2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 * This Edition is maintained by Matthew Veety (aliasxerog) <mveety@gmail.com>
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
10 #include <linux/capability.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsrelease.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
37 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/sections.h>
41 #include <asm/unistd.h>
43 MODULE_LICENSE("GPL");
46 void **sys_call_table
;
48 /* original and new reboot syscall */
49 asmlinkage
long (*original_reboot
)(int magic1
, int magic2
, unsigned int cmd
, void __user
*arg
);
50 extern asmlinkage
long reboot(int magic1
, int magic2
, unsigned int cmd
, void __user
*arg
);
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t
* crash_notes
;
55 /* vmcoreinfo stuff */
56 unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
57 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
58 size_t vmcoreinfo_size
;
59 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
61 /* Location of the reserved area for the crash kernel */
62 struct resource crashk_res
= {
63 .name
= "Crash kernel",
66 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
69 int kexec_should_crash(struct task_struct
*p
)
71 if (in_interrupt() || !p
->pid
|| is_global_init(p
))
77 * When kexec transitions to the new kernel there is a one-to-one
78 * mapping between physical and virtual addresses. On processors
79 * where you can disable the MMU this is trivial, and easy. For
80 * others it is still a simple predictable page table to setup.
82 * In that environment kexec copies the new kernel to its final
83 * resting place. This means I can only support memory whose
84 * physical address can fit in an unsigned long. In particular
85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
86 * If the assembly stub has more restrictive requirements
87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
88 * defined more restrictively in <asm/kexec.h>.
90 * The code for the transition from the current kernel to the
91 * the new kernel is placed in the control_code_buffer, whose size
92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
93 * page of memory is necessary, but some architectures require more.
94 * Because this memory must be identity mapped in the transition from
95 * virtual to physical addresses it must live in the range
96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
99 * The assembly stub in the control code buffer is passed a linked list
100 * of descriptor pages detailing the source pages of the new kernel,
101 * and the destination addresses of those source pages. As this data
102 * structure is not used in the context of the current OS, it must
105 * The code has been made to work with highmem pages and will use a
106 * destination page in its final resting place (if it happens
107 * to allocate it). The end product of this is that most of the
108 * physical address space, and most of RAM can be used.
110 * Future directions include:
111 * - allocating a page table with the control code buffer identity
112 * mapped, to simplify machine_kexec and make kexec_on_panic more
117 * KIMAGE_NO_DEST is an impossible destination address..., for
118 * allocating pages whose destination address we do not care about.
120 #define KIMAGE_NO_DEST (-1UL)
122 static int kimage_is_destination_range(struct kimage
*image
,
123 unsigned long start
, unsigned long end
);
124 static struct page
*kimage_alloc_page(struct kimage
*image
,
128 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
129 unsigned long nr_segments
,
130 struct kexec_segment __user
*segments
)
132 size_t segment_bytes
;
133 struct kimage
*image
;
137 /* Allocate a controlling structure */
139 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
144 image
->entry
= &image
->head
;
145 image
->last_entry
= &image
->head
;
146 image
->control_page
= ~0; /* By default this does not apply */
147 image
->start
= entry
;
148 image
->type
= KEXEC_TYPE_DEFAULT
;
150 /* Initialize the list of control pages */
151 INIT_LIST_HEAD(&image
->control_pages
);
153 /* Initialize the list of destination pages */
154 INIT_LIST_HEAD(&image
->dest_pages
);
156 /* Initialize the list of unuseable pages */
157 INIT_LIST_HEAD(&image
->unuseable_pages
);
159 /* Read in the segments */
160 image
->nr_segments
= nr_segments
;
161 segment_bytes
= nr_segments
* sizeof(*segments
);
162 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
167 * Verify we have good destination addresses. The caller is
168 * responsible for making certain we don't attempt to load
169 * the new image into invalid or reserved areas of RAM. This
170 * just verifies it is an address we can use.
172 * Since the kernel does everything in page size chunks ensure
173 * the destination addreses are page aligned. Too many
174 * special cases crop of when we don't do this. The most
175 * insidious is getting overlapping destination addresses
176 * simply because addresses are changed to page size
179 result
= -EADDRNOTAVAIL
;
180 for (i
= 0; i
< nr_segments
; i
++) {
181 unsigned long mstart
, mend
;
183 mstart
= image
->segment
[i
].mem
;
184 mend
= mstart
+ image
->segment
[i
].memsz
;
185 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
187 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
191 /* Verify our destination addresses do not overlap.
