]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443a.c
FIX: hf mf eload - now supports specifying 0,1,2,4 in card memory for the file to...
[proxmark3-svn] / armsrc / iso14443a.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
b62a5a84 2// Merlok - June 2011, 2012
15c4dc5a 3// Gerhard de Koning Gans - May 2008
534983d7 4// Hagen Fritsch - June 2010
bd20f8f4 5//
6// This code is licensed to you under the terms of the GNU GPL, version 2 or,
7// at your option, any later version. See the LICENSE.txt file for the text of
8// the license.
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10// Routines to support ISO 14443 type A.
11//-----------------------------------------------------------------------------
12
f38a1528 13#include "../include/proxmark3.h"
15c4dc5a 14#include "apps.h"
f7e3ed82 15#include "util.h"
9ab7a6c7 16#include "string.h"
f38a1528 17#include "../common/cmd.h"
18#include "../common/iso14443crc.h"
534983d7 19#include "iso14443a.h"
20f9a2a1
M
20#include "crapto1.h"
21#include "mifareutil.h"
15c4dc5a 22
534983d7 23static uint32_t iso14a_timeout;
d19929cb 24uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
1e262141 25int rsamples = 0;
7bc95e2e 26int traceLen = 0;
1e262141 27int tracing = TRUE;
28uint8_t trigger = 0;
b0127e65 29// the block number for the ISO14443-4 PCB
30static uint8_t iso14_pcb_blocknum = 0;
15c4dc5a 31
7bc95e2e 32//
33// ISO14443 timing:
34//
35// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
36#define REQUEST_GUARD_TIME (7000/16 + 1)
37// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
38#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
39// bool LastCommandWasRequest = FALSE;
40
41//
42// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
43//
d714d3ef 44// When the PM acts as reader and is receiving tag data, it takes
45// 3 ticks delay in the AD converter
46// 16 ticks until the modulation detector completes and sets curbit
47// 8 ticks until bit_to_arm is assigned from curbit
48// 8*16 ticks for the transfer from FPGA to ARM
7bc95e2e 49// 4*16 ticks until we measure the time
50// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 51#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
7bc95e2e 52
53// When the PM acts as a reader and is sending, it takes
54// 4*16 ticks until we can write data to the sending hold register
55// 8*16 ticks until the SHR is transferred to the Sending Shift Register
56// 8 ticks until the first transfer starts
57// 8 ticks later the FPGA samples the data
58// 1 tick to assign mod_sig_coil
59#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
60
61// When the PM acts as tag and is receiving it takes
d714d3ef 62// 2 ticks delay in the RF part (for the first falling edge),
7bc95e2e 63// 3 ticks for the A/D conversion,
64// 8 ticks on average until the start of the SSC transfer,
65// 8 ticks until the SSC samples the first data
66// 7*16 ticks to complete the transfer from FPGA to ARM
67// 8 ticks until the next ssp_clk rising edge
d714d3ef 68// 4*16 ticks until we measure the time
7bc95e2e 69// - 8*16 ticks because we measure the time of the previous transfer
d714d3ef 70#define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
7bc95e2e 71
72// The FPGA will report its internal sending delay in
73uint16_t FpgaSendQueueDelay;
74// the 5 first bits are the number of bits buffered in mod_sig_buf
75// the last three bits are the remaining ticks/2 after the mod_sig_buf shift
76#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
77
78// When the PM acts as tag and is sending, it takes
d714d3ef 79// 4*16 ticks until we can write data to the sending hold register
7bc95e2e 80// 8*16 ticks until the SHR is transferred to the Sending Shift Register
81// 8 ticks until the first transfer starts
82// 8 ticks later the FPGA samples the data
83// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
84// + 1 tick to assign mod_sig_coil
d714d3ef 85#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
7bc95e2e 86
87// When the PM acts as sniffer and is receiving tag data, it takes
88// 3 ticks A/D conversion
d714d3ef 89// 14 ticks to complete the modulation detection
90// 8 ticks (on average) until the result is stored in to_arm
7bc95e2e 91// + the delays in transferring data - which is the same for
92// sniffing reader and tag data and therefore not relevant
d714d3ef 93#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
7bc95e2e 94
d714d3ef 95// When the PM acts as sniffer and is receiving reader data, it takes
96// 2 ticks delay in analogue RF receiver (for the falling edge of the
97// start bit, which marks the start of the communication)
7bc95e2e 98// 3 ticks A/D conversion
d714d3ef 99// 8 ticks on average until the data is stored in to_arm.
