if (BitStream[i] < *low) *low = BitStream[i];
}
if (*high < 123) return -1; // just noise
- *high = ((*high-128)*fuzzHi + 12800)/100;
- *low = ((*low-128)*fuzzLo + 12800)/100;
+ *high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
+ *low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
return 1;
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
+uint32_t myround2(float f)
+{
+ if (f >= 2000) return 2000;//something bad happened
+ return (uint32_t) (f + (float)0.5);
+}
+
//translate 11111100000 to 10
size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits,
uint8_t invert, uint8_t fchigh, uint8_t fclow)
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
+ float lowWaves = (((float)(rfLen))/((float)fclow));
+ float highWaves = (((float)(rfLen))/((float)fchigh));
for( idx=1; idx < size; idx++) {
if (dest[idx]==lastval) {
n++;
//if lastval was 1, we have a 1->0 crossing
if (dest[idx-1]==1) {
- if (!numBits && n < rfLen/fclow) {
+ if (!numBits && n < (uint8_t)lowWaves) {
n=0;
lastval = dest[idx];
continue;
}
- n = (n * fclow + rfLen/2) / rfLen;
+ n=myround2(((float)n)/lowWaves);
} else {// 0->1 crossing
//test first bitsample too small
- if (!numBits && n < rfLen/fchigh) {
+ if (!numBits && n < (uint8_t)highWaves) {
n=0;
lastval = dest[idx];
continue;
}
- n = (n * fchigh + rfLen/2) / rfLen; //-1 for fudge factor
+ n = myround2(((float)n)/highWaves); //-1 for fudge factor
}
if (n == 0) n = 1;
}//end for
// if valid extra bits at the end were all the same frequency - add them in
- if (n > rfLen/fclow && n > rfLen/fchigh) {
+ if (n > lowWaves && n > highWaves) {
if (dest[idx-2]==1) {
- n = ((n+1) * fclow + rfLen/2) / rfLen;
- } else {// 0->1 crossing
- n = ((n+1) * fchigh + (rfLen-1)/2) / (rfLen-1); //-1 for fudge factor
+ n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
+ } else {
+ n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor
}
memset(dest, dest[idx-1]^invert , n);
numBits += n;