               uint8_t failedRead = 0;
+               uint32_t stored_data_length = 0;
                //then loop around remaining blocks
-               for(int block=0; block < cardsize; block++){
-
-                       read[1]= block;
+               for (int block = 0; block < cardsize; block++) {
+                       read[1] = block;
                        crc = block_crc_LUT[block];
                        read[2] = crc >> 8;
                        read[3] = crc & 0xff;
 
-                       if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
-                       {
+                       if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) {
                                Dbprintf("     %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
-                                                block, resp[0], resp[1], resp[2],
+                                               block, resp[0], resp[1], resp[2],
                                                resp[3], resp[4], resp[5],
                                                resp[6], resp[7]);
 
                                //Fill up the buffer
-                               memcpy(card_data+stored_data_length,resp,8);
+                               memcpy(card_data+stored_data_length, resp, 8);
                                stored_data_length += 8;
-                               if(stored_data_length +8 > USB_CMD_DATA_SIZE)
-                               {//Time to send this off and start afresh
+                               if (stored_data_length +8 > USB_CMD_DATA_SIZE) {
+                                       //Time to send this off and start afresh
                                        cmd_send(CMD_ACK,
                                                         stored_data_length,//data length
                                                         failedRead,//Failed blocks?
@@ -1886,21 +1821,21 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
                                        failedRead = 0;
                                }
 
-                       }else{
+                       } else {
                                failedRead = 1;
-                               stored_data_length +=8;//Otherwise, data becomes misaligned
+                               stored_data_length += 8;//Otherwise, data becomes misaligned
                                Dbprintf("Failed to dump block %d", block);
                        }
                }
 
                //Send off any remaining data
-               if(stored_data_length > 0)
-               {
+               if (stored_data_length > 0) {
                        cmd_send(CMD_ACK,
                                         stored_data_length,//data length
                                         failedRead,//Failed blocks?
                                         0,//Not used ATM
-                                        card_data, stored_data_length);
+                                        card_data,
+                                        stored_data_length);
                }
                //If we got here, let's break
                break;
@@ -1910,27 +1845,29 @@ void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
                         0,//data length
                         0,//Failed blocks?
                         0,//Not used ATM
-                        card_data, 0);
+                        card_data,
+                        0);
 
        LED_A_OFF();
 }
 
-void iClass_ReadCheck(uint8_t  blockNo, uint8_t keyType) {
+void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
        uint8_t readcheck[] = { keyType, blockNo };
        uint8_t resp[] = {0,0,0,0,0,0,0,0};
        size_t isOK = 0;
        isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
-       cmd_send(CMD_ACK,isOK,0,0,0,0);
+       cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
 }
 
 void iClass_Authentication(uint8_t *MAC) {
        uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
        uint8_t resp[ICLASS_BUFFER_SIZE];
-       memcpy(check+5,MAC,4);
+       memcpy(check+5, MAC, 4);
        bool isOK;
        isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
-       cmd_send(CMD_ACK,isOK,0,0,0,0);
+       cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
 }
+
 bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
        uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
        char bl = blockNo;
@@ -1961,17 +1898,17 @@ void iClass_Dump(uint8_t blockno, uint8_t numblks) {
 
        BigBuf_free();
        uint8_t *dataout = BigBuf_malloc(255*8);
-       if (dataout == NULL){
+       if (dataout == NULL) {
                Dbprintf("out of memory");
                FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                LED_D_OFF();
-               cmd_send(CMD_ACK,0,1,0,0,0);
+               cmd_send(CMD_ACK, 0, 1, 0, 0, 0);
                LED_A_OFF();
                return;
        }
-       memset(dataout,0xFF,255*8);
+       memset(dataout, 0xFF, 255*8);
 
-       for (;blkCnt < numblks; blkCnt++) {
+       for ( ; blkCnt < numblks; blkCnt++) {
                isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
                if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
                        isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
@@ -1980,36 +1917,35 @@ void iClass_Dump(uint8_t blockno, uint8_t numblks) {
                                break;
                        }
                }
-               memcpy(dataout+(blkCnt*8),readblockdata,8);
+               memcpy(dataout + (blkCnt*8), readblockdata, 8);
        }
        //return pointer to dump memory in arg3
-       cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
+       cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
        BigBuf_free();
 }
 
-bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
+static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
        uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
        //uint8_t readblockdata[10];
        //write[1] = blockNo;
        memcpy(write+2, data, 12); // data + mac
-       char *wrCmd = (char *)(write+1); 
+       char *wrCmd = (char *)(write+1);
        uint16_t wrCrc = iclass_crc16(wrCmd, 13);
        write[14] = wrCrc >> 8;
        write[15] = wrCrc & 0xff;
        uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
        bool isOK = false;
 
-       isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
+       isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
        if (isOK) { //if reader responded correctly
                //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
-               if (memcmp(write+2,resp,8)) {  //if response is not equal to write values
+               if (memcmp(write+2, resp, 8)) {  //if response is not equal to write values
                        if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
                                //error try again
-                               isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
-                       } 
-                       
+                               isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10);
+                       }
                }
        }
        return isOK;
@@ -2018,37 +1954,37 @@ bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
 void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
        bool isOK = iClass_WriteBlock_ext(blockNo, data);
        if (isOK){
-               Dbprintf("Write block [%02x] successful",blockNo);
+               Dbprintf("Write block [%02x] successful", blockNo);
        } else {
-               Dbprintf("Write block [%02x] failed",blockNo);          
+               Dbprintf("Write block [%02x] failed", blockNo);
        }
-       cmd_send(CMD_ACK,isOK,0,0,0,0); 
+       cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
 }
 
 void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
        int i;
        int written = 0;
        int total_block = (endblock - startblock) + 1;
-       for (i = 0; i < total_block;i++){
+       for (i = 0; i < total_block; i++) {
                // block number
-               if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
-                       Dbprintf("Write block [%02x] successful",i + startblock);
+               if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
+                       Dbprintf("Write block [%02x] successful", i + startblock);
                        written++;
                } else {
-                       if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
-                               Dbprintf("Write block [%02x] successful",i + startblock);
+                       if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
+                               Dbprintf("Write block [%02x] successful", i + startblock);
                                written++;
                        } else {
-                               Dbprintf("Write block [%02x] failed",i + startblock);
+                               Dbprintf("Write block [%02x] failed", i + startblock);
                        }
                }
        }
        if (written == total_block)
                Dbprintf("Clone complete");
        else
-               Dbprintf("Clone incomplete");   
+               Dbprintf("Clone incomplete");
 
-       cmd_send(CMD_ACK,1,0,0,0,0);
+       cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LEDsoff();
 }
index b1f33737dbbec80e4751c76bee0cdd6b3e912c7d..2ac72ec0fa9857a76f18355345e4e99655988d0f 100644 (file)
@@ -1,13 +1,13 @@
 /*****************************************************************************
  * WARNING
  *
- * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY. 
- * 
- * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL 
- * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL, 
- * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES. 
- * 
- * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS. 
+ * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
+ *
+ * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
+ * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
+ * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
+ *
+ * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
  *
  *****************************************************************************
  *
@@ -31,9 +31,9 @@
  *
  * You should have received a copy of the GNU General Public License
  * along with loclass.  If not, see <http://www.gnu.org/licenses/>.
- * 
- * 
- * 
+ *
+ *
+ *
  ****************************************************************************/
 
