]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
Merge pull request #43 from matrix/master
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
8ce3e4b4 4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Implements a card only attack based on crypto text (encrypted nonces
9// received during a nested authentication) only. Unlike other card only
10// attacks this doesn't rely on implementation errors but only on the
11// inherent weaknesses of the crypto1 cypher. Described in
12// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14// Computer and Communications Security, 2015
15//-----------------------------------------------------------------------------
16
8ce3e4b4 17#include <stdlib.h>
3130ba4b 18#include <stdio.h>
8ce3e4b4 19#include <string.h>
20#include <pthread.h>
0d5ee8e2 21#include <locale.h>
8ce3e4b4 22#include <math.h>
23#include "proxmark3.h"
24#include "cmdmain.h"
25#include "ui.h"
26#include "util.h"
27#include "nonce2key/crapto1.h"
3130ba4b 28#include "nonce2key/crypto1_bs.h"
f8ada309 29#include "parity.h"
3130ba4b 30#ifdef __WIN32
31 #include <windows.h>
32#endif
ac36c577 33// don't include for APPLE/mac which has malloc stuff elsewhere.
34#ifndef __APPLE__
35 #include <malloc.h>
36#endif
3130ba4b 37#include <assert.h>
8ce3e4b4 38
f8ada309 39#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
0325c12f
GG
40#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
41#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
42#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
81ba7ee8 43
44#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 45
46static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
47 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
73 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
74 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
75 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
76 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
77 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
78 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
79 0.0290 };
8ce3e4b4 80
81typedef struct noncelistentry {
82 uint32_t nonce_enc;
83 uint8_t par_enc;
84 void *next;
85} noncelistentry_t;
86
87typedef struct noncelist {
88 uint16_t num;
89 uint16_t Sum;
90 uint16_t Sum8_guess;
91 uint8_t BitFlip[2];
92 float Sum8_prob;
93 bool updated;
94 noncelistentry_t *first;
a531720a 95 float score1, score2;
8ce3e4b4 96} noncelist_t;
97
3130ba4b 98static size_t nonces_to_bruteforce = 0;
99static noncelistentry_t *brute_force_nonces[256];
810f5379 100static uint32_t cuid = 0;
8ce3e4b4 101static noncelist_t nonces[256];
fe8042f2 102static uint8_t best_first_bytes[256];
8ce3e4b4 103static uint16_t first_byte_Sum = 0;
104static uint16_t first_byte_num = 0;
105static uint16_t num_good_first_bytes = 0;
f8ada309 106static uint64_t maximum_states = 0;
107static uint64_t known_target_key;
0d5ee8e2 108static bool write_stats = false;
109static FILE *fstats = NULL;
8ce3e4b4 110
111
112typedef enum {
113 EVEN_STATE = 0,
114 ODD_STATE = 1
115} odd_even_t;
116
117#define STATELIST_INDEX_WIDTH 16
118#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
119
120typedef struct {
121 uint32_t *states[2];
122 uint32_t len[2];
123 uint32_t *index[2][STATELIST_INDEX_SIZE];
124} partial_indexed_statelist_t;
125
126typedef struct {
127 uint32_t *states[2];
128 uint32_t len[2];
129 void* next;
130} statelist_t;
131
132
f8ada309 133static partial_indexed_statelist_t partial_statelist[17];
134static partial_indexed_statelist_t statelist_bitflip;
f8ada309 135static statelist_t *candidates = NULL;
8ce3e4b4 136
383a1fb3
GG
137bool thread_check_started = false;
138bool thread_check_done = false;
139bool cracking = false;
140bool field_off = false;
141
142pthread_t thread_check;
383a1fb3 143
bbcd41a6 144static void* check_thread();
057d2e91
GG
145static bool generate_candidates(uint16_t, uint16_t);
146static bool brute_force(void);
147
8ce3e4b4 148static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
149{
150 uint8_t first_byte = nonce_enc >> 24;
151 noncelistentry_t *p1 = nonces[first_byte].first;
152 noncelistentry_t *p2 = NULL;
153
154 if (p1 == NULL) { // first nonce with this 1st byte
155 first_byte_num++;
f8ada309 156 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 157 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
158 // nonce_enc,
159 // par_enc,
160 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 161 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 162 }
163
164 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
165 p2 = p1;
166 p1 = p1->next;
167 }
168
169 if (p1 == NULL) { // need to add at the end of the list
170 if (p2 == NULL) { // list is empty yet. Add first entry.
171 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
172 } else { // add new entry at end of existing list.
173 p2 = p2->next = malloc(sizeof(noncelistentry_t));
174 }
175 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
176 if (p2 == NULL) { // need to insert at start of list
177 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
178 } else {
179 p2 = p2->next = malloc(sizeof(noncelistentry_t));
180 }
181 } else { // we have seen this 2nd byte before. Nothing to add or insert.
