]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
CHG: A repaint the plot window should be done to make sure its visual.
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
c3c241f3 12#include "usb_cdc.h"
13#include "cmd.h"
c3c241f3 14#include "proxmark3.h"
15c4dc5a 15#include "apps.h"
f7e3ed82 16#include "util.h"
9ab7a6c7 17#include "printf.h"
18#include "string.h"
9ab7a6c7 19#include <stdarg.h>
15c4dc5a 20#include "legicrf.h"
0db11b71 21#include "hitag2.h"
22#include "hitagS.h"
31abe49f 23#include "lfsampling.h"
3000dc4e 24#include "BigBuf.h"
7838f4be 25#include "mifareutil.h"
36804420 26#include "pcf7931.h"
f2c2b174 27
15c4dc5a 28#ifdef WITH_LCD
902cb3c0 29 #include "LCD.h"
15c4dc5a 30#endif
31
7838f4be 32// Craig Young - 14a stand-alone code
33#ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
c2731f37 35 #include "protocols.h"
7838f4be 36#endif
37
15c4dc5a 38//=============================================================================
39// A buffer where we can queue things up to be sent through the FPGA, for
40// any purpose (fake tag, as reader, whatever). We go MSB first, since that
41// is the order in which they go out on the wire.
42//=============================================================================
43
6a1f2d82 44#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 45uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 46int ToSendMax = 0;
15c4dc5a 47static int ToSendBit;
48struct common_area common_area __attribute__((section(".commonarea")));
49
15c4dc5a 50void ToSendReset(void)
51{
52 ToSendMax = -1;
53 ToSendBit = 8;
54}
55
da198be4 56void ToSendStuffBit(int b) {
15c4dc5a 57 if(ToSendBit >= 8) {
da198be4 58 ++ToSendMax;
15c4dc5a 59 ToSend[ToSendMax] = 0;
60 ToSendBit = 0;
61 }
62
da198be4 63 if(b)
15c4dc5a 64 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
15c4dc5a 65
da198be4 66 ++ToSendBit;
15c4dc5a 67
6a1f2d82 68 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72}
73
dccddaef 74void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax, ToSend, 0);
77}
78
15c4dc5a 79//=============================================================================
80// Debug print functions, to go out over USB, to the usual PC-side client.
81//=============================================================================
82
38e41917 83void DbpStringEx(char *str, uint32_t cmd){
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
86}
87
da198be4 88void DbpString(char *str) {
38e41917 89 DbpStringEx(str, 0);
15c4dc5a 90}
91
92#if 0
da198be4 93void DbpIntegers(int x1, int x2, int x3) {
38e41917 94 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 95}
96#endif
38e41917 97void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128] = {0x00};
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpStringEx(output_string, cmd);
107}
15c4dc5a 108
109void Dbprintf(const char *fmt, ...) {
da198be4 110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string[128] = {0x00};
15c4dc5a 112 va_list ap;
113
114 va_start(ap, fmt);
115 kvsprintf(fmt, output_string, 10, ap);
116 va_end(ap);
e30c654b 117
15c4dc5a 118 DbpString(output_string);
119}
120
9455b51c 121// prints HEX & ASCII
d19929cb 122void Dbhexdump(int len, uint8_t *d, bool bAsci) {
da198be4 123 int l=0, i;
9455b51c 124 char ascii[9];
d19929cb 125
9455b51c 126 while (len>0) {
da198be4 127
128 l = (len>8) ? 8 : len;
9455b51c 129
130 memcpy(ascii,d,l);
d19929cb 131 ascii[l]=0;
9455b51c 132
133 // filter safe ascii
da198be4 134 for (i=0; i<l; ++i)
9455b51c 135 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 136
da198be4 137 if (bAsci)
d19929cb 138 Dbprintf("%-8s %*D",ascii,l,d," ");
da198be4 139 else
d19929cb 140 Dbprintf("%*D",l,d," ");
d19929cb 141
da198be4 142 len -= 8;
143 d += 8;
9455b51c 144 }
145}
146
15c4dc5a 147//-----------------------------------------------------------------------------
148// Read an ADC channel and block till it completes, then return the result
149// in ADC units (0 to 1023). Also a routine to average 32 samples and
150// return that.