 /**
   -- MHS 2015
 **/
 
+/**
+
+  The runtime of opt_doTagMAC_2() with the MHS optimized version was 403 microseconds on Proxmark3.
+  This was still to slow for some newer readers which didn't want to wait that long.
+
+  Further optimizations to speedup the MAC calculations:
+  * Optimized opt_Tt logic
+  * Look up table for opt_select
+  * Removing many unnecessary bit maskings (& 0x1)
+  * updating state in place instead of alternating use of a second state structure
+  * remove the necessity to reverse bits of input and output bytes
+  opt_doTagMAC_2() now completes in 270 microseconds.
+
+  -- piwi 2019
+**/
+
 #include "optimized_cipher.h"
 #include <stddef.h>
 #include <stdbool.h>
 #include <stdint.h>
-
-
-#define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t))
-
-#define opt_B(s) (((s->b >> 6) ^ (s->b >> 5) ^ (s->b >> 4) ^ (s->b)) & 0x1)
+#include "string.h"
+
+static const uint8_t opt_select_LUT[256] = {
+       00, 03, 02, 01, 02, 03, 00, 01, 04, 07, 07, 04, 06, 07, 05, 04,
+       01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
+       06, 05, 04, 07, 04, 05, 06, 07, 06, 05, 05, 06, 04, 05, 07, 06,
+       07, 04, 05, 06, 04, 05, 06, 07, 07, 04, 04, 07, 04, 05, 07, 06,
+       06, 05, 04, 07, 04, 05, 06, 07, 02, 01, 01, 02, 00, 01, 03, 02,
+       03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
+       00, 03, 02, 01, 02, 03, 00, 01, 00, 03, 03, 00, 02, 03, 01, 00,
+       05, 06, 07, 04, 06, 07, 04, 05, 05, 06, 06, 05, 06, 07, 05, 04,
+       02, 01, 00, 03, 00, 01, 02, 03, 06, 05, 05, 06, 04, 05, 07, 06,
+       03, 00, 01, 02, 00, 01, 02, 03, 07, 04, 04, 07, 04, 05, 07, 06,
+       02, 01, 00, 03, 00, 01, 02, 03, 02, 01, 01, 02, 00, 01, 03, 02,
+       03, 00, 01, 02, 00, 01, 02, 03, 03, 00, 00, 03, 00, 01, 03, 02,
+       04, 07, 06, 05, 06, 07, 04, 05, 00, 03, 03, 00, 02, 03, 01, 00,
+       01, 02, 03, 00, 02, 03, 00, 01, 05, 06, 06, 05, 06, 07, 05, 04,
+       04, 07, 06, 05, 06, 07, 04, 05, 04, 07, 07, 04, 06, 07, 05, 04,
+       01, 02, 03, 00, 02, 03, 00, 01, 01, 02, 02, 01, 02, 03, 01, 00
+};
+
+/********************** the table above has been generated with this code: ********
+#include "util.h"
+static void init_opt_select_LUT(void) {
+       for (int r = 0; r < 256; r++) {
+               uint8_t r_ls2 = r << 2;
+               uint8_t r_and_ls2 = r & r_ls2;
+               uint8_t r_or_ls2  = r | r_ls2;
+               uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
+               uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r;
+               uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r;
+               opt_select_LUT[r] = (z0 & 4) | (z1 & 2) | (z2 & 1);
+       }
+       print_result("", opt_select_LUT, 256);
+}
+***********************************************************************************/
 
 #define opt__select(x,y,r)  (4 & (((r & (r << 2)) >> 5) ^ ((r & ~(r << 2)) >> 4) ^ ( (r | r << 2) >> 3)))\
        |(2 & (((r | r << 2) >> 6) ^ ( (r | r << 2) >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1)))\
  * Some background on the expression above can be found here...
 uint8_t xopt__select(bool x, bool y, uint8_t r)
 {
-       uint8_t r_ls2 = r << 2;
-       uint8_t r_and_ls2 = r & r_ls2;
-       uint8_t r_or_ls2  = r | r_ls2;
 
        //r:      r0 r1 r2 r3 r4 r5 r6 r7
        //r_ls2:  r2 r3 r4 r5 r6 r7  0  0
        //                       z0
        //                          z1
 
-//     uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
+//  uint8_t z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); // <-- original
        uint8_t z0 = (r_and_ls2 >> 5) ^ ((r & ~r_ls2) >> 4) ^ ( r_or_ls2 >> 3);
 
-//     uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;  // <-- original
+//  uint8_t z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y;  // <-- original
        uint8_t z1 = (r_or_ls2 >> 6) ^ ( r_or_ls2 >> 1) ^ (r >> 5) ^ r ^ ((x^y) << 1);
 