182 return (0);
183 }
184
185 // add or insert new data
186 p2->next = p1;
187 p2->nonce_enc = nonce_enc;
188 p2->par_enc = par_enc;
189
3130ba4b 190 if(nonces_to_bruteforce < 256){
191 brute_force_nonces[nonces_to_bruteforce] = p2;
192 nonces_to_bruteforce++;
193 }
194
8ce3e4b4 195 nonces[first_byte].num++;
f8ada309 196 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 197 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
198
199 return (1); // new nonce added
200}
201
0d5ee8e2 202static void init_nonce_memory(void)
203{
204 for (uint16_t i = 0; i < 256; i++) {
205 nonces[i].num = 0;
206 nonces[i].Sum = 0;
207 nonces[i].Sum8_guess = 0;
208 nonces[i].Sum8_prob = 0.0;
209 nonces[i].updated = true;
210 nonces[i].first = NULL;
211 }
212 first_byte_num = 0;
213 first_byte_Sum = 0;
214 num_good_first_bytes = 0;
215}
216
0d5ee8e2 217static void free_nonce_list(noncelistentry_t *p)
218{
219 if (p == NULL) {
220 return;
221 } else {
222 free_nonce_list(p->next);
223 free(p);
224 }
225}
226
0d5ee8e2 227static void free_nonces_memory(void)
228{
229 for (uint16_t i = 0; i < 256; i++) {
230 free_nonce_list(nonces[i].first);
231 }
232}
233
8ce3e4b4 234static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
235{
236 uint16_t sum = 0;
237 for (uint16_t j = 0; j < 16; j++) {
238 uint32_t st = state;
239 uint16_t part_sum = 0;
240 if (odd_even == ODD_STATE) {
241 for (uint16_t i = 0; i < 5; i++) {
242 part_sum ^= filter(st);
243 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
244 }
f8ada309 245 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 246 } else {
247 for (uint16_t i = 0; i < 4; i++) {
248 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
249 part_sum ^= filter(st);
250 }
251 }
252 sum += part_sum;
253 }
254 return sum;
255}
256
fe8042f2 257// static uint16_t SumProperty(struct Crypto1State *s)
258// {
259 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
260 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
261 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
262// }
8ce3e4b4 263
8ce3e4b4 264static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
265{
266 // for efficient computation we are using the recursive definition
267 // (K-k+1) * (n-k+1)
268 // P(X=k) = P(X=k-1) * --------------------
269 // k * (N-K-n+k)
270 // and
271 // (N-K)*(N-K-1)*...*(N-K-n+1)
272 // P(X=0) = -----------------------------
273 // N*(N-1)*...*(N-n+1)
274
275 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
276 if (k == 0) {
277 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
278 double log_result = 0.0;
279 for (int16_t i = N-K; i >= N-K-n+1; i--) {
280 log_result += log(i);
281 }
282 for (int16_t i = N; i >= N-n+1; i--) {
283 log_result -= log(i);
284 }
285 return exp(log_result);
286 } else {
287 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
288 double log_result = 0.0;
289 for (int16_t i = k+1; i <= n; i++) {
290 log_result += log(i);
291 }
292 for (int16_t i = K+1; i <= N; i++) {
293 log_result -= log(i);
294 }
295 return exp(log_result);
296 } else { // recursion
297 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
298 }
299 }
300}
3130ba4b 301
8ce3e4b4 302static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
303{
304 const uint16_t N = 256;
8ce3e4b4 305
4b2e63be 306 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 307
4b2e63be 308 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
309 double p_S_is_K = p_K[K];
310 double p_T_is_k = 0;
311 for (uint16_t i = 0; i <= 256; i++) {
312 if (p_K[i] != 0.0) {
313 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 314 }
4b2e63be 315 }
316 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 317}
318
a531720a 319
320static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
321{
322 static const uint_fast8_t common_bits_LUT[256] = {
323 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
334 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
335 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
336 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
337 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
338 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
339 };
340
341 return common_bits_LUT[bytes_diff];
342}
343
8ce3e4b4 344static void Tests()
345{
fe8042f2 346 // printf("Tests: Partial Statelist sizes\n");
347 // for (uint16_t i = 0; i <= 16; i+=2) {
348 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
349 // }
350 // for (uint16_t i = 0; i <= 16; i+=2) {
351 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
352 // }
8ce3e4b4 353
354 // #define NUM_STATISTICS 100000
8ce3e4b4 355 // uint32_t statistics_odd[17];
f8ada309 356 // uint64_t statistics[257];
8ce3e4b4 357 // uint32_t statistics_even[17];
358 // struct Crypto1State cs;
359 // time_t time1 = clock();
360
361 // for (uint16_t i = 0; i < 257; i++) {
362 // statistics[i] = 0;
363 // }
364 // for (uint16_t i = 0; i < 17; i++) {
365 // statistics_odd[i] = 0;
366 // statistics_even[i] = 0;
367 // }
368
369 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
370 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
371 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
372 // uint16_t sum_property = SumProperty(&cs);
373 // statistics[sum_property] += 1;
374 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
375 // statistics_even[sum_property]++;
376 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
377 // statistics_odd[sum_property]++;
378 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
379 // }
380
381 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
382 // for (uint16_t i = 0; i < 257; i++) {
383 // if (statistics[i] != 0) {
384 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
385 // }
386 // }
387 // for (uint16_t i = 0; i <= 16; i++) {
388 // if (statistics_odd[i] != 0) {
389 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
390 // }
391 // }
392 // for (uint16_t i = 0; i <= 16; i++) {
393 // if (statistics_odd[i] != 0) {
394 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
395 // }
396 // }
397
398 // printf("Tests: Sum Probabilities based on Partial Sums\n");
399 // for (uint16_t i = 0; i < 257; i++) {
400 // statistics[i] = 0;
401 // }
402 // uint64_t num_states = 0;
403 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
404 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
405 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
406 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
407 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
408 // }
409 // }
410 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
411 // for (uint16_t i = 0; i < 257; i++) {
412 // if (statistics[i] != 0) {
413 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
414 // }
415 // }
416
417 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
418 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
419 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
420 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
421 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
422 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
423 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
424
fe8042f2 425 // struct Crypto1State *pcs;
426 // pcs = crypto1_create(0xffffffffffff);
427 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
428 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
429 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
430 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
431 // best_first_bytes[0],
432 // SumProperty(pcs),
433 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
434 // //test_state_odd = pcs->odd & 0x00ffffff;
435 // //test_state_even = pcs->even & 0x00ffffff;
436 // crypto1_destroy(pcs);
437 // pcs = crypto1_create(0xa0a1a2a3a4a5);
438 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
439 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
440 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
441 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