192 * If we alloed overlapping destination addresses
193 * through very weird things can happen with no
194 * easy explanation as one segment stops on another.
197 for (i
= 0; i
< nr_segments
; i
++) {
198 unsigned long mstart
, mend
;
201 mstart
= image
->segment
[i
].mem
;
202 mend
= mstart
+ image
->segment
[i
].memsz
;
203 for (j
= 0; j
< i
; j
++) {
204 unsigned long pstart
, pend
;
205 pstart
= image
->segment
[j
].mem
;
206 pend
= pstart
+ image
->segment
[j
].memsz
;
207 /* Do the segments overlap ? */
208 if ((mend
> pstart
) && (mstart
< pend
))
213 /* Ensure our buffer sizes are strictly less than
214 * our memory sizes. This should always be the case,
215 * and it is easier to check up front than to be surprised
219 for (i
= 0; i
< nr_segments
; i
++) {
220 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
235 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
236 unsigned long nr_segments
,
237 struct kexec_segment __user
*segments
)
240 struct kimage
*image
;
242 /* Allocate and initialize a controlling structure */
244 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
251 * Find a location for the control code buffer, and add it
252 * the vector of segments so that it's pages will also be
253 * counted as destination pages.
256 image
->control_code_page
= kimage_alloc_control_pages(image
,
257 get_order(KEXEC_CONTROL_PAGE_SIZE
));
258 if (!image
->control_code_page
) {
259 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
263 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
264 if (!image
->swap_page
) {
265 printk(KERN_ERR
"Could not allocate swap buffer\n");
279 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
280 unsigned long nr_segments
,
281 struct kexec_segment __user
*segments
)
284 struct kimage
*image
;
288 /* Verify we have a valid entry point */
289 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
290 result
= -EADDRNOTAVAIL
;
294 /* Allocate and initialize a controlling structure */
295 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
299 /* Enable the special crash kernel control page
302 image
->control_page
= crashk_res
.start
;
303 image
->type
= KEXEC_TYPE_CRASH
;
306 * Verify we have good destination addresses. Normally
307 * the caller is responsible for making certain we don't
308 * attempt to load the new image into invalid or reserved
309 * areas of RAM. But crash kernels are preloaded into a
310 * reserved area of ram. We must ensure the addresses
311 * are in the reserved area otherwise preloading the
312 * kernel could corrupt things.
314 result
= -EADDRNOTAVAIL
;
315 for (i
= 0; i
< nr_segments
; i
++) {
316 unsigned long mstart
, mend
;
318 mstart
= image
->segment
[i
].mem
;
319 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
320 /* Ensure we are within the crash kernel limits */
321 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
326 * Find a location for the control code buffer, and add
327 * the vector of segments so that it's pages will also be
328 * counted as destination pages.
331 image
->control_code_page
= kimage_alloc_control_pages(image
,
332 get_order(KEXEC_CONTROL_PAGE_SIZE
));
333 if (!image
->control_code_page
) {
334 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
348 static int kimage_is_destination_range(struct kimage
*image
,
354 for (i
= 0; i
< image
->nr_segments
; i
++) {
355 unsigned long mstart
, mend
;
357 mstart
= image
->segment
[i
].mem
;
358 mend
= mstart
+ image
->segment
[i
].memsz
;
359 if ((end
> mstart
) && (start
< mend
))
366 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
370 pages
= alloc_pages(gfp_mask
, order
);
372 unsigned int count
, i
;
373 pages
->mapping
= NULL
;
374 set_page_private(pages
, order
);
376 for (i
= 0; i
< count
; i
++)
377 SetPageReserved(pages
+ i
);
383 static void kimage_free_pages(struct page
*page
)
385 unsigned int order
, count
, i
;
387 order
= page_private(page
);
389 for (i
= 0; i
< count
; i
++)
390 ClearPageReserved(page
+ i
);
391 __free_pages(page
, order
);
394 static void kimage_free_page_list(struct list_head
*list
)
396 struct list_head
*pos
, *next
;
398 list_for_each_safe(pos
, next
, list
) {
401 page
= list_entry(pos
, struct page
, lru
);
402 list_del(&page
->lru
);
403 kimage_free_pages(page
);
407 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
410 /* Control pages are special, they are the intermediaries
411 * that are needed while we copy the rest of the pages
412 * to their final resting place. As such they must
413 * not conflict with either the destination addresses
414 * or memory the kernel is already using.