-//     uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;  // <-- original
+//  uint8_t z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x;  // <-- original
        uint8_t z2 = ((r & ~r_ls2) >> 4) ^ (r_and_ls2 >> 3) ^ r ^ x;
 
        return (z0 & 4) | (z1 & 2) | (z2 & 1);
 }
 */
 
-void opt_successor(const uint8_t* k, State *s, bool y, State* successor)
-{
-
-       uint8_t Tt = 1 & opt_T(s);
-
-       successor->t = (s->t >> 1);
-       successor->t |= (Tt ^ (s->r >> 7 & 0x1) ^ (s->r >> 3 & 0x1)) << 15;
-
-       successor->b = s->b >> 1;
-       successor->b |= (opt_B(s) ^ (s->r & 0x1)) << 7;
-
-       successor->r = (k[opt__select(Tt,y,s->r)] ^ successor->b) + s->l ;
-       successor->l = successor->r+s->r;
-
+static void opt_successor(const uint8_t *k, State *s, uint8_t y) {
+// #define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14) ^ (s->t >> 10) ^ (s->t >> 8) ^ (s->t >> 5) ^ (s->t >> 4)^ (s->t >> 1) ^ s->t))
+       // uint8_t Tt = opt_T(s);
+       uint16_t Tt = s->t & 0xc533;
+       Tt = Tt ^ (Tt >> 1);
+       Tt = Tt ^ (Tt >> 4);
+       Tt = Tt ^ (Tt >> 10);
+       Tt = Tt ^ (Tt >> 8);
+
+       s->t = (s->t >> 1);
+       s->t |= (Tt ^ (s->r >> 7) ^ (s->r >> 3)) << 15;
+
+       uint8_t opt_B = s->b;
+       opt_B ^= s->b >> 6;
+       opt_B ^= s->b >> 5;
+       opt_B ^= s->b >> 4;
+
+       s->b = s->b >> 1;
+       s->b |= (opt_B ^ s->r) << 7;
+
+       uint8_t opt_select = opt_select_LUT[s->r] & 0x04;
+       opt_select |= (opt_select_LUT[s->r] ^ ((Tt ^ y) << 1)) & 0x02;
+       opt_select |= (opt_select_LUT[s->r] ^ Tt) & 0x01;
+
+       uint8_t r = s->r;
+       s->r = (k[opt_select] ^ s->b) + s->l ;
+       s->l = s->r + r;
 }
 
-void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes)
-{
-       State x2;
-       int i;
-       uint8_t head = 0;
-       for(i =0 ; i < length  ; i++)
-       {
-               head = 1 & (in[i] >> 7);
-               opt_successor(k,s,head,&x2);
-
-               head = 1 & (in[i] >> 6);
-               opt_successor(k,&x2,head,s);
+static void opt_suc(const uint8_t *k, State *s, uint8_t *in, uint8_t length, bool add32Zeroes) {
+       for (int i = 0; i < length; i++) {
+               uint8_t head;
+               head = in[i];
+               opt_successor(k, s, head);
 
-               head = 1 & (in[i] >> 5);
-               opt_successor(k,s,head,&x2);
+               head >>= 1;
+               opt_successor(k, s, head);
 
-               head = 1 & (in[i] >> 4);
-               opt_successor(k,&x2,head,s);
+               head >>= 1;
+               opt_successor(k, s, head);
 
-               head = 1 & (in[i] >> 3);
-               opt_successor(k,s,head,&x2);
+               head >>= 1;
+               opt_successor(k, s, head);
 
-               head = 1 & (in[i] >> 2);
-               opt_successor(k,&x2,head,s);
+               head >>= 1;
+               opt_successor(k, s, head);
 
-               head = 1 & (in[i] >> 1);
-               opt_successor(k,s,head,&x2);
+               head >>= 1;
+               opt_successor(k, s, head);
 
-               head = 1 & in[i];
-               opt_successor(k,&x2,head,s);
+               head >>= 1;
+               opt_successor(k, s, head);
 