442 // best_first_bytes[0],
443 // SumProperty(pcs),
444 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
445 // //test_state_odd = pcs->odd & 0x00ffffff;
446 // //test_state_even = pcs->even & 0x00ffffff;
447 // crypto1_destroy(pcs);
448 // pcs = crypto1_create(0xa6b9aa97b955);
449 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
450 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
451 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
452 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
453 // best_first_bytes[0],
454 // SumProperty(pcs),
455 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 456 //test_state_odd = pcs->odd & 0x00ffffff;
457 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 458 // crypto1_destroy(pcs);
8ce3e4b4 459
460
fe8042f2 461 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 462
cd777a05 463 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
464 // for (uint16_t i = 0; i < 256; i++) {
465 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
466 // if (i % 8 == 7) {
467 // printf("\n");
468 // }
469 // }
8ce3e4b4 470
cd777a05 471 // printf("\nTests: Sorted First Bytes:\n");
472 // for (uint16_t i = 0; i < 256; i++) {
473 // uint8_t best_byte = best_first_bytes[i];
474 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
475 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
476 // i, best_byte,
477 // nonces[best_byte].num,
478 // nonces[best_byte].Sum,
479 // nonces[best_byte].Sum8_guess,
480 // nonces[best_byte].Sum8_prob * 100,
481 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
482 // //nonces[best_byte].score1,
483 // //nonces[best_byte].score2
484 // );
485 // }
f8ada309 486
487 // printf("\nTests: parity performance\n");
488 // time_t time1p = clock();
489 // uint32_t par_sum = 0;
490 // for (uint32_t i = 0; i < 100000000; i++) {
491 // par_sum += parity(i);
492 // }
493 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
494
495 // time1p = clock();
496 // par_sum = 0;
497 // for (uint32_t i = 0; i < 100000000; i++) {
498 // par_sum += evenparity32(i);
499 // }
500 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
501
8ce3e4b4 502
f8ada309 503}
504
f8ada309 505static void sort_best_first_bytes(void)
506{
fe8042f2 507 // sort based on probability for correct guess
8ce3e4b4 508 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 509 uint16_t j = 0;
8ce3e4b4 510 float prob1 = nonces[i].Sum8_prob;
f8ada309 511 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 512 while (prob1 < prob2 && j < i) {
8ce3e4b4 513 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
514 }
fe8042f2 515 if (j < i) {
516 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 517 best_first_bytes[k] = best_first_bytes[k-1];
518 }
fe8042f2 519 }
8ce3e4b4 520 best_first_bytes[j] = i;
521 }
f8ada309 522
fe8042f2 523 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 524 uint16_t num_good_nonces = 0;
fe8042f2 525 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 526 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 527 ++num_good_nonces;
528 }
529 }
530
531 uint16_t best_first_byte = 0;
532
533 // select the best possible first byte based on number of common bits with all {b'}
534 // uint16_t max_common_bits = 0;
535 // for (uint16_t i = 0; i < num_good_nonces; i++) {
536 // uint16_t sum_common_bits = 0;
537 // for (uint16_t j = 0; j < num_good_nonces; j++) {
538 // if (i != j) {
539 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
540 // }
541 // }
542 // if (sum_common_bits > max_common_bits) {
543 // max_common_bits = sum_common_bits;
544 // best_first_byte = i;
545 // }
546 // }
547
548 // select best possible first byte {b} based on least likely sum/bitflip property
549 float min_p_K = 1.0;
550 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
551 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
552 float bitflip_prob = 1.0;
553 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
554 bitflip_prob = 0.09375;
555 }
a531720a 556 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 557 if (p_K[sum8] * bitflip_prob <= min_p_K) {
558 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 559 }
560 }
561
a531720a 562
f8ada309 563 // use number of commmon bits as a tie breaker
564 uint16_t max_common_bits = 0;
565 for (uint16_t i = 0; i < num_good_nonces; i++) {
566 float bitflip_prob = 1.0;
567 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
568 bitflip_prob = 0.09375;
569 }
570 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
571 uint16_t sum_common_bits = 0;
572 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 573 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 574 }
a531720a 575 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 576 if (sum_common_bits > max_common_bits) {
577 max_common_bits = sum_common_bits;
578 best_first_byte = i;
579 }
580 }
581 }
582
a531720a 583 // swap best possible first byte to the pole position
f8ada309 584 uint16_t temp = best_first_bytes[0];
585 best_first_bytes[0] = best_first_bytes[best_first_byte];
586 best_first_bytes[best_first_byte] = temp;
587
8ce3e4b4 588}
589
8ce3e4b4 590static uint16_t estimate_second_byte_sum(void)
591{
8ce3e4b4 592
593 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
594 float Sum8_prob = 0.0;
595 uint16_t Sum8 = 0;
596 if (nonces[first_byte].updated) {
597 for (uint16_t sum = 0; sum <= 256; sum++) {
598 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
599 if (prob > Sum8_prob) {
600 Sum8_prob = prob;
601 Sum8 = sum;
602 }
603 }
604 nonces[first_byte].Sum8_guess = Sum8;
605 nonces[first_byte].Sum8_prob = Sum8_prob;
606 nonces[first_byte].updated = false;
607 }
608 }
609
610 sort_best_first_bytes();
611
612 uint16_t num_good_nonces = 0;
fe8042f2 613 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 614 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 615 ++num_good_nonces;
616 }
617 }
618
619 return num_good_nonces;
620}
621
8ce3e4b4 622static int read_nonce_file(void)
623{
624 FILE *fnonces = NULL;
ddaecc08 625 uint8_t trgBlockNo = 0;
626 uint8_t trgKeyType = 0;
8ce3e4b4 627 uint8_t read_buf[9];
ddaecc08 628 uint32_t nt_enc1 = 0, nt_enc2 = 0;
629 uint8_t par_enc = 0;
8ce3e4b4 630 int total_num_nonces = 0;
631
632 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
633 PrintAndLog("Could not open file nonces.bin");
634 return 1;
635 }
636
637 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 638 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
639 if ( bytes_read == 0) {
8ce3e4b4 640 PrintAndLog("File reading error.");
641 fclose(fnonces);
642 return 1;
643 }
644 cuid = bytes_to_num(read_buf, 4);
645 trgBlockNo = bytes_to_num(read_buf+4, 1);
646 trgKeyType = bytes_to_num(read_buf+5, 1);
647
648 while (fread(read_buf, 1, 9, fnonces) == 9) {
649 nt_enc1 = bytes_to_num(read_buf, 4);
650 nt_enc2 = bytes_to_num(read_buf+4, 4);
651 par_enc = bytes_to_num(read_buf+8, 1);
652 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
653 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
654 add_nonce(nt_enc1, par_enc >> 4);
655 add_nonce(nt_enc2, par_enc & 0x0f);
656 total_num_nonces += 2;
657 }
658 fclose(fnonces);
659 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 660 return 0;
661}
662
a531720a 663static void Check_for_FilterFlipProperties(void)
664{
665 printf("Checking for Filter Flip Properties...\n");
666
0d5ee8e2 667 uint16_t num_bitflips = 0;
668
a531720a 669 for (uint16_t i = 0; i < 256; i++) {
670 nonces[i].BitFlip[ODD_STATE] = false;
671 nonces[i].BitFlip[EVEN_STATE] = false;
672 }
673
674 for (uint16_t i = 0; i < 256; i++) {
675 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
676 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
677 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
678
679 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
680 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 681 num_bitflips++;
a531720a 682 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