151//-----------------------------------------------------------------------------
152static int ReadAdc(int ch)
153{
f7e3ed82 154 uint32_t d;
15c4dc5a 155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
157 AT91C_BASE_ADC->ADC_MR =
3b692427 158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
161
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
165 //
166 // The maths are:
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
168 //
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
170 //
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
172
15c4dc5a 173 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
174
175 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 176
da198be4 177 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
178
15c4dc5a 179 d = AT91C_BASE_ADC->ADC_CDR[ch];
15c4dc5a 180 return d;
181}
182
9ca155ba 183int AvgAdc(int ch) // was static - merlok
15c4dc5a 184{
185 int i;
186 int a = 0;
187
da198be4 188 for(i = 0; i < 32; ++i)
15c4dc5a 189 a += ReadAdc(ch);
15c4dc5a 190
191 return (a + 15) >> 5;
192}
193
f121b478 194
da198be4 195void MeasureAntennaTuning(void) {
15c4dc5a 196
f121b478 197 uint8_t* LF_Results = BigBuf_malloc(256);
198 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
199 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
7838f4be 200 LED_B_ON();
15c4dc5a 201
202/*
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
209 */
d19929cb 210
7cc204bf 211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
da198be4 213
f121b478 214 for (i = 255; i >= 19; i--) {
da198be4 215 WDT_HIT();
15c4dc5a 216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
217 SpinDelay(20);
3b692427 218 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 219 if (i==95) vLf125 = adcval; // voltage at 125Khz
220 if (i==89) vLf134 = adcval; // voltage at 134Khz
221
153a4a78 222 LF_Results[i] = adcval >> 8; // scale int to fit in byte for graphing purposes
d3499d36 223 if(LF_Results[i] > peak) {
15c4dc5a 224 peakv = adcval;
d3499d36 225 peak = LF_Results[i];
15c4dc5a 226 peakf = i;
15c4dc5a 227 }
228 }
229
153a4a78 230 // for (i = 18; i >= 0; i--)
231 // LF_Results[i] = 0;
d3499d36 232
7838f4be 233 LED_A_ON();
15c4dc5a 234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
237 SpinDelay(20);
3b692427 238 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 239
153a4a78 240 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134 << 16), vHf, peakf | (peakv << 16), LF_Results, 256);
d19929cb 241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
da198be4 242
f121b478 243 BigBuf_free(); BigBuf_Clear_ext(false);
da198be4 244 LEDsoff();
15c4dc5a 245}
246
da198be4 247void MeasureAntennaTuningHf(void) {
15c4dc5a 248 int vHf = 0; // in mV
3b692427 249 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
250 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
252
38e41917 253 while ( !BUTTON_PRESS() ){
15c4dc5a 254 SpinDelay(20);
3b692427 255 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
38e41917 256 //Dbprintf("%d mV",vHf);
257 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
15c4dc5a 258 }
3b692427 259 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
38e41917 260 DbpString("cancelled");
15c4dc5a 261}
262
263
da198be4 264void ReadMem(int addr) {
f7e3ed82 265 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 266
267 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
268 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
269}
270
271/* osimage version information is linked in */
272extern struct version_information version_information;
273/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 274extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 275void SendVersion(void)
276{
9783989b 277 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
278 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 279
280 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 281 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
282 * pointer, then use it.
283 */
284 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
da198be4 285
15c4dc5a 286 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 287 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 288 } else {
289 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 290 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 291 }
e30c654b 292
15c4dc5a 293 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 295
9783989b 296 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
297 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
da198be4 298
9783989b 299 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
300 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
301
302 // Send Chip ID and used flash memory
303 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
304 uint32_t compressed_data_section_size = common_area.arg1;
305 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 306}
f62b5e12 307
308// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
309// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 310void printUSBSpeed(void)
f62b5e12 311{
312 Dbprintf("USB Speed:");
0de8e387 313 Dbprintf(" Sending USB packets to client...");
f62b5e12 314
0de8e387 315 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 316 uint8_t *test_data = BigBuf_get_addr();
0de8e387 317 uint32_t end_time;
f62b5e12 318
0de8e387 319 uint32_t start_time = end_time = GetTickCount();
320 uint32_t bytes_transferred = 0;
f62b5e12 321
322 LED_B_ON();
0de8e387 323 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
324 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
325 end_time = GetTickCount();
326 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 327 }
328 LED_B_OFF();
329
0de8e387 330 Dbprintf(" Time elapsed: %dms", end_time - start_time);
331 Dbprintf(" Bytes transferred: %d", bytes_transferred);
332 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
333 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 334
335}
336
7838f4be 337/**
338 * Prints runtime information about the PM3.
339**/
da198be4 340void SendStatus(void) {
7838f4be 341 BigBuf_print_status();
342 Fpga_print_status();
343 printConfig(); //LF Sampling config
0de8e387 344 printUSBSpeed();
7838f4be 345 Dbprintf("Various");
f62b5e12 346 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
347 Dbprintf(" ToSendMax..........%d", ToSendMax);
348 Dbprintf(" ToSendBit..........%d", ToSendBit);
349 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
350
351 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 352}
15c4dc5a 353
7838f4be 354#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 355
7838f4be 356#define OPTS 2
7838f4be 357void StandAloneMode()
358{
359 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 360 // Oooh pretty -- notify user we're in elite samy mode now
361 LED(LED_RED, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_GREEN, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_RED, 200);
366 LED(LED_ORANGE, 200);
367 LED(LED_GREEN, 200);
368 LED(LED_ORANGE, 200);
369 LED(LED_RED, 200);
7838f4be 370}
7838f4be 371#endif
372
7838f4be 373#ifdef WITH_ISO14443a_StandAlone
374void StandAloneMode14a()
375{
376 StandAloneMode();
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
378
379 int selected = 0;
0db6ed9a 380 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 381 int cardRead[OPTS] = {0};