+               head >>= 1;
+               opt_successor(k, s, head);
        }
        //For tag MAC, an additional 32 zeroes
-       if(add32Zeroes)
-               for(i =0 ; i < 16 ; i++)
-               {
-                       opt_successor(k,s,0,&x2);
-                       opt_successor(k,&x2,0,s);
+       if (add32Zeroes) {
+               for(int i = 0; i < 16; i++) {
+                       opt_successor(k, s, 0);
+                       opt_successor(k, s, 0);
                }
+       }
 }
 
-void opt_output(const uint8_t* k,State* s,  uint8_t *buffer)
-{
-       uint8_t times = 0;
-       uint8_t bout = 0;
-       State temp = {0,0,0,0};
-       for( ; times < 4 ; times++)
-       {
-               bout =0;
-               bout |= (s->r & 0x4) << 5;
-               opt_successor(k,s,0,&temp);
-               bout |= (temp.r & 0x4) << 4;
-               opt_successor(k,&temp,0,s);
-               bout |= (s->r & 0x4) << 3;
-               opt_successor(k,s,0,&temp);
-               bout |= (temp.r & 0x4) << 2;
-               opt_successor(k,&temp,0,s);
-               bout |= (s->r & 0x4) << 1;
-               opt_successor(k,s,0,&temp);
-               bout |= (temp.r & 0x4) ;
-               opt_successor(k,&temp,0,s);
+static void opt_output(const uint8_t *k, State *s,  uint8_t *buffer) {
+       for (uint8_t times = 0; times < 4; times++) {
+               uint8_t bout = 0;
+               bout |= (s->r & 0x4) >> 2;
+               opt_successor(k, s, 0);
                bout |= (s->r & 0x4) >> 1;
-               opt_successor(k,s,0,&temp);
-               bout |= (temp.r & 0x4) >> 2;
-               opt_successor(k,&temp,0,s);
+               opt_successor(k, s, 0);
+               bout |= (s->r & 0x4);
+               opt_successor(k, s, 0);
+               bout |= (s->r & 0x4) << 1;
+               opt_successor(k, s, 0);
+               bout |= (s->r & 0x4) << 2;
+               opt_successor(k, s, 0);
+               bout |= (s->r & 0x4) << 3;
+               opt_successor(k, s, 0);
+               bout |= (s->r & 0x4) << 4;
+               opt_successor(k, s, 0);
+               bout |= (s->r & 0x4) << 5;
+               opt_successor(k, s, 0);
                buffer[times] = bout;
        }
-
 }
 
-void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out)
-{
+static void opt_MAC(uint8_t *k, uint8_t *input, uint8_t *out) {
        State _init  =  {
-                       ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
-                       ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
-                       0x4c, // b
-                       0xE012 // t
-                       };
+               ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+               ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r
+               0x4c, // b
+               0xE012 // t
+       };
 
-       opt_suc(k,&_init,input,12, false);
+       opt_suc(k, &_init, input, 12, false);
        //printf("\noutp ");
-       opt_output(k,&_init, out);
-}
-uint8_t rev_byte(uint8_t b) {
-       b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
-       b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
-       b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
-   return b;
-}
-void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len)
-{
-       uint8_t i;
-       for( i =0; i< len ; i++)
-               dest[i] = rev_byte(src[i]);
+       opt_output(k, &_init, out);
 }
 
-void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4])
-{
-       static uint8_t cc_nr[12];
-
-       opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12);
-       uint8_t dest []= {0,0,0,0,0,0,0,0};
-       opt_MAC(div_key_p,cc_nr, dest);
-       //The output MAC must also be reversed
-       opt_reverse_arraybytecpy(mac, dest,4);
+void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) {
+       uint8_t dest[] = {0, 0, 0, 0, 0, 0, 0, 0};
+       opt_MAC(div_key_p, cc_nr_p, dest);
+       memcpy(mac, dest, 4);
        return;
 }
-void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
-{
-       static uint8_t cc_nr[8+4+4];
-       opt_reverse_arraybytecpy(cc_nr, cc_p,12);
-       State _init  =  {
-                       ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
-                       ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
-                       0x4c, // b
-                       0xE012 // t
-                       };
-       opt_suc(div_key_p,&_init,cc_nr, 12,true);
-       uint8_t dest []= {0,0,0,0};
-       opt_output(div_key_p,&_init, dest);
-       //The output MAC must also be reversed
-       opt_reverse_arraybytecpy(mac, dest,4);
-       return;
 