683 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 684 num_bitflips++;
a531720a 685 }
686 }
0d5ee8e2 687
688 if (write_stats) {
689 fprintf(fstats, "%d;", num_bitflips);
690 }
691}
692
0d5ee8e2 693static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
694{
1f1929a4 695 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 696 // init cryptostate with key:
697 for(int8_t i = 47; i > 0; i -= 2) {
698 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
699 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
700 }
701
702 *par_enc = 0;
703 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
704 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
705 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
706 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
707 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
708 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
709 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
710 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
711 }
712
713}
714
0d5ee8e2 715static void simulate_acquire_nonces()
716{
717 clock_t time1 = clock();
718 bool filter_flip_checked = false;
719 uint32_t total_num_nonces = 0;
720 uint32_t next_fivehundred = 500;
721 uint32_t total_added_nonces = 0;
722
723 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
724 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
725
726 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
727 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
728
729 do {
730 uint32_t nt_enc = 0;
731 uint8_t par_enc = 0;
732
733 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
734 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
735 total_added_nonces += add_nonce(nt_enc, par_enc);
736 total_num_nonces++;
737
738 if (first_byte_num == 256 ) {
739 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
740 if (!filter_flip_checked) {
741 Check_for_FilterFlipProperties();
742 filter_flip_checked = true;
743 }
744 num_good_first_bytes = estimate_second_byte_sum();
745 if (total_num_nonces > next_fivehundred) {
746 next_fivehundred = (total_num_nonces/500+1) * 500;
747 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
748 total_num_nonces,
749 total_added_nonces,
750 CONFIDENCE_THRESHOLD * 100.0,
751 num_good_first_bytes);
752 }
753 }
754
755 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
756
b112787d 757 time1 = clock() - time1;
758 if ( time1 > 0 ) {
0d5ee8e2 759 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
760 total_num_nonces,
b112787d 761 ((float)time1)/CLOCKS_PER_SEC,
762 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
763 }
0d5ee8e2 764 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
765
a531720a 766}
767
f8ada309 768static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 769{
770 clock_t time1 = clock();
771 bool initialize = true;
8ce3e4b4 772 bool finished = false;
a531720a 773 bool filter_flip_checked = false;
8ce3e4b4 774 uint32_t flags = 0;
775 uint8_t write_buf[9];
776 uint32_t total_num_nonces = 0;
777 uint32_t next_fivehundred = 500;
778 uint32_t total_added_nonces = 0;
057d2e91 779 uint32_t idx = 1;
8ce3e4b4 780 FILE *fnonces = NULL;
781 UsbCommand resp;
782
383a1fb3
GG
783 field_off = false;
784 cracking = false;
0325c12f
GG
785 thread_check_started = false;
786 thread_check_done = false;
383a1fb3 787
8ce3e4b4 788 printf("Acquiring nonces...\n");
383a1fb3 789
8ce3e4b4 790 clearCommandBuffer();
791
792 do {
383a1fb3
GG
793 if (cracking) {
794 sleep(3);
795 continue;
796 }
797
8ce3e4b4 798 flags = 0;
799 flags |= initialize ? 0x0001 : 0;
800 flags |= slow ? 0x0002 : 0;
801 flags |= field_off ? 0x0004 : 0;
802 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
803 memcpy(c.d.asBytes, key, 6);
804
805 SendCommand(&c);
806
807 if (field_off) finished = true;
808
809 if (initialize) {
810 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
811 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
812
813 cuid = resp.arg[1];
814 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
815 if (nonce_file_write && fnonces == NULL) {
816 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
817 PrintAndLog("Could not create file nonces.bin");
818 return 3;
819 }
820 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
821 num_to_bytes(cuid, 4, write_buf);
822 fwrite(write_buf, 1, 4, fnonces);
823 fwrite(&trgBlockNo, 1, 1, fnonces);
824 fwrite(&trgKeyType, 1, 1, fnonces);
825 }
826 }
827
828 if (!initialize) {
829 uint32_t nt_enc1, nt_enc2;
830 uint8_t par_enc;
831 uint16_t num_acquired_nonces = resp.arg[2];
832 uint8_t *bufp = resp.d.asBytes;
833 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
834 nt_enc1 = bytes_to_num(bufp, 4);
835 nt_enc2 = bytes_to_num(bufp+4, 4);
836 par_enc = bytes_to_num(bufp+8, 1);
837
838 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
839 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
840 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
841 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
842
0325c12f 843 if (nonce_file_write && fnonces) {
8ce3e4b4 844 fwrite(bufp, 1, 9, fnonces);
845 }
846
847 bufp += 9;
848 }
849
850 total_num_nonces += num_acquired_nonces;
851 }
852
383a1fb3 853 if (first_byte_num == 256 && !field_off) {
8ce3e4b4 854 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
a531720a 855 if (!filter_flip_checked) {
856 Check_for_FilterFlipProperties();
857 filter_flip_checked = true;
858 }
383a1fb3 859
8ce3e4b4 860 num_good_first_bytes = estimate_second_byte_sum();
861 if (total_num_nonces > next_fivehundred) {
862 next_fivehundred = (total_num_nonces/500+1) * 500;
863 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
864 total_num_nonces,
865 total_added_nonces,
866 CONFIDENCE_THRESHOLD * 100.0,
867 num_good_first_bytes);
383a1fb3 868 }
057d2e91 869
383a1fb3
GG
870 if (thread_check_started) {
871 if (thread_check_done) {
383a1fb3 872 pthread_join (thread_check, 0);
383a1fb3 873 thread_check_started = thread_check_done = false;
057d2e91 874 }
383a1fb3 875 } else {
bbcd41a6
GG
876 if (total_added_nonces >= MIN_NONCES_REQUIRED)
877 {
878 num_good_first_bytes = estimate_second_byte_sum();
879 if (total_added_nonces > (NONCES_TRIGGER*idx) || num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
880 pthread_create (&thread_check, NULL, check_thread, NULL);
881 thread_check_started = true;
882 idx++;
883 }
884 }
057d2e91 885 }
8ce3e4b4 886 }
887
888 if (!initialize) {
1a4b6738 889 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
0325c12f
GG
890 if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
891 fclose(fnonces);
892 fnonces = NULL;
893 }
1a4b6738 894 return 1;
895 }
383a1fb3 896
1a4b6738 897 if (resp.arg[0]) {
0325c12f
GG
898 if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
899 fclose(fnonces);
900 fnonces = NULL;
901 }
1a4b6738 902 return resp.arg[0]; // error during nested_hard
903 }
8ce3e4b4 904 }
905
906 initialize = false;
907
908 } while (!finished);
909
0325c12f 910 if (nonce_file_write && fnonces) {
8ce3e4b4 911 fclose(fnonces);
0325c12f 912 fnonces = NULL;
8ce3e4b4 913 }
914
b112787d 915 time1 = clock() - time1;
916 if ( time1 > 0 ) {
81ba7ee8 917 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
918 total_num_nonces,
919 ((float)time1)/CLOCKS_PER_SEC,
920 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 921 );
922 }
8ce3e4b4 923 return 0;
924}
925
8ce3e4b4 926static int init_partial_statelists(void)
927{
f8ada309 928 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
0325c12f
GG
929// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
930 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
8ce3e4b4 931
932 printf("Allocating memory for partial statelists...\n");
933 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
934 for (uint16_t i = 0; i <= 16; i+=2) {
935 partial_statelist[i].len[odd_even] = 0;
936 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
937 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