382 uint8_t readUID[10] = {0};
383 uint32_t uid_1st[OPTS]={0};
384 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 385 uint32_t uid_tmp1 = 0;
386 uint32_t uid_tmp2 = 0;
387 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 388
c2731f37 389 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
390
7838f4be 391 LED(selected + 1, 0);
392
393 for (;;)
394 {
395 usb_poll();
396 WDT_HIT();
7838f4be 397 SpinDelay(300);
398
0db6ed9a 399 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 400 {
0db6ed9a 401 iGotoRecord = 0;
7838f4be 402 LEDsoff();
403 LED(selected + 1, 0);
404 LED(LED_RED2, 0);
405
406 // record
407 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 408 /* need this delay to prevent catching some weird data */
409 SpinDelay(500);
410 /* Code for reading from 14a tag */
810f5379 411 uint8_t uid[10] = {0};
412 uint32_t cuid = 0;
7838f4be 413 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
414
415 for ( ; ; )
416 {
417 WDT_HIT();
0db6ed9a 418 if (BUTTON_PRESS()) {
419 if (cardRead[selected]) {
420 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
421 break;
422 }
423 else if (cardRead[(selected+1)%OPTS]) {
424 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
425 selected = (selected+1)%OPTS;
426 break; // playing = 1;
427 }
428 else {
429 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
430 SpinDelay(300);
431 }
432 }
c188b1b9 433 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
7838f4be 434 continue;
435 else
436 {
437 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
438 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 439 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 440 // Set UID byte order
441 for (int i=0; i<4; i++)
442 dst[i] = uid[3-i];
0db6ed9a 443 dst = (uint8_t *)&uid_tmp2;
7838f4be 444 for (int i=0; i<4; i++)
445 dst[i] = uid[7-i];
0db6ed9a 446 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
447 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
448 }
449 else {
450 if (uid_tmp2) {
451 Dbprintf("Bank[%d] received a 7-byte UID",selected);
452 uid_1st[selected] = (uid_tmp1)>>8;
453 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
454 }
455 else {
456 Dbprintf("Bank[%d] received a 4-byte UID",selected);
457 uid_1st[selected] = uid_tmp1;
458 uid_2nd[selected] = uid_tmp2;
459 }
7838f4be 460 break;
461 }
462 }
0db6ed9a 463 }
464 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
465 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 466 LEDsoff();
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469 LED(LED_GREEN, 200);
470 LED(LED_ORANGE, 200);
471
472 LEDsoff();
473 LED(selected + 1, 0);
7838f4be 474
0db6ed9a 475 // Next state is replay:
476 playing = 1;
7838f4be 477
478 cardRead[selected] = 1;
7838f4be 479 }
0db6ed9a 480 /* MF Classic UID clone */
481 else if (iGotoClone==1)
7838f4be 482 {
0db6ed9a 483 iGotoClone=0;
c2731f37 484 LEDsoff();
485 LED(selected + 1, 0);
486 LED(LED_ORANGE, 250);
7838f4be 487
c2731f37 488 // record
489 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
7838f4be 490
c2731f37 491 // wait for button to be released
492 // Delay cloning until card is in place
493 while(BUTTON_PRESS())
494 WDT_HIT();
7838f4be 495
c2731f37 496 Dbprintf("Starting clone. [Bank: %u]", selected);
497 // need this delay to prevent catching some weird data
498 SpinDelay(500);
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
502 memcpy(c.d.asBytes, data, 16);
503 SendCommand(&c);
504
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
507 We need to imitate that call with blockNo 0 to set a uid.
508
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 break;
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
516 break;
517
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 // Mifare UID BCC
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
526 */
527 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
528 // arg0 = Flags, arg1=blockNo
529 MifareCGetBlock(params, 0, oldBlock0);
0db6ed9a 530 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
532 playing = 1;
533 }
534 else {
c2731f37 535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
536 memcpy(newBlock0,oldBlock0,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538
539 newBlock0[0] = uid_1st[selected]>>24;
540 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
541 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
542 newBlock0[3] = 0xFF & (uid_1st[selected]);
543 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
544
545 // arg0 = workFlags, arg1 = blockNo, datain
546 MifareCSetBlock(params, 0, newBlock0);
547 MifareCGetBlock(params, 0, testBlock0);
548
549 if (memcmp(testBlock0, newBlock0, 16)==0) {
550 DbpString("Cloned successfull!");
551 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 552 playing = 0;
0db6ed9a 553 iGotoRecord = 1;
c2731f37 554 selected = (selected + 1) % OPTS;
555 } else {
0db6ed9a 556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
557 playing = 1;
558 }
559 }
560 LEDsoff();
561 LED(selected + 1, 0);
7838f4be 562 }
563 // Change where to record (or begin playing)
0db6ed9a 564 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 565 {
7838f4be 566 LEDsoff();
567 LED(selected + 1, 0);
568
569 // Begin transmitting
570 if (playing)
571 {
572 LED(LED_GREEN, 0);
573 DbpString("Playing");
0db6ed9a 574 for ( ; ; ) {
575 WDT_HIT();
576 int button_action = BUTTON_HELD(1000);
577 if (button_action == 0) { // No button action, proceed with sim
578 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
579 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
580 num_to_bytes(uid_1st[selected], 3, data);
581 num_to_bytes(uid_2nd[selected], 4, data);
582
7838f4be 583 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 584 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
585 DbpString("Mifare Classic");
586 SimulateIso14443aTag(1, flags, data); // Mifare Classic
587 }
588 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
589 DbpString("Mifare Ultralight");
590 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
591 }
592 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
593 DbpString("Mifare DESFire");
594 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
595 }
596 else {
597 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
598 SimulateIso14443aTag(1, flags, data);
599 }
600 }
601 else if (button_action == BUTTON_SINGLE_CLICK) {
602 selected = (selected + 1) % OPTS;
603 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
604 iGotoRecord = 1;
605 break;
606 }
607 else if (button_action == BUTTON_HOLD) {
608 Dbprintf("Playtime over. Begin cloning...");
609 iGotoClone = 1;
610 break;
7838f4be 611 }
0db6ed9a 612 WDT_HIT();
613 }
7838f4be 614
615 /* We pressed a button so ignore it here with a delay */
616 SpinDelay(300);
7838f4be 617 LEDsoff();
618 LED(selected + 1, 0);
619 }
620 else
621 while(BUTTON_PRESS())
622 WDT_HIT();
623 }
624 }
625}
626#elif WITH_LF
627// samy's sniff and repeat routine
628void SamyRun()
629{
630 StandAloneMode();
631 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
632
633 int high[OPTS], low[OPTS];
15c4dc5a 634 int selected = 0;
635 int playing = 0;
72e930ef 636 int cardRead = 0;
15c4dc5a 637
638 // Turn on selected LED
639 LED(selected + 1, 0);
640
614da335 641 for (;;) {
6e82300d 642 usb_poll();
95e63594 643 WDT_HIT();
15c4dc5a 644
645 // Was our button held down or pressed?