416 * The only case where we really need more than one of
417 * these are for architectures where we cannot disable
418 * the MMU and must instead generate an identity mapped
419 * page table for all of the memory.
421 * At worst this runs in O(N) of the image size.
423 struct list_head extra_pages
;
428 INIT_LIST_HEAD(&extra_pages
);
430 /* Loop while I can allocate a page and the page allocated
431 * is a destination page.
434 unsigned long pfn
, epfn
, addr
, eaddr
;
436 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
439 pfn
= page_to_pfn(pages
);
441 addr
= pfn
<< PAGE_SHIFT
;
442 eaddr
= epfn
<< PAGE_SHIFT
;
443 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
444 kimage_is_destination_range(image
, addr
, eaddr
)) {
445 list_add(&pages
->lru
, &extra_pages
);
451 /* Remember the allocated page... */
452 list_add(&pages
->lru
, &image
->control_pages
);
454 /* Because the page is already in it's destination
455 * location we will never allocate another page at
456 * that address. Therefore kimage_alloc_pages
457 * will not return it (again) and we don't need
458 * to give it an entry in image->segment[].
461 /* Deal with the destination pages I have inadvertently allocated.
463 * Ideally I would convert multi-page allocations into single
464 * page allocations, and add everyting to image->dest_pages.
466 * For now it is simpler to just free the pages.
468 kimage_free_page_list(&extra_pages
);
473 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
476 /* Control pages are special, they are the intermediaries
477 * that are needed while we copy the rest of the pages
478 * to their final resting place. As such they must
479 * not conflict with either the destination addresses
480 * or memory the kernel is already using.
482 * Control pages are also the only pags we must allocate
483 * when loading a crash kernel. All of the other pages
484 * are specified by the segments and we just memcpy
485 * into them directly.
487 * The only case where we really need more than one of
488 * these are for architectures where we cannot disable
489 * the MMU and must instead generate an identity mapped
490 * page table for all of the memory.
492 * Given the low demand this implements a very simple
493 * allocator that finds the first hole of the appropriate
494 * size in the reserved memory region, and allocates all
495 * of the memory up to and including the hole.
497 unsigned long hole_start
, hole_end
, size
;
501 size
= (1 << order
) << PAGE_SHIFT
;
502 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
503 hole_end
= hole_start
+ size
- 1;
504 while (hole_end
<= crashk_res
.end
) {
507 if (hole_end
> KEXEC_CONTROL_MEMORY_LIMIT
)
509 if (hole_end
> crashk_res
.end
)
511 /* See if I overlap any of the segments */
512 for (i
= 0; i
< image
->nr_segments
; i
++) {
513 unsigned long mstart
, mend
;
515 mstart
= image
->segment
[i
].mem
;
516 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
517 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
518 /* Advance the hole to the end of the segment */
519 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
520 hole_end
= hole_start
+ size
- 1;
524 /* If I don't overlap any segments I have found my hole! */
525 if (i
== image
->nr_segments
) {
526 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
531 image
->control_page
= hole_end
;
537 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
540 struct page
*pages
= NULL
;
542 switch (image
->type
) {
543 case KEXEC_TYPE_DEFAULT
:
544 pages
= kimage_alloc_normal_control_pages(image
, order
);
546 case KEXEC_TYPE_CRASH
:
547 pages
= kimage_alloc_crash_control_pages(image
, order
);
554 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
556 if (*image
->entry
!= 0)
559 if (image
->entry
== image
->last_entry
) {
560 kimage_entry_t
*ind_page
;
563 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
567 ind_page
= page_address(page
);
568 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
569 image
->entry
= ind_page
;
570 image
->last_entry
= ind_page
+
571 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
573 *image
->entry
= entry
;
580 static int kimage_set_destination(struct kimage
*image
,
581 unsigned long destination
)
585 destination