938 if (partial_statelist[i].states[odd_even] == NULL) {
939 PrintAndLog("Cannot allocate enough memory. Aborting");
940 return 4;
941 }
942 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
943 partial_statelist[i].index[odd_even][j] = NULL;
944 }
945 }
946 }
947
948 printf("Generating partial statelists...\n");
949 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
950 uint32_t index = -1;
951 uint32_t num_of_states = 1<<20;
952 for (uint32_t state = 0; state < num_of_states; state++) {
953 uint16_t sum_property = PartialSumProperty(state, odd_even);
954 uint32_t *p = partial_statelist[sum_property].states[odd_even];
955 p += partial_statelist[sum_property].len[odd_even];
956 *p = state;
957 partial_statelist[sum_property].len[odd_even]++;
958 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
959 if ((state & index_mask) != index) {
960 index = state & index_mask;
961 }
962 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
963 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
964 }
965 }
966 // add End Of List markers
967 for (uint16_t i = 0; i <= 16; i += 2) {
968 uint32_t *p = partial_statelist[i].states[odd_even];
969 p += partial_statelist[i].len[odd_even];
81ba7ee8 970 *p = END_OF_LIST_MARKER;
8ce3e4b4 971 }
972 }
973
974 return 0;
975}
8ce3e4b4 976
977static void init_BitFlip_statelist(void)
978{
979 printf("Generating bitflip statelist...\n");
980 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
981 uint32_t index = -1;
982 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
983 for (uint32_t state = 0; state < (1 << 20); state++) {
984 if (filter(state) != filter(state^1)) {
985 if ((state & index_mask) != index) {
986 index = state & index_mask;
987 }
988 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
989 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
990 }
991 *p++ = state;
992 }
993 }
994 // set len and add End Of List marker
995 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 996 *p = END_OF_LIST_MARKER;
8ce3e4b4 997 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
998}
8ce3e4b4 999
a531720a 1000static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 1001{
1002 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
1003
1004 if (p == NULL) return NULL;
a531720a 1005 while (*p < (state & mask)) p++;
81ba7ee8 1006 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 1007 if ((*p & mask) == (state & mask)) return p; // found a match.
1008 return NULL; // no match
1009}
1010
a531720a 1011static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 1012{
a531720a 1013 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
1014 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
1015 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
1016 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
1017 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
1018 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
1019 return !all_diff;
1020}
1021
a531720a 1022static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
1023{
1024 uint_fast8_t j_bit_mask = 0x01 << bit;
1025 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
1026 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
1027 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
1028 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1029 return all_diff;
1030}
1031
a531720a 1032static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1033{
1034 if (odd_even) {
1035 // odd bits
1036 switch (num_common_bits) {
1037 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1038 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1039 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1040 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1041 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1042 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1043 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1044 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1045 }
a531720a 1046 } else {
1047 // even bits
1048 switch (num_common_bits) {
1049 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1050 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1051 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1052 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1053 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1054 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1055 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1056 }
8ce3e4b4 1057 }
1058
1059 return true; // valid state
1060}
1061
8ce3e4b4 1062static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1063{
1064 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1065 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1066 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1067 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1068 uint32_t mask = 0xfffffff0;
1069 if (odd_even == ODD_STATE) {
a531720a 1070 mask >>= j/2;
8ce3e4b4 1071 } else {
a531720a 1072 mask >>= (j+1)/2;
8ce3e4b4 1073 }
1074 mask &= 0x000fffff;
1075 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1076 bool found_match = false;
1077 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1078 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1079 if (r*(16-s) + (16-r)*s == sum_a8) {
1080 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1081 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1082 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1083 if (p != NULL) {
81ba7ee8 1084 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1085 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1086 found_match = true;
1087 // if ((odd_even == ODD_STATE && state == test_state_odd)
1088 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1089 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1090 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1091 // }
1092 break;
1093 } else {
1094 // if ((odd_even == ODD_STATE && state == test_state_odd)
1095 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1096 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1097 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1098 // }
1099 }
1100 p++;
1101 }
1102 } else {
1103 // if ((odd_even == ODD_STATE && state == test_state_odd)
1104 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1105 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1106 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1107 // }
1108 }
1109 }
1110 }
1111 }
1112
1113 if (!found_match) {
1114 // if ((odd_even == ODD_STATE && state == test_state_odd)
1115 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1116 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1117 // }
1118 return false;
1119 }
1120 }
1121
1122 return true;
1123}
1124
f8ada309 1125static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1126{
1127 for (uint16_t i = 0; i < 256; i++) {
1128 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1129 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1130 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1131 uint32_t mask = 0xfffffff0;
1132 if (odd_even == ODD_STATE) {
a531720a 1133 mask >>= j/2;
f8ada309 1134 } else {
a531720a 1135 mask >>= (j+1)/2;
f8ada309 1136 }
1137 mask &= 0x000fffff;
1138 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1139 bool found_match = false;
1140 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1141 if (p != NULL) {
81ba7ee8 1142 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1143 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1144 found_match = true;
1145 // if ((odd_even == ODD_STATE && state == test_state_odd)
1146 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1147 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1148 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1149 // }
1150 break;
1151 } else {
1152 // if ((odd_even == ODD_STATE && state == test_state_odd)