646 int button_pressed = BUTTON_HELD(1000);
647 SpinDelay(300);
648
649 // Button was held for a second, begin recording
72e930ef 650 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 651 {
652 LEDsoff();
653 LED(selected + 1, 0);
654 LED(LED_RED2, 0);
655
656 // record
657 DbpString("Starting recording");
658
659 // wait for button to be released
660 while(BUTTON_PRESS())
661 WDT_HIT();
662
663 /* need this delay to prevent catching some weird data */
664 SpinDelay(500);
665
666 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
b7536e11 667 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
15c4dc5a 668
669 LEDsoff();
670 LED(selected + 1, 0);
671 // Finished recording
15c4dc5a 672 // If we were previously playing, set playing off
673 // so next button push begins playing what we recorded
614da335 674 playing = 0;
675 cardRead = 1;
72e930ef 676 }
614da335 677 else if (button_pressed > 0 && cardRead == 1) {
678 LEDsoff();
679 LED(selected + 1, 0);
680 LED(LED_ORANGE, 0);
72e930ef 681
614da335 682 // record
b7536e11 683 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
72e930ef 684
614da335 685 // wait for button to be released
686 while(BUTTON_PRESS())
687 WDT_HIT();
72e930ef 688
614da335 689 /* need this delay to prevent catching some weird data */
690 SpinDelay(500);
72e930ef 691
b7536e11 692 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
693 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
72e930ef 694
614da335 695 LEDsoff();
696 LED(selected + 1, 0);
697 // Finished recording
72e930ef 698
614da335 699 // If we were previously playing, set playing off
700 // so next button push begins playing what we recorded
701 playing = 0;
702 cardRead = 0;
15c4dc5a 703 }
704
705 // Change where to record (or begin playing)
614da335 706 else if (button_pressed) {
15c4dc5a 707 // Next option if we were previously playing
708 if (playing)
709 selected = (selected + 1) % OPTS;
710 playing = !playing;
711
712 LEDsoff();
713 LED(selected + 1, 0);
714
715 // Begin transmitting
716 if (playing)
717 {
718 LED(LED_GREEN, 0);
719 DbpString("Playing");
720 // wait for button to be released
721 while(BUTTON_PRESS())
722 WDT_HIT();
0d5ee8e2 723
b7536e11 724 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
0d5ee8e2 725 CmdHIDsimTAG(high[selected], low[selected], 0);
15c4dc5a 726 DbpString("Done playing");
0d5ee8e2 727
728 if (BUTTON_HELD(1000) > 0) {
15c4dc5a 729 DbpString("Exiting");
730 LEDsoff();
731 return;
0d5ee8e2 732 }
15c4dc5a 733
734 /* We pressed a button so ignore it here with a delay */
735 SpinDelay(300);
736
737 // when done, we're done playing, move to next option
738 selected = (selected + 1) % OPTS;
739 playing = !playing;
740 LEDsoff();
741 LED(selected + 1, 0);
742 }
743 else
744 while(BUTTON_PRESS())
745 WDT_HIT();
746 }
747 }
748}
15c4dc5a 749
7838f4be 750#endif
15c4dc5a 751/*
752OBJECTIVE
753Listen and detect an external reader. Determine the best location
754for the antenna.
755
756INSTRUCTIONS:
757Inside the ListenReaderField() function, there is two mode.
758By default, when you call the function, you will enter mode 1.
759If you press the PM3 button one time, you will enter mode 2.
760If you press the PM3 button a second time, you will exit the function.
761
762DESCRIPTION OF MODE 1:
763This mode just listens for an external reader field and lights up green
764for HF and/or red for LF. This is the original mode of the detectreader
765function.