&= PAGE_MASK
;
586 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
588 image
->destination
= destination
;
594 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
599 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
601 image
->destination
+= PAGE_SIZE
;
607 static void kimage_free_extra_pages(struct kimage
*image
)
609 /* Walk through and free any extra destination pages I may have */
610 kimage_free_page_list(&image
->dest_pages
);
612 /* Walk through and free any unuseable pages I have cached */
613 kimage_free_page_list(&image
->unuseable_pages
);
616 static void kimage_terminate(struct kimage
*image
)
618 if (*image
->entry
!= 0)
621 *image
->entry
= IND_DONE
;
624 #define for_each_kimage_entry(image, ptr, entry) \
625 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
626 ptr = (entry & IND_INDIRECTION)? \
627 phys_to_virt((entry & PAGE_MASK)): ptr +1)
629 static void kimage_free_entry(kimage_entry_t entry
)
633 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
634 kimage_free_pages(page
);
637 static void kimage_free(struct kimage
*image
)
639 kimage_entry_t
*ptr
, entry
;
640 kimage_entry_t ind
= 0;
645 kimage_free_extra_pages(image
);
646 for_each_kimage_entry(image
, ptr
, entry
) {
647 if (entry
& IND_INDIRECTION
) {
648 /* Free the previous indirection page */
649 if (ind
& IND_INDIRECTION
)
650 kimage_free_entry(ind
);
651 /* Save this indirection page until we are
656 else if (entry
& IND_SOURCE
)
657 kimage_free_entry(entry
);
659 /* Free the final indirection page */
660 if (ind
& IND_INDIRECTION
)
661 kimage_free_entry(ind
);
663 /* Handle any machine specific cleanup */
664 machine_kexec_cleanup(image
);
666 /* Free the kexec control pages... */
667 kimage_free_page_list(&image
->control_pages
);
671 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
674 kimage_entry_t
*ptr
, entry
;
675 unsigned long destination
= 0;
677 for_each_kimage_entry(image
, ptr
, entry
) {
678 if (entry
& IND_DESTINATION
)
679 destination
= entry
& PAGE_MASK
;
680 else if (entry
& IND_SOURCE
) {
681 if (page
== destination
)
683 destination
+= PAGE_SIZE
;
690 static struct page
*kimage_alloc_page(struct kimage
*image
,
692 unsigned long destination
)
695 * Here we implement safeguards to ensure that a source page
696 * is not copied to its destination page before the data on
697 * the destination page is no longer useful.
699 * To do this we maintain the invariant that a source page is
700 * either its own destination page, or it is not a
701 * destination page at all.
703 * That is slightly stronger than required, but the proof
704 * that no problems will not occur is trivial, and the
705 * implementation is simply to verify.
707 * When allocating all pages normally this algorithm will run
708 * in O(N) time, but in the worst case it will run in O(N^2)
709 * time. If the runtime is a problem the data structures can
716 * Walk through the list of destination pages, and see if I
719 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
720 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
721 if (addr
== destination
) {
722 list_del(&page
->lru
);
730 /* Allocate a page, if we run out of memory give up */
731 page
= kimage_alloc_pages(gfp_mask
, 0);
734 /* If the page cannot be used file it away */
735 if (page_to_pfn(page
) >
736 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
737 list_add(&page
->lru
, &image
->unuseable_pages
);
740 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
742 /* If it is the destination page we want use it */
743 if (addr
== destination
)
746 /* If the page is not a destination page use it */
747 if (!kimage_is_destination_range(image
, addr
,
752 * I know that the page is someones destination page.
753 * See if there is already a source page for this
754 * destination page. And if so swap the source pages.
756 old
= kimage_dst_used(image
, addr
);
759 unsigned long old_addr
;
760 struct page
*old_page
;
762 old_addr
= *old
& PAGE_MASK
;
763 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
764 copy_highpage(page
, old_page
);
765 *old
= addr
| (*old
& ~PAGE_MASK
);
767 /* The old page I have found cannot be a
768 * destination page, so return it if it's
769 * gfp_flags honor the ones passed in.