1153 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1154 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1155 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1156 // }
1157 }
1158 p++;
1159 }
1160 } else {
1161 // if ((odd_even == ODD_STATE && state == test_state_odd)
1162 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1163 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1164 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1165 // }
1166 }
1167 if (!found_match) {
1168 // if ((odd_even == ODD_STATE && state == test_state_odd)
1169 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1170 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1171 // }
1172 return false;
1173 }
1174 }
1175
1176 }
1177
1178 return true;
1179}
1180
a531720a 1181static struct sl_cache_entry {
1182 uint32_t *sl;
1183 uint32_t len;
1184 } sl_cache[17][17][2];
1185
a531720a 1186static void init_statelist_cache(void)
1187{
a531720a 1188 for (uint16_t i = 0; i < 17; i+=2) {
1189 for (uint16_t j = 0; j < 17; j+=2) {
1190 for (uint16_t k = 0; k < 2; k++) {
1191 sl_cache[i][j][k].sl = NULL;
1192 sl_cache[i][j][k].len = 0;
1193 }
1194 }
1195 }
1196}
1197
8ce3e4b4 1198static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1199{
1200 uint32_t worstcase_size = 1<<20;
1201
a531720a 1202 // check cache for existing results
1203 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1204 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1205 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1206 return 0;
1207 }
1208
8ce3e4b4 1209 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1210 if (candidates->states[odd_even] == NULL) {
1211 PrintAndLog("Out of memory error.\n");
1212 return 4;
1213 }
a531720a 1214 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1215 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1216 uint32_t search_mask = 0x000ffff0;
1217 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1218 if (p2 != NULL) {
81ba7ee8 1219 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1220 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1221 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1222 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1223 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1224 *add_p++ = (*p1 << 4) | *p2;
1225 }
8ce3e4b4 1226 }
f8ada309 1227 }
8ce3e4b4 1228 p2++;
1229 }
1230 }
8ce3e4b4 1231 }
f8ada309 1232
a531720a 1233 // set end of list marker and len
81ba7ee8 1234 *add_p = END_OF_LIST_MARKER;
a531720a 1235 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1236
8ce3e4b4 1237 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1238
a531720a 1239 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1240 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1241
8ce3e4b4 1242 return 0;
1243}
1244
8ce3e4b4 1245static statelist_t *add_more_candidates(statelist_t *current_candidates)
1246{
1247 statelist_t *new_candidates = NULL;
1248 if (current_candidates == NULL) {
1249 if (candidates == NULL) {
1250 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1251 }
1252 new_candidates = candidates;
1253 } else {
1254 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1255 }
1256 new_candidates->next = NULL;
1257 new_candidates->len[ODD_STATE] = 0;
1258 new_candidates->len[EVEN_STATE] = 0;
1259 new_candidates->states[ODD_STATE] = NULL;
1260 new_candidates->states[EVEN_STATE] = NULL;
1261 return new_candidates;
1262}
1263
057d2e91 1264static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1265{
1266 struct Crypto1State *pcs;
1267 pcs = crypto1_create(key);
1268 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1269
1270 uint32_t state_odd = pcs->odd & 0x00ffffff;
1271 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1272 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
8ce3e4b4 1273
f8ada309 1274 uint64_t count = 0;
8ce3e4b4 1275 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1276 bool found_odd = false;
1277 bool found_even = false;
8ce3e4b4 1278 uint32_t *p_odd = p->states[ODD_STATE];
1279 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1280 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1281 if ((*p_odd & 0x00ffffff) == state_odd) {
1282 found_odd = true;
1283 break;
1284 }
8ce3e4b4 1285 p_odd++;
1286 }
81ba7ee8 1287 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1288 if ((*p_even & 0x00ffffff) == state_even) {
1289 found_even = true;
1290 }
8ce3e4b4 1291 p_even++;
1292 }
f8ada309 1293 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1294 if (found_odd && found_even) {
81ba7ee8 1295 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1296 count,
1297 log(count)/log(2),
1298 maximum_states,
1299 log(maximum_states)/log(2)
1300 );
0d5ee8e2 1301 if (write_stats) {
1302 fprintf(fstats, "1\n");
1303 }
f8ada309 1304 crypto1_destroy(pcs);
057d2e91 1305 return true;
f8ada309 1306 }
8ce3e4b4 1307 }
f8ada309 1308
1309 printf("Key NOT found!\n");
0d5ee8e2 1310 if (write_stats) {
1311 fprintf(fstats, "0\n");
1312 }
8ce3e4b4 1313 crypto1_destroy(pcs);
057d2e91
GG
1314
1315 return false;
8ce3e4b4 1316}
1317
057d2e91 1318static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1319{
1320 printf("Generating crypto1 state candidates... \n");
1321
1322 statelist_t *current_candidates = NULL;
1323 // estimate maximum candidate states
f8ada309 1324 maximum_states = 0;
8ce3e4b4 1325 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1326 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1327 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1328 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1329 }
1330 }
1331 }
057d2e91 1332
0325c12f 1333 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1334
5e32cf75 1335 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
8ce3e4b4 1336
a531720a 1337 init_statelist_cache();
1338
8ce3e4b4 1339 for (uint16_t p = 0; p <= 16; p += 2) {
1340 for (uint16_t q = 0; q <= 16; q += 2) {
1341 if (p*(16-q) + (16-p)*q == sum_a0) {
1342 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1343 p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1344 for (uint16_t r = 0; r <= 16; r += 2) {
1345 for (uint16_t s = 0; s <= 16; s += 2) {
1346 if (r*(16-s) + (16-r)*s == sum_a8) {
1347 current_candidates = add_more_candidates(current_candidates);
a531720a 1348 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1349 // and eliminate the need to calculate the other part
1350 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1351 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
8ce3e4b4 1352 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1353 if(current_candidates->len[ODD_STATE]) {
8ce3e4b4 1354 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1355 } else {
1356 current_candidates->len[EVEN_STATE] = 0;
1357 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1358 *p = END_OF_LIST_MARKER;
a531720a 1359 }
1360 } else {
1361 add_matching_states(current_candidates, q, s, EVEN_STATE);
1362 if(current_candidates->len[EVEN_STATE]) {
1363 add_matching_states(current_candidates, p, r, ODD_STATE);
1364 } else {
1365 current_candidates->len[ODD_STATE] = 0;
1366 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1367 *p = END_OF_LIST_MARKER;
a531720a 1368 }
1369 }
1c38049b 1370 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1371 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1372 }
1373 }
1374 }
1375 }
1376 }
1377 }
1378
8ce3e4b4 1379 maximum_states = 0;
1380 for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
1381 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1382 }
0325c12f
GG
1383
1384 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
1385
057d2e91
GG
1386 float kcalc = log(maximum_states)/log(2.0);
1387 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1388 if (write_stats) {
1389 if (maximum_states != 0) {
057d2e91 1390 fprintf(fstats, "%1.1f;", kcalc);
0d5ee8e2 1391 } else {
1392 fprintf(fstats, "%1.1f;", 0.0);
1393 }
1394 }
057d2e91
GG
1395 if (kcalc < 39.00f) return true;
1396
1397 return false;
0d5ee8e2 1398}
1399