+void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) {
+       State _init = {
+               ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+               ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
+               0x4c, // b
+               0xE012 // t
+       };
+       opt_suc(div_key_p, &_init, cc_p, 12, true);
+       opt_output(div_key_p, &_init, mac);
+       return;
 }
+
 /**
  * The tag MAC can be divided (both can, but no point in dividing the reader mac) into
  * two functions, since the first 8 bytes are known, we can pre-calculate the state
@@ -249,19 +273,17 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4])
  * @param div_key_p
  * @return the cipher state
  */
-State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
-{
-       static uint8_t cc_nr[8];
-       opt_reverse_arraybytecpy(cc_nr, cc_p,8);
-       State _init  =  {
-                       ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
-                       ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
-                       0x4c, // b
-                       0xE012 // t
-                       };
-       opt_suc(div_key_p,&_init,cc_nr, 8,false);
+State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) {
+       State _init = {
+               ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l
+               ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r
+               0x4c, // b
+               0xE012 // t
+       };
+       opt_suc(div_key_p, &_init, cc_p, 8, false);
        return _init;
 }
+
 /**
  * The second part of the tag MAC calculation, since the CC is already calculated into the state,
  * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
@@ -271,15 +293,8 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p)
  * @param mac - where to store the MAC
  * @param div_key_p - the key to use
  */
-void opt_doTagMAC_2(State _init,  uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p)
-{
-       static uint8_t _nr [4];
-       opt_reverse_arraybytecpy(_nr, nr, 4);
-       opt_suc(div_key_p,&_init,_nr, 4, true);
-       //opt_suc(div_key_p,&_init,nr, 4, false);
-       uint8_t dest []= {0,0,0,0};
-       opt_output(div_key_p,&_init, dest);
-       //The output MAC must also be reversed
-       opt_reverse_arraybytecpy(mac, dest,4);
+void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p) {
+       opt_suc(div_key_p, &_init, nr, 4, true);
+       opt_output(div_key_p, &_init, mac);
        return;
 }
index 6a4e2641b8b3694143828e37f40938b6cc6489f1..be77a25011794a98a70dd8a50555c7f2dd89230a 100644 (file)
  *
  ****************************************************************************/
 
- #ifndef OPTIMIZED_CIPHER_H
-#define OPTIMIZED_CIPHER_H
+#ifndef OPTIMIZED_CIPHER_H__
+#define OPTIMIZED_CIPHER_H__
+
 #include <stdint.h>
 
 /**
 * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
 * consisting of the following four components:
-*      1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
-*      2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
-*      3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
-*      4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
+*   1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
+*   2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
+*   3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
+*   4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
 **/
 typedef struct {
        uint8_t l;
@@ -57,6 +58,7 @@ typedef struct {
 /** The reader MAC is MAC(key, CC * NR )
  **/
 void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]);
+
 /**
  * The tag MAC is MAC(key, CC * NR * 32x0))
  */
@@ -71,6 +73,7 @@ void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]);
  * @return the cipher state
  */
 State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p);
+
 /**
  * The second part of the tag MAC calculation, since the CC is already calculated into the state,
  * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag
@@ -80,6 +83,6 @@ State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p);
  * @param mac - where to store the MAC
  * @param div_key_p - the key to use
  */
-void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p);
+void opt_doTagMAC_2(State _init, uint8_t *nr, uint8_t mac[4], const uint8_t *div_key_p);
 
-#endif // OPTIMIZED_CIPHER_H
+#endif // OPTIMIZED_CIPHER_H__
Impressum, Datenschutz