771 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
772 PageHighMem(old_page
)) {
773 kimage_free_pages(old_page
);
781 /* Place the page on the destination list I
784 list_add(&page
->lru
, &image
->dest_pages
);
791 static int kimage_load_normal_segment(struct kimage
*image
,
792 struct kexec_segment
*segment
)
795 unsigned long ubytes
, mbytes
;
797 unsigned char __user
*buf
;
801 ubytes
= segment
->bufsz
;
802 mbytes
= segment
->memsz
;
803 maddr
= segment
->mem
;
805 result
= kimage_set_destination(image
, maddr
);
812 size_t uchunk
, mchunk
;
814 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
819 result
= kimage_add_page(image
, page_to_pfn(page
)
825 /* Start with a clear page */
826 memset(ptr
, 0, PAGE_SIZE
);
827 ptr
+= maddr
& ~PAGE_MASK
;
828 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
836 result
= copy_from_user(ptr
, buf
, uchunk
);
839 result
= (result
< 0) ? result
: -EIO
;
851 static int kimage_load_crash_segment(struct kimage
*image
,
852 struct kexec_segment
*segment
)
854 /* For crash dumps kernels we simply copy the data from
855 * user space to it's destination.
856 * We do things a page at a time for the sake of kmap.
859 unsigned long ubytes
, mbytes
;
861 unsigned char __user
*buf
;
865 ubytes
= segment
->bufsz
;
866 mbytes
= segment
->memsz
;
867 maddr
= segment
->mem
;
871 size_t uchunk
, mchunk
;
873 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
879 ptr
+= maddr
& ~PAGE_MASK
;
880 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
885 if (uchunk
> ubytes
) {
887 /* Zero the trailing part of the page */
888 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
890 result
= copy_from_user(ptr
, buf
, uchunk
);
891 kexec_flush_icache_page(page
);
894 result
= (result
< 0) ? result
: -EIO
;
906 static int kimage_load_segment(struct kimage
*image
,
907 struct kexec_segment
*segment
)
909 int result
= -ENOMEM
;
911 switch (image
->type
) {
912 case KEXEC_TYPE_DEFAULT
:
913 result
= kimage_load_normal_segment(image
, segment
);
915 case KEXEC_TYPE_CRASH
:
916 result
= kimage_load_crash_segment(image
, segment
);
924 * Exec Kernel system call: for obvious reasons only root may call it.
926 * This call breaks up into three pieces.
927 * - A generic part which loads the new kernel from the current
928 * address space, and very carefully places the data in the
931 * - A generic part that interacts with the kernel and tells all of
932 * the devices to shut down. Preventing on-going dmas, and placing
933 * the devices in a consistent state so a later kernel can
936 * - A machine specific part that includes the syscall number
937 * and the copies the image to it's final destination. And
938 * jumps into the image at entry.
940 * kexec does not sync, or unmount filesystems so if you need
941 * that to happen you need to do that yourself.
943 struct kimage
*kexec_image
;
944 struct kimage
*kexec_crash_image
;
946 static DEFINE_MUTEX(kexec_mutex
);
948 asmlinkage
long kexec_load(unsigned long entry
, unsigned long nr_segments
, struct kexec_segment __user
*segments
, unsigned long flags
)
950 struct kimage
**dest_image
, *image
;
953 /* We only trust the superuser with rebooting the system. */
954 if (!capable(CAP_SYS_BOOT
))
958 * Verify we have a legal set of flags
959 * This leaves us room for future extensions.
961 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
964 /* Verify we are on the appropriate architecture */
965 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
966 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
969 /* Put an artificial cap on the number
970 * of segments passed to kexec_load.
972 if (nr_segments
> KEXEC_SEGMENT_MAX
)
978 /* Because we write directly to the reserved memory
979 * region when loading crash kernels we need a mutex here to
980 * prevent multiple crash kernels from attempting to load
981 * simultaneously, and to prevent a crash kernel from loading
982 * over the top of a in use crash kernel.
984 * KISS: always take the mutex.