766
767DESCRIPTION OF MODE 2:
768This mode will visually represent, using the LEDs, the actual strength of the
769current compared to the maximum current detected. Basically, once you know
770what kind of external reader is present, it will help you spot the best location to place
771your antenna. You will probably not get some good results if there is a LF and a HF reader
772at the same place! :-)
773
774LIGHT SCHEME USED:
775*/
776static const char LIGHT_SCHEME[] = {
777 0x0, /* ---- | No field detected */
778 0x1, /* X--- | 14% of maximum current detected */
779 0x2, /* -X-- | 29% of maximum current detected */
780 0x4, /* --X- | 43% of maximum current detected */
781 0x8, /* ---X | 57% of maximum current detected */
782 0xC, /* --XX | 71% of maximum current detected */
783 0xE, /* -XXX | 86% of maximum current detected */
784 0xF, /* XXXX | 100% of maximum current detected */
785};
786static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
787
da198be4 788void ListenReaderField(int limit) {
3b692427 789#define LF_ONLY 1
790#define HF_ONLY 2
791#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
792
da198be4 793 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
794 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
795 int mode=1, display_val, display_max, i;
3b692427 796
797 // switch off FPGA - we don't want to measure our own signal
798 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
799 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 800
801 LEDsoff();
802
3b692427 803 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 804
805 if(limit != HF_ONLY) {
3b692427 806 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 807 lf_baseline = lf_av;
808 }
809
3b692427 810 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 811
812 if (limit != LF_ONLY) {
3b692427 813 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 814 hf_baseline = hf_av;
815 }
816
817 for(;;) {
818 if (BUTTON_PRESS()) {
819 SpinDelay(500);
820 switch (mode) {
821 case 1:
822 mode=2;
823 DbpString("Signal Strength Mode");
824 break;
825 case 2:
826 default:
827 DbpString("Stopped");
828 LEDsoff();
829 return;
830 break;
831 }
832 }
833 WDT_HIT();
834
835 if (limit != HF_ONLY) {
3b692427 836 if(mode == 1) {
f2c2b174 837 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
3b692427 838 LED_D_ON();
839 else
840 LED_D_OFF();
15c4dc5a 841 }
e30c654b 842
3b692427 843 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 844 // see if there's a significant change
f2c2b174 845 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
3b692427 846 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 847 lf_av = lf_av_new;
848 if (lf_av > lf_max)
849 lf_max = lf_av;
15c4dc5a 850 }
851 }
852
853 if (limit != LF_ONLY) {
854 if (mode == 1){
f2c2b174 855 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
3b692427 856 LED_B_ON();
857 else
858 LED_B_OFF();
15c4dc5a 859 }
e30c654b 860
3b692427 861 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 862 // see if there's a significant change
f2c2b174 863 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
3b692427 864 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 865 hf_av = hf_av_new;
866 if (hf_av > hf_max)
867 hf_max = hf_av;
15c4dc5a 868 }
869 }
e30c654b 870
15c4dc5a 871 if(mode == 2) {
872 if (limit == LF_ONLY) {
873 display_val = lf_av;
874 display_max = lf_max;
875 } else if (limit == HF_ONLY) {
876 display_val = hf_av;
877 display_max = hf_max;
878 } else { /* Pick one at random */
879 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
880 display_val = hf_av;
881 display_max = hf_max;
882 } else {
883 display_val = lf_av;
884 display_max = lf_max;
885 }
886 }
887 for (i=0; i<LIGHT_LEN; i++) {
888 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
889 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
890 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
891 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
892 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
893 break;
894 }
895 }
896 }
897 }
898}
899
f7e3ed82 900void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 901{
902 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 903
f121b478 904 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 905
15c4dc5a 906 switch(c->cmd) {
907#ifdef WITH_LF
31abe49f
MHS
908 case CMD_SET_LF_SAMPLING_CONFIG:
909 setSamplingConfig((sample_config *) c->d.asBytes);
910 break;
15c4dc5a 911 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1c8fbeb9 912 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 913 break;
15c4dc5a 914 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
d0724780 915 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
15c4dc5a 916 break;
b014c96d 917 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 918 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 919 break;
7e67e42f 920 case CMD_HID_DEMOD_FSK:
a501c82b 921 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 922 break;
923 case CMD_HID_SIM_TAG:
a501c82b 924 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 925 break;
abd6112f 926 case CMD_FSK_SIM_TAG:
927 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
928 break;
929 case CMD_ASK_SIM_TAG:
930 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
931 break;
872e3d4d 932 case CMD_PSK_SIM_TAG:
933 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
934 break;
a501c82b 935 case CMD_HID_CLONE_TAG:
1c611bbd 936 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 937 break;