0d5ee8e2 1400static void free_candidates_memory(statelist_t *sl)
1401{
1402 if (sl == NULL) {
1403 return;
1404 } else {
1405 free_candidates_memory(sl->next);
1406 free(sl);
1407 }
1408}
1409
0d5ee8e2 1410static void free_statelist_cache(void)
1411{
1412 for (uint16_t i = 0; i < 17; i+=2) {
1413 for (uint16_t j = 0; j < 17; j+=2) {
1414 for (uint16_t k = 0; k < 2; k++) {
1415 free(sl_cache[i][j][k].sl);
1416 }
1417 }
1418 }
8ce3e4b4 1419}
1420
45c0c48c 1421uint64_t foundkey = 0;
3130ba4b 1422size_t keys_found = 0;
1423size_t bucket_count = 0;
1424statelist_t* buckets[128];
1425size_t total_states_tested = 0;
1426size_t thread_count = 4;
1427
1428// these bitsliced states will hold identical states in all slices
1429bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1430
1431// arrays of bitsliced states with identical values in all slices
1432bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1433bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1434
1435#define EXACT_COUNT
1436
1437static const uint64_t crack_states_bitsliced(statelist_t *p){
1438 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1439 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1440 uint64_t key = -1;
1441 uint8_t bSize = sizeof(bitslice_t);
1442
1443#ifdef EXACT_COUNT
1444 size_t bucket_states_tested = 0;
1445 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1446#else
1447 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1448#endif
1449
1450 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1451 size_t bitsliced_blocks = 0;
1452 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1453
1454 // bitslice all the even states
1455 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1456
1457#ifdef __WIN32
1458 #ifdef __MINGW32__
1459 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1460 #else
1461 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1462 #endif
1463#else
b01e7d20 1464 #ifdef __APPLE__
9d590832 1465 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1466 #else
3130ba4b 1467 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1468 #endif
3130ba4b 1469#endif
1470
1471 if ( !lstate_p ) {
1472 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1473 return key;
1474 }
1475
1476 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1477
1478 // bitslice even half-states
1479 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1480#ifdef EXACT_COUNT
1481 bucket_size[bitsliced_blocks] = max_slices;
1482#endif
1483 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1484 uint32_t e = *(p_even+slice_idx);
1485 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1486 // set even bits
1487 if(e&1){
1488 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1489 }
1490 }
1491 }
1492 // compute the rollback bits
1493 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1494 // inlined crypto1_bs_lfsr_rollback
1495 const bitslice_value_t feedout = lstate_p[0].value;
1496 ++lstate_p;
1497 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1498 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1499 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1500 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1501 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1502 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1503 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1504 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1505 }
1506 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1507 }
1508
1509 // bitslice every odd state to every block of even half-states with half-finished rollback
1510 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1511 // early abort
1512 if(keys_found){
1513 goto out;
1514 }
1515
1516 // set the odd bits and compute rollback
1517 uint64_t o = (uint64_t) *p_odd;
1518 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1519 // pre-compute part of the odd feedback bits (minus rollback)
1520 bool odd_feedback_bit = parity(o&0x9ce5c);
1521
1522 crypto1_bs_rewind_a0();
1523 // set odd bits
1524 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1525 if(o & 1){
1526 state_p[state_idx] = bs_ones;
1527 } else {
1528 state_p[state_idx] = bs_zeroes;
1529 }
1530 }
1531 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1532
1533 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
383a1fb3 1534 const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1535 size_t state_idx;
1536 // set even bits
1537 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1538 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1539 }
1540 // set rollback bits
1541 uint64_t lo = o;
1542 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1543 // set the odd bits and take in the odd rollback bits from the even states
1544 if(lo & 1){
1545 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1546 } else {
1547 state_p[state_idx] = bitsliced_even_state[state_idx];
1548 }
1549
1550 // set the even bits and take in the even rollback bits from the odd states
1551 if((lo >> 32) & 1){
1552 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1553 } else {
1554 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1555 }
1556 }
1557
1558#ifdef EXACT_COUNT
1559 bucket_states_tested += bucket_size[block_idx];
1560#endif
1561 // pre-compute first keystream and feedback bit vectors
1562 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1563 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1564 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1565 state_p[47-24].value ^ state_p[47-42].value);
1566
1567 // vector to contain test results (1 = passed, 0 = failed)
1568 bitslice_t results = bs_ones;
1569
1570 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1571 size_t parity_bit_idx = 0;
1572 bitslice_value_t fb_bits = fbb;
1573 bitslice_value_t ks_bits = ksb;
1574 state_p = &states[KEYSTREAM_SIZE-1];
1575 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1576
1577 // highest bit is transmitted/received first
1578 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1579 // decrypt nonce bits
1580 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1581 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1582
1583 // compute real parity bits on the fly
1584 parity_bit_vector ^= decrypted_nonce_bit_vector;
1585
1586 // update state
1587 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1588
1589 // compute next keystream bit
1590 ks_bits = crypto1_bs_f20(state_p);
1591
1592 // for each byte:
1593 if((ks_idx&7) == 0){
1594 // get encrypted parity bits
1595 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1596
1597 // decrypt parity bits
1598 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1599
1600 // compare actual parity bits with decrypted parity bits and take count in results vector
1601 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1602
1603 // make sure we still have a match in our set
1604 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1605
1606 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1607 // the short-circuiting also helps
1608 if(results.bytes64[0] == 0
1609#if MAX_BITSLICES > 64
1610 && results.bytes64[1] == 0
1611#endif
1612#if MAX_BITSLICES > 128
1613 && results.bytes64[2] == 0
1614 && results.bytes64[3] == 0
1615#endif
1616 ){
1617 goto stop_tests;
1618 }
1619 // this is about as fast but less portable (requires -std=gnu99)
1620 // asm goto ("ptest %1, %0\n\t"
1621 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1622 parity_bit_vector = bs_zeroes.value;
1623 }
1624 // compute next feedback bit vector
1625 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1626 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1627 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1628 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1629 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1630 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1631 }
1632 }
1633 // all nonce tests were successful: we've found the key in this block!