986 if (!mutex_trylock(&kexec_mutex
))
989 dest_image
= &kexec_image
;
990 if (flags
& KEXEC_ON_CRASH
)
991 dest_image
= &kexec_crash_image
;
992 if (nr_segments
> 0) {
995 /* Loading another kernel to reboot into */
996 if ((flags
& KEXEC_ON_CRASH
) == 0)
997 result
= kimage_normal_alloc(&image
, entry
,
998 nr_segments
, segments
);
999 /* Loading another kernel to switch to if this one crashes */
1000 else if (flags
& KEXEC_ON_CRASH
) {
1001 /* Free any current crash dump kernel before
1004 kimage_free(xchg(&kexec_crash_image
, NULL
));
1005 result
= kimage_crash_alloc(&image
, entry
,
1006 nr_segments
, segments
);
1011 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1012 image
->preserve_context
= 1;
1013 result
= machine_kexec_prepare(image
);
1017 for (i
= 0; i
< nr_segments
; i
++) {
1018 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1022 kimage_terminate(image
);
1024 /* Install the new kernel, and Uninstall the old */
1025 image
= xchg(dest_image
, image
);
1028 mutex_unlock(&kexec_mutex
);
1034 #ifdef CONFIG_COMPAT
1035 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1036 unsigned long nr_segments
,
1037 struct compat_kexec_segment __user
*segments
,
1038 unsigned long flags
)
1040 struct compat_kexec_segment in
;
1041 struct kexec_segment out
, __user
*ksegments
;
1042 unsigned long i
, result
;
1044 /* Don't allow clients that don't understand the native
1045 * architecture to do anything.
1047 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1050 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1053 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1054 for (i
=0; i
< nr_segments
; i
++) {
1055 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1059 out
.buf
= compat_ptr(in
.buf
);
1060 out
.bufsz
= in
.bufsz
;
1062 out
.memsz
= in
.memsz
;
1064 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1069 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1073 void crash_kexec(struct pt_regs
*regs
)
1075 /* Take the kexec_mutex here to prevent sys_kexec_load
1076 * running on one cpu from replacing the crash kernel
1077 * we are using after a panic on a different cpu.
1079 * If the crash kernel was not located in a fixed area
1080 * of memory the xchg(&kexec_crash_image) would be
1081 * sufficient. But since I reuse the memory...
1083 if (mutex_trylock(&kexec_mutex
)) {
1084 if (kexec_crash_image
) {
1085 struct pt_regs fixed_regs
;
1086 crash_setup_regs(&fixed_regs
, regs
);
1087 crash_save_vmcoreinfo();
1088 machine_crash_shutdown(&fixed_regs
);
1089 machine_kexec(kexec_crash_image
);
1091 mutex_unlock(&kexec_mutex
);
1095 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1098 struct elf_note note
;
1100 note
.n_namesz
= strlen(name
) + 1;
1101 note
.n_descsz
= data_len
;
1103 memcpy(buf
, ¬e
, sizeof(note
));
1104 buf
+= (sizeof(note
) + 3)/4;
1105 memcpy(buf
, name
, note
.n_namesz
);
1106 buf
+= (note
.n_namesz
+ 3)/4;
1107 memcpy(buf
, data
, note
.n_descsz
);
1108 buf
+= (note
.n_descsz
+ 3)/4;
1113 static void final_note(u32
*buf
)
1115 struct elf_note note
;
1120 memcpy(buf
, ¬e
, sizeof(note
));
1123 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1125 struct elf_prstatus prstatus
;
1128 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1131 /* Using ELF notes here is opportunistic.
1132 * I need a well defined structure format
1133 * for the data I pass, and I need tags
1134 * on the data to indicate what information I have
1135 * squirrelled away. ELF notes happen to provide
1136 * all of that, so there is no need to invent something new.
1138 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1141 memset(&prstatus
, 0, sizeof(prstatus
));
1142 prstatus
.pr_pid
= current
->pid
;
1143 elf_core_copy_regs(&prstatus
.pr_reg
, regs
);
1144 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1145 &prstatus
, sizeof(prstatus
));
1150 * parsing the "crashkernel" commandline
1152 * this code is intended to be called from architecture specific code
1157 * This function parses command lines in the format
1159 * crashkernel=ramsize-range:size[,...][@offset]
1161 * The function returns 0 on success and -EINVAL on failure.