a1f3bb12 938 case CMD_IO_DEMOD_FSK:
a501c82b 939 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 940 break;
a501c82b 941 case CMD_IO_CLONE_TAG:
94422fa2 942 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 943 break;
6ff6ade2 944 case CMD_EM410X_DEMOD:
945 CmdEM410xdemod(c->arg[0], 0, 0, 1);
946 break;
2d4eae76 947 case CMD_EM410X_WRITE_TAG:
948 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
949 break;
7e67e42f 950 case CMD_READ_TI_TYPE:
951 ReadTItag();
952 break;
953 case CMD_WRITE_TI_TYPE:
954 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
955 break;
956 case CMD_SIMULATE_TAG_125K:
f121b478 957 LED_A_ON();
74daee24 958 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
959 LED_A_OFF();
7e67e42f 960 break;
961 case CMD_LF_SIMULATE_BIDIR:
962 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
963 break;
a501c82b 964 case CMD_INDALA_CLONE_TAG:
2414f978 965 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
966 break;
a501c82b 967 case CMD_INDALA_CLONE_TAG_L:
2414f978 968 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
969 break;
1c611bbd 970 case CMD_T55XX_READ_BLOCK:
9276e859 971 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 972 break;
973 case CMD_T55XX_WRITE_BLOCK:
974 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
975 break;
9276e859 976 case CMD_T55XX_WAKEUP:
977 T55xxWakeUp(c->arg[0]);
978 break;
94422fa2 979 case CMD_T55XX_RESET_READ:
980 T55xxResetRead();
981 break;
a501c82b 982 case CMD_PCF7931_READ:
1c611bbd 983 ReadPCF7931();
1c611bbd 984 break;
e98572a1 985 case CMD_PCF7931_WRITE:
ac2df346 986 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
e98572a1 987 break;
1c611bbd 988 case CMD_EM4X_READ_WORD:
989 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
990 break;
991 case CMD_EM4X_WRITE_WORD:
992 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
993 break;
db25599d 994 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
995 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
70459879 996 break;
0de8e387 997 case CMD_VIKING_CLONE_TAG:
a126332a 998 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
0de8e387 999 break;
15c4dc5a 1000#endif
1001
d19929cb 1002#ifdef WITH_HITAG
1003 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1004 SnoopHitag(c->arg[0]);
1005 break;
1006 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1007 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1008 break;
1009 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1010 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1011 break;
0db11b71 1012 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1013 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1014 break;
1015 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1016 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1017 break;
6fc68747 1018 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
0db11b71 1019 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1020 break;
6fc68747 1021 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
0db11b71 1022 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1023 break;
d19929cb 1024#endif
f168b263 1025
15c4dc5a 1026#ifdef WITH_ISO15693
1027 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1028 AcquireRawAdcSamplesIso15693();
1029 break;
9455b51c 1030 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1031 RecordRawAdcSamplesIso15693();
1032 break;
1033
1034 case CMD_ISO_15693_COMMAND:
1035 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1036 break;
1037
1038 case CMD_ISO_15693_FIND_AFI:
1039 BruteforceIso15693Afi(c->arg[0]);
1040 break;
1041
1042 case CMD_ISO_15693_DEBUG:
1043 SetDebugIso15693(c->arg[0]);
1044 break;
15c4dc5a 1045
15c4dc5a 1046 case CMD_READER_ISO_15693:
1047 ReaderIso15693(c->arg[0]);
1048 break;
7e67e42f 1049 case CMD_SIMTAG_ISO_15693:
3649b640 1050 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1051 break;
15c4dc5a 1052#endif
1053
7e67e42f 1054#ifdef WITH_LEGICRF
1055 case CMD_SIMULATE_TAG_LEGIC_RF:
1056 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1057 break;
3612a8a8 1058
7e67e42f 1059 case CMD_WRITER_LEGIC_RF:
f121b478 1060 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2]);
7e67e42f 1061 break;
3612a8a8 1062
3e134b4c 1063 case CMD_RAW_WRITER_LEGIC_RF:
f121b478 1064 LegicRfRawWriter(c->arg[0], c->arg[1], c->arg[2]);
3e134b4c 1065 break;
1066
15c4dc5a 1067 case CMD_READER_LEGIC_RF:
f121b478 1068 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
15c4dc5a 1069 break;
15c4dc5a 1070#endif
1071
1072#ifdef WITH_ISO14443b
6fc68747 1073 case CMD_READ_SRI_TAG:
1074 ReadSTMemoryIso14443b(c->arg[0]);
7e67e42f 1075 break;
22e24700 1076 case CMD_SNOOP_ISO_14443B:
abb21530 1077 SnoopIso14443b();
7e67e42f 1078 break;
22e24700 1079 case CMD_SIMULATE_TAG_ISO_14443B:
dccddaef 1080 SimulateIso14443bTag(c->arg[0]);
7e67e42f 1081 break;
7cf3ef20 1082 case CMD_ISO_14443B_COMMAND:
6fc68747 1083 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1084 SendRawCommand14443B_Ex(c);
7cf3ef20 1085 break;
15c4dc5a 1086#endif
1087
1088#ifdef WITH_ISO14443a
7e67e42f 1089 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1090 SniffIso14443a(c->arg[0]);
7e67e42f 1091 break;
15c4dc5a 1092 case CMD_READER_ISO_14443a:
902cb3c0 1093 ReaderIso14443a(c);
15c4dc5a 1094 break;
7e67e42f 1095 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1096 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1097 break;