1634 state_t keys[MAX_BITSLICES];
1635 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1636 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1637 if(get_vector_bit(results_idx, results)){
1638 key = keys[results_idx].value;
1639 goto out;
1640 }
1641 }
1642stop_tests:
1643 // prepare to set new states
1644 crypto1_bs_rewind_a0();
1645 continue;
1646 }
1647 }
1648
1649out:
1650 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1651
1652#ifdef __WIN32
1653 #ifdef __MINGW32__
1654 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1655 #else
1656 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1657 #endif
1658#else
2e350b19 1659 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1660#endif
1661
1662 }
1663 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1664 return key;
1665}
8ce3e4b4 1666
bbcd41a6 1667static void* check_thread()
383a1fb3 1668{
383a1fb3 1669 num_good_first_bytes = estimate_second_byte_sum();
383a1fb3 1670
bbcd41a6
GG
1671 clock_t time1 = clock();
1672 cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1673 time1 = clock() - time1;
1674 if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1675 if (known_target_key != -1) brute_force();
0325c12f 1676
bbcd41a6
GG
1677 if (cracking) {
1678 field_off = brute_force(); // switch off field with next SendCommand and then finish
1679 cracking = false;
383a1fb3
GG
1680 }
1681
1682 thread_check_done = true;
1683
1684 return (void *) NULL;
1685}
1686
3130ba4b 1687static void* crack_states_thread(void* x){
1688 const size_t thread_id = (size_t)x;
1689 size_t current_bucket = thread_id;
1690 while(current_bucket < bucket_count){
1691 statelist_t * bucket = buckets[current_bucket];
1692 if(bucket){
1693 const uint64_t key = crack_states_bitsliced(bucket);
1694 if(key != -1){
3130ba4b 1695 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1696 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1697 break;
1698 } else if(keys_found){
1699 break;
1700 } else {
1701 printf(".");
1702 fflush(stdout);
1703 }
1704 }
1705 current_bucket += thread_count;
1706 }
1707 return NULL;
1708}
cd777a05 1709
057d2e91 1710static bool brute_force(void)
8ce3e4b4 1711{
057d2e91 1712 bool ret = false;
f8ada309 1713 if (known_target_key != -1) {
1714 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1715 ret = TestIfKeyExists(known_target_key);
f8ada309 1716 } else {
0325c12f 1717 if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
383a1fb3 1718
057d2e91
GG
1719 PrintAndLog("Brute force phase starting.");
1720 time_t start, end;
1721 time(&start);
1722 keys_found = 0;
ddaecc08 1723 foundkey = 0;
3130ba4b 1724
057d2e91
GG
1725 crypto1_bs_init();
1726
1727 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
1728 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
1729 // convert to 32 bit little-endian
ed69e099 1730 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1731
1732 PrintAndLog("Bitslicing nonces...");
1733 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1734 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1735 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1736 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1737 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1738 // convert to 32 bit little-endian
1739 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1740 }
057d2e91 1741 total_states_tested = 0;
3130ba4b 1742
057d2e91
GG
1743 // count number of states to go
1744 bucket_count = 0;
1745 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1746 buckets[bucket_count] = p;
1747 bucket_count++;
1748 }
3130ba4b 1749
1750#ifndef __WIN32
057d2e91 1751 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1752 if ( thread_count < 1)
1753 thread_count = 1;
3130ba4b 1754#endif /* _WIN32 */
fd3be901 1755
057d2e91 1756 pthread_t threads[thread_count];
3130ba4b 1757
057d2e91
GG
1758 // enumerate states using all hardware threads, each thread handles one bucket
1759 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1760
057d2e91
GG
1761 for(size_t i = 0; i < thread_count; i++){
1762 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1763 }
1764 for(size_t i = 0; i < thread_count; i++){
1765 pthread_join(threads[i], 0);
1766 }
1767
1768 time(&end);
1769 double elapsed_time = difftime(end, start);
1770
383a1fb3 1771 if (keys_found && TestIfKeyExists(foundkey)) {
1e2bb9c9 1772 PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
45c0c48c 1773 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91
GG
1774 ret = true;
1775 } else {
1e2bb9c9 1776 PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time);
21d359f6 1777 }
057d2e91
GG
1778
1779 // reset this counter for the next call
1780 nonces_to_bruteforce = 0;
f8ada309 1781 }
057d2e91
GG
1782
1783 return ret;
f8ada309 1784}
1785
0d5ee8e2 1786int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1787{
0d5ee8e2 1788 // initialize Random number generator
1789 time_t t;
1790 srand((unsigned) time(&t));
1791
f8ada309 1792 if (trgkey != NULL) {
1793 known_target_key = bytes_to_num(trgkey, 6);
1794 } else {
1795 known_target_key = -1;
1796 }
8ce3e4b4 1797
8ce3e4b4 1798 init_partial_statelists();
1799 init_BitFlip_statelist();
0d5ee8e2 1800 write_stats = false;
8ce3e4b4 1801
0d5ee8e2 1802 if (tests) {
1803 // set the correct locale for the stats printing
1804 setlocale(LC_ALL, "");
1805 write_stats = true;
1806 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1807 PrintAndLog("Could not create/open file hardnested_stats.txt");
1808 return 3;
1809 }
1810 for (uint32_t i = 0; i < tests; i++) {
1811 init_nonce_memory();
1812 simulate_acquire_nonces();
1813 Tests();
1814 printf("Sum(a0) = %d\n", first_byte_Sum);
1815 fprintf(fstats, "%d;", first_byte_Sum);
1816 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1817 brute_force();
1818 free_nonces_memory();
1819 free_statelist_cache();
1820 free_candidates_memory(candidates);
1821 candidates = NULL;
1822 }
1823 fclose(fstats);
0325c12f 1824 fstats = NULL;
0d5ee8e2 1825 } else {
1826 init_nonce_memory();
b112787d 1827 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
1828 if (read_nonce_file() != 0) {
1829 return 3;
1830 }
1831 Check_for_FilterFlipProperties();
1832 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
1833 } else { // acquire nonces.
1834 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1835 if (is_OK != 0) {
1836 return is_OK;
1837 }
8ce3e4b4 1838 }
8ce3e4b4 1839
45c0c48c 1840 //Tests();
b112787d 1841
9d590832 1842 //PrintAndLog("");
1843 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
b112787d 1844 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1845 // best_first_bytes[0],
1846 // best_first_bytes[1],
1847 // best_first_bytes[2],
1848 // best_first_bytes[3],
1849 // best_first_bytes[4],
1850 // best_first_bytes[5],
1851 // best_first_bytes[6],
1852 // best_first_bytes[7],
1853 // best_first_bytes[8],
1854 // best_first_bytes[9] );
b112787d 1855
057d2e91
GG
1856 //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1857
1858 //clock_t time1 = clock();
1859 //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1860 //time1 = clock() - time1;
1861 //if ( time1 > 0 )
1862 //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1863
1864 //brute_force();
1865
b112787d 1866 free_nonces_memory();
1867 free_statelist_cache();
1868 free_candidates_memory(candidates);
1869 candidates = NULL;
057d2e91 1870 }
8ce3e4b4 1871 return 0;
1872}
1873
1874
Impressum, Datenschutz