1163 static int __init
parse_crashkernel_mem(char *cmdline
,
1164 unsigned long long system_ram
,
1165 unsigned long long *crash_size
,
1166 unsigned long long *crash_base
)
1168 char *cur
= cmdline
, *tmp
;
1170 /* for each entry of the comma-separated list */
1172 unsigned long long start
, end
= ULLONG_MAX
, size
;
1174 /* get the start of the range */
1175 start
= memparse(cur
, &tmp
);
1177 pr_warning("crashkernel: Memory value expected\n");
1182 pr_warning("crashkernel: '-' expected\n");
1187 /* if no ':' is here, than we read the end */
1189 end
= memparse(cur
, &tmp
);
1191 pr_warning("crashkernel: Memory "
1192 "value expected\n");
1197 pr_warning("crashkernel: end <= start\n");
1203 pr_warning("crashkernel: ':' expected\n");
1208 size
= memparse(cur
, &tmp
);
1210 pr_warning("Memory value expected\n");
1214 if (size
>= system_ram
) {
1215 pr_warning("crashkernel: invalid size\n");
1220 if (system_ram
>= start
&& system_ram
< end
) {
1224 } while (*cur
++ == ',');
1226 if (*crash_size
> 0) {
1227 while (*cur
!= ' ' && *cur
!= '@')
1231 *crash_base
= memparse(cur
, &tmp
);
1233 pr_warning("Memory value expected "
1244 * That function parses "simple" (old) crashkernel command lines like
1246 * crashkernel=size[@offset]
1248 * It returns 0 on success and -EINVAL on failure.
1250 static int __init
parse_crashkernel_simple(char *cmdline
,
1251 unsigned long long *crash_size
,
1252 unsigned long long *crash_base
)
1254 char *cur
= cmdline
;
1256 *crash_size
= memparse(cmdline
, &cur
);
1257 if (cmdline
== cur
) {
1258 pr_warning("crashkernel: memory value expected\n");
1263 *crash_base
= memparse(cur
+1, &cur
);
1269 * That function is the entry point for command line parsing and should be
1270 * called from the arch-specific code.
1272 int __init
parse_crashkernel(char *cmdline
,
1273 unsigned long long system_ram
,
1274 unsigned long long *crash_size
,
1275 unsigned long long *crash_base
)
1277 char *p
= cmdline
, *ck_cmdline
= NULL
;
1278 char *first_colon
, *first_space
;
1280 BUG_ON(!crash_size
|| !crash_base
);
1284 /* find crashkernel and use the last one if there are more */
1285 p
= strstr(p
, "crashkernel=");
1288 p
= strstr(p
+1, "crashkernel=");
1294 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1297 * if the commandline contains a ':', then that's the extended
1298 * syntax -- if not, it must be the classic syntax
1300 first_colon
= strchr(ck_cmdline
, ':');
1301 first_space
= strchr(ck_cmdline
, ' ');
1302 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1303 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1304 crash_size
, crash_base
);
1306 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1314 void crash_save_vmcoreinfo(void)
1318 if (!vmcoreinfo_size
)
1321 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1323 buf
= (u32
*)vmcoreinfo_note
;
1325 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1331 void vmcoreinfo_append_str(const char *fmt
, ...)
1337 va_start(args
, fmt
);
1338 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1341 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1342 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1344 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1346 vmcoreinfo_size
+= r
;
1350 * provide an empty default implementation here -- architecture
1351 * code may override this
1353 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1356 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1358 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1362 * Move into place and start executing a preloaded standalone
1363 * executable. If nothing was preloaded return an error.
1365 int kernel_kexec(void)
1369 if (!mutex_trylock(&kexec_mutex
))
1376 #ifdef CONFIG_KEXEC_JUMP
1377 if (kexec_image
->preserve_context
) {
1378 mutex_lock(&pm_mutex
);
1379 pm_prepare_console();
1380 error
= freeze_processes();
1383 goto Restore_console
;
1386 error
= device_suspend(PMSG_FREEZE
);
1388 goto Resume_console
;
1389 error
= disable_nonboot_cpus();
1391 goto Resume_devices
;
1393 local_irq_disable();
1394 /* At this point, device_suspend() has been called,
1395 * but *not* device_power_down(). We *must*
1396 * device_power_down() now. Otherwise, drivers for
1397 * some devices (e.g. interrupt controllers) become
1398 * desynchronized with the actual state of the
1399 * hardware at resume time, and evil weirdness ensues.