5acd09bd 1098 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1099 EPA_PACE_Collect_Nonce(c);
5acd09bd 1100 break;
d0f3338e 1101 case CMD_EPA_PACE_REPLAY:
1102 EPA_PACE_Replay(c);
1103 break;
15c4dc5a 1104 case CMD_READER_MIFARE:
df007486 1105 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
15c4dc5a 1106 break;
20f9a2a1
M
1107 case CMD_MIFARE_READBL:
1108 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1109 break;
981bd429 1110 case CMD_MIFAREU_READBL:
aa60d156 1111 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1112 break;
4d2e4eea 1113 case CMD_MIFAREUC_AUTH:
1114 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1115 break;
981bd429 1116 case CMD_MIFAREU_READCARD:
74daee24 1117 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1118 break;
aa60d156 1119 case CMD_MIFAREUC_SETPWD:
1120 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1121 break;
20f9a2a1
M
1122 case CMD_MIFARE_READSC:
1123 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1124 break;
1125 case CMD_MIFARE_WRITEBL:
1126 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1127 break;
95aeb706 1128 //case CMD_MIFAREU_WRITEBL_COMPAT:
1129 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1130 //break;
981bd429 1131 case CMD_MIFAREU_WRITEBL:
95aeb706 1132 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1133 break;
c188b1b9 1134 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1135 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1136 break;
20f9a2a1
M
1137 case CMD_MIFARE_NESTED:
1138 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1139 break;
1140 case CMD_MIFARE_CHKKEYS:
1141 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1142 break;
1143 case CMD_SIMULATE_MIFARE_CARD:
1144 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
8556b852
M
1146
1147 // emulator
1148 case CMD_MIFARE_SET_DBGMODE:
1149 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_MIFARE_EML_MEMCLR:
1152 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_EML_MEMSET:
1155 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157 case CMD_MIFARE_EML_MEMGET:
1158 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1159 break;
1160 case CMD_MIFARE_EML_CARDLOAD:
1161 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1162 break;
1163
1164 // Work with "magic Chinese" card
d52e4e88 1165 case CMD_MIFARE_CSETBLOCK:
c2731f37 1166 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
545a1f38 1167 break;
d52e4e88 1168 case CMD_MIFARE_CGETBLOCK:
c2731f37 1169 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
8556b852 1170 break;
d52e4e88 1171 case CMD_MIFARE_CIDENT:
1172 MifareCIdent();
1173 break;
b62a5a84
M
1174
1175 // mifare sniffer
1176 case CMD_MIFARE_SNIFFER:
5cd9ec01 1177 SniffMifare(c->arg[0]);
b62a5a84 1178 break;
313ee67e 1179
aa60d156 1180 //mifare desfire
1181 case CMD_MIFARE_DESFIRE_READBL: break;
1182 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1183 case CMD_MIFARE_DESFIRE_AUTH1:
1184 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1185 break;
1186 case CMD_MIFARE_DESFIRE_AUTH2:
1187 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1188 break;
1189 case CMD_MIFARE_DES_READER:
1190 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1191 break;
1192 case CMD_MIFARE_DESFIRE_INFO:
1193 MifareDesfireGetInformation();
1194 break;
1195 case CMD_MIFARE_DESFIRE:
1196 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1197 break;
1198
add0504d 1199 case CMD_MIFARE_COLLECT_NONCES:
add0504d 1200 break;
20f9a2a1 1201#endif
810f5379 1202#ifdef WITH_EMV
1203 case CMD_EMV_TRANSACTION:
1204 EMVTransaction();
1205 break;
1206 case CMD_EMV_GET_RANDOM_NUM:
1207 //EMVgetUDOL();
1208 break;
1209 case CMD_EMV_LOAD_VALUE:
1210 EMVloadvalue(c->arg[0], c->d.asBytes);
1211 break;
1212 case CMD_EMV_DUMP_CARD:
1213 EMVdumpcard();
1214#endif
7e67e42f 1215#ifdef WITH_ICLASS
cee5a30d 1216 // Makes use of ISO14443a FPGA Firmware
1217 case CMD_SNOOP_ICLASS:
1218 SnoopIClass();
1219 break;
1e262141 1220 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1221 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1222 break;
1223 case CMD_READER_ICLASS:
1224 ReaderIClass(c->arg[0]);
1225 break;
f38a1528 1226 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1227 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1228 break;
e80aeb96
MHS
1229 case CMD_ICLASS_EML_MEMSET:
1230 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1231 break;
e98572a1 1232 case CMD_ICLASS_WRITEBLOCK:
1233 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1234 break;
1235 case CMD_ICLASS_READCHECK: // auth step 1
1236 iClass_ReadCheck(c->arg[0], c->arg[1]);
1237 break;
1238 case CMD_ICLASS_READBLOCK:
1239 iClass_ReadBlk(c->arg[0]);
1240 break;
1241 case CMD_ICLASS_AUTHENTICATION: //check
1242 iClass_Authentication(c->d.asBytes);
1243 break;
1244 case CMD_ICLASS_DUMP:
1245 iClass_Dump(c->arg[0], c->arg[1]);
1246 break;
1247 case CMD_ICLASS_CLONE:
1248 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1249 break;
cee5a30d 1250#endif
1d0ccbe0 1251#ifdef WITH_HFSNOOP
1252 case CMD_HF_SNIFFER:
1253 HfSnoop(c->arg[0], c->arg[1]);
1254 break;
1255#endif
cee5a30d 1256
7e67e42f 1257 case CMD_BUFF_CLEAR:
117d9ec2 1258 BigBuf_Clear();
15c4dc5a 1259 break;
15c4dc5a 1260
1261 case CMD_MEASURE_ANTENNA_TUNING:
1262 MeasureAntennaTuning();
1263 break;
1264
1265 case CMD_MEASURE_ANTENNA_TUNING_HF:
1266 MeasureAntennaTuningHf();
1267 break;
1268
1269 case CMD_LISTEN_READER_FIELD:
1270 ListenReaderField(c->arg[0]);
1271 break;
1272
15c4dc5a 1273 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1274 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1275 SpinDelay(200);
1276 LED_D_OFF(); // LED D indicates field ON or OFF
1277 break;
1278
aaa1a9a2 1279 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1c611bbd 1280 LED_B_ON();
117d9ec2 1281 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1282 size_t len = 0;
1c611bbd 1283 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
0de8e387 1284 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1285 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1286 }
1287 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1288 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1289 LED_B_OFF();
1c611bbd 1290 break;
aaa1a9a2 1291 }
15c4dc5a 1292 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1293 uint8_t *b = BigBuf_get_addr();
aaa1a9a2 1294 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1295 cmd_send(CMD_ACK,0,0,0,0,0);
1296 break;
aaa1a9a2 1297 }
1298 case CMD_DOWNLOAD_EML_BIGBUF: {
1299 LED_B_ON();
1300 uint8_t *cardmem = BigBuf_get_EM_addr();
1301 size_t len = 0;
1302 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1303 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1304 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1305 }
1306 // Trigger a finish downloading signal with an ACK frame
1307 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1308 LED_B_OFF();
1309 break;
1310 }
15c4dc5a 1311 case CMD_READ_MEM:
1312 ReadMem(c->arg[0]);
1313 break;
1314
1315 case CMD_SET_LF_DIVISOR:
7cc204bf 1316 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1317 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1318 break;
1319
1320 case CMD_SET_ADC_MUX:
1321 switch(c->arg[0]) {
1322 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1323 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1324 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1325 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1326 }
1327 break;
1328
1329 case CMD_VERSION:
1330 SendVersion();
1331 break;
7838f4be 1332 case CMD_STATUS:
0de8e387 1333 SendStatus();
7838f4be 1334 break;
1335 case CMD_PING:
1336 cmd_send(CMD_ACK,0,0,0,0,0);
1337 break;
15c4dc5a 1338#ifdef WITH_LCD
1339 case CMD_LCD_RESET:
1340 LCDReset();
1341 break;
1342 case CMD_LCD:
1343 LCDSend(c->arg[0]);
1344 break;
1345#endif
1346 case CMD_SETUP_WRITE:
1347 case CMD_FINISH_WRITE:
1c611bbd 1348 case CMD_HARDWARE_RESET:
1349 usb_disable();
f62b5e12 1350 SpinDelay(2000);
15c4dc5a 1351 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1352 for(;;) {
1353 // We're going to reset, and the bootrom will take control.
1354 }
1c611bbd 1355 break;
15c4dc5a 1356
1c611bbd 1357 case CMD_START_FLASH:
15c4dc5a 1358 if(common_area.flags.bootrom_present) {
1359 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1360 }
1c611bbd 1361 usb_disable();
15c4dc5a 1362 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1363 for(;;);
1c611bbd 1364 break;
e30c654b 1365
15c4dc5a 1366 case CMD_DEVICE_INFO: {
902cb3c0 1367 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1368 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1369 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1370 break;
1371 }
1372 default:
15c4dc5a 1373 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1374 break;
15c4dc5a 1375 }
1376}
1377
1378void __attribute__((noreturn)) AppMain(void)
1379{
1380 SpinDelay(100);
9e8255d4 1381 clear_trace();
15c4dc5a 1382 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1383 /* Initialize common area */
1384 memset(&common_area, 0, sizeof(common_area));
1385 common_area.magic = COMMON_AREA_MAGIC;
1386 common_area.version = 1;
1387 }
1388 common_area.flags.osimage_present = 1;
1389
f121b478 1390 LEDsoff();
15c4dc5a 1391
b44e5233 1392 // Init USB device
313ee67e 1393 usb_enable();
15c4dc5a 1394
1395 // The FPGA gets its clock from us from PCK0 output, so set that up.
1396 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1397 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1398 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1399 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
f121b478 1400 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1401 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1402
1403 // Reset SPI
1404 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1405 // Reset SSC
1406 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1407
1408 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1409 // (the HF version by default)
1410 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1411
9ca155ba 1412 StartTickCount();
902cb3c0 1413
15c4dc5a 1414#ifdef WITH_LCD
15c4dc5a 1415 LCDInit();
15c4dc5a 1416#endif
1417
f62b5e12 1418 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1419 size_t rx_len;
1420
15c4dc5a 1421 for(;;) {
f121b478 1422 if ( usb_poll_validate_length() ) {
1423 rx_len = usb_read(rx, sizeof(UsbCommand));
1424
da198be4 1425 if (rx_len)
f121b478 1426 UsbPacketReceived(rx, rx_len);
313ee67e 1427 }
15c4dc5a 1428 WDT_HIT();
1429
1430#ifdef WITH_LF
7838f4be 1431#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1432 if (BUTTON_HELD(1000) > 0)
1433 SamyRun();
7838f4be 1434#endif
1435#endif
1436#ifdef WITH_ISO14443a
1437#ifdef WITH_ISO14443a_StandAlone
1438 if (BUTTON_HELD(1000) > 0)
1439 StandAloneMode14a();
1440#endif
15c4dc5a 1441#endif
1442 }
1443}
Impressum, Datenschutz