1401 error
= device_power_down(PMSG_FREEZE
);
1405 /* Suspend system devices */
1406 error
= sysdev_suspend(PMSG_FREEZE
);
1408 goto Power_up_devices
;
1412 kernel_restart_prepare(NULL
);
1413 printk(KERN_EMERG
"Starting new kernel\n");
1417 machine_kexec(kexec_image
);
1419 #ifdef CONFIG_KEXEC_JUMP
1420 if (kexec_image
->preserve_context
) {
1423 device_power_up(PMSG_RESTORE
);
1427 enable_nonboot_cpus();
1429 device_resume(PMSG_RESTORE
);
1434 pm_restore_console();
1435 mutex_unlock(&pm_mutex
);
1440 mutex_unlock(&kexec_mutex
);
1444 unsigned long **find_sys_call_table(void) {
1445 unsigned long **sctable
;
1447 extern int loops_per_jiffy
;
1449 for (ptr
= (unsigned long)&unlock_kernel
; ptr
< (unsigned long)&loops_per_jiffy
; ptr
+= sizeof(void *)) {
1451 p
= (unsigned long *)ptr
;
1452 if (p
[__NR_close
] == (unsigned long) sys_close
) {
1453 sctable
= (unsigned long **)p
;
1460 static int __init
kexec_module_init(void)
1462 sys_call_table
=(void **)find_sys_call_table();
1463 if(sys_call_table
==NULL
) {
1464 printk(KERN_ERR
"Cannot find the system call address\n");
1465 return -1; // do not load
1468 printk(KERN_INFO
"kexec: Found sys_call_table at: %p\n", sys_call_table
);
1470 //sys_call_table=(void **)0xc003d004;
1471 sys_call_table
=(void **)0xc00350c4;
1472 printk(KERN_INFO
"kexec: Force sys_call_table at: %p\n", sys_call_table
);
1474 /* Set kexec_load() syscall. */
1475 sys_call_table
[__NR_kexec_load
]=kexec_load
;
1477 /* Swap reboot() syscall and store original */
1478 original_reboot
=sys_call_table
[__NR_reboot
];
1479 sys_call_table
[__NR_reboot
]=reboot
;
1481 /* crash_notes_memory_init */
1482 /* Allocate memory for saving cpu registers. */
1483 crash_notes
= alloc_percpu(note_buf_t
);
1485 printk("Kexec: Memory allocation for saving cpu register"
1486 " states failed\n");
1490 /* crash_vmcoreinfo_init */
1491 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1492 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1494 VMCOREINFO_SYMBOL(init_uts_ns
);
1495 VMCOREINFO_SYMBOL(node_online_map
);
1497 #ifndef CONFIG_NEED_MULTIPLE_NODES
1498 VMCOREINFO_SYMBOL(mem_map
);
1499 VMCOREINFO_SYMBOL(contig_page_data
);
1501 #ifdef CONFIG_SPARSEMEM
1502 VMCOREINFO_SYMBOL(mem_section
);
1503 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1504 VMCOREINFO_STRUCT_SIZE(mem_section
);
1505 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1507 VMCOREINFO_STRUCT_SIZE(page
);
1508 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1509 VMCOREINFO_STRUCT_SIZE(zone
);
1510 VMCOREINFO_STRUCT_SIZE(free_area
);
1511 VMCOREINFO_STRUCT_SIZE(list_head
);
1512 VMCOREINFO_SIZE(nodemask_t
);
1513 VMCOREINFO_OFFSET(page
, flags
);
1514 VMCOREINFO_OFFSET(page
, _count
);
1515 VMCOREINFO_OFFSET(page
, mapping
);
1516 VMCOREINFO_OFFSET(page
, lru
);
1517 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1518 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1519 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1520 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1522 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1523 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1524 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1525 VMCOREINFO_OFFSET(zone
, free_area
);
1526 VMCOREINFO_OFFSET(zone
, vm_stat
);
1527 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1528 VMCOREINFO_OFFSET(free_area
, free_list
);
1529 VMCOREINFO_OFFSET(list_head
, next
);
1530 VMCOREINFO_OFFSET(list_head
, prev
);
1531 VMCOREINFO_OFFSET(vm_struct
, addr
);
1532 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1533 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1534 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1535 VMCOREINFO_NUMBER(PG_lru
);
1536 VMCOREINFO_NUMBER(PG_private
);
1537 VMCOREINFO_NUMBER(PG_swapcache
);
1539 arch_crash_save_vmcoreinfo();
1544 module_init(kexec_module_init
)