7bc95e2e 100// + the delays in transferring data - which is the same for
101// sniffing reader and tag data and therefore not relevant
d714d3ef 102#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
7bc95e2e 103
104//variables used for timing purposes:
105//these are in ssp_clk cycles:
106uint32_t NextTransferTime;
107uint32_t LastTimeProxToAirStart;
108uint32_t LastProxToAirDuration;
109
110
111
8f51ddb0 112// CARD TO READER - manchester
72934aa3 113// Sequence D: 11110000 modulation with subcarrier during first half
114// Sequence E: 00001111 modulation with subcarrier during second half
115// Sequence F: 00000000 no modulation with subcarrier
8f51ddb0 116// READER TO CARD - miller
72934aa3 117// Sequence X: 00001100 drop after half a period
118// Sequence Y: 00000000 no drop
119// Sequence Z: 11000000 drop at start
120#define SEC_D 0xf0
121#define SEC_E 0x0f
122#define SEC_F 0x00
123#define SEC_X 0x0c
124#define SEC_Y 0x00
125#define SEC_Z 0xc0
15c4dc5a 126
1e262141 127const uint8_t OddByteParity[256] = {
15c4dc5a 128 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
129 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
133 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
141 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
144};
145
1e262141 146
902cb3c0 147void iso14a_set_trigger(bool enable) {
534983d7 148 trigger = enable;
149}
150
902cb3c0 151void iso14a_clear_trace() {
7bc95e2e 152 memset(trace, 0x44, TRACE_SIZE);
8556b852
M
153 traceLen = 0;
154}
d19929cb 155
902cb3c0 156void iso14a_set_tracing(bool enable) {
8556b852
M
157 tracing = enable;
158}
d19929cb 159
b0127e65 160void iso14a_set_timeout(uint32_t timeout) {
161 iso14a_timeout = timeout;
162}
8556b852 163
15c4dc5a 164//-----------------------------------------------------------------------------
165// Generate the parity value for a byte sequence
e30c654b 166//
15c4dc5a 167//-----------------------------------------------------------------------------
20f9a2a1
M
168byte_t oddparity (const byte_t bt)
169{
5f6d6c90 170 return OddByteParity[bt];
20f9a2a1
M
171}
172
f7e3ed82 173uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
15c4dc5a 174{
5f6d6c90 175 int i;
176 uint32_t dwPar = 0;
72934aa3 177
e691fc45 178 // Generate the parity bits
5f6d6c90 179 for (i = 0; i < iLen; i++) {
e691fc45 180 // and save them to a 32Bit word
5f6d6c90 181 dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
182 }
183 return dwPar;
15c4dc5a 184}
185
534983d7 186void AppendCrc14443a(uint8_t* data, int len)
15c4dc5a 187{
5f6d6c90 188 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
15c4dc5a 189}
190
1e262141 191// The function LogTrace() is also used by the iClass implementation in iClass.c
17cba269 192bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag)
15c4dc5a 193{
fdcd43eb 194 if (!tracing) return FALSE;
7bc95e2e 195 // Return when trace is full
196 if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) {
197 tracing = FALSE; // don't trace any more
198 return FALSE;
199 }
200
201 // Trace the random, i'm curious
202 trace[traceLen++] = ((timestamp >> 0) & 0xff);
203 trace[traceLen++] = ((timestamp >> 8) & 0xff);
204 trace[traceLen++] = ((timestamp >> 16) & 0xff);
205 trace[traceLen++] = ((timestamp >> 24) & 0xff);
17cba269
MHS
206
207 if (!readerToTag) {
7bc95e2e 208 trace[traceLen - 1] |= 0x80;
209 }
210 trace[traceLen++] = ((dwParity >> 0) & 0xff);
211 trace[traceLen++] = ((dwParity >> 8) & 0xff);
212 trace[traceLen++] = ((dwParity >> 16) & 0xff);
213 trace[traceLen++] = ((dwParity >> 24) & 0xff);
214 trace[traceLen++] = iLen;
215 if (btBytes != NULL && iLen != 0) {
216 memcpy(trace + traceLen, btBytes, iLen);
217 }
218 traceLen += iLen;
219 return TRUE;
15c4dc5a 220}
221
7bc95e2e 222//=============================================================================
223// ISO 14443 Type A - Miller decoder
224//=============================================================================
225// Basics:
226// This decoder is used when the PM3 acts as a tag.
227// The reader will generate "pauses" by temporarily switching of the field.
228// At the PM3 antenna we will therefore measure a modulated antenna voltage.
229// The FPGA does a comparison with a threshold and would deliver e.g.:
230// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
231// The Miller decoder needs to identify the following sequences:
232// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
233// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
234// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
235// Note 1: the bitstream may start at any time. We therefore need to sync.
236// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
15c4dc5a 237//-----------------------------------------------------------------------------
b62a5a84 238static tUart Uart;
15c4dc5a 239
d7aa3739 240// Lookup-Table to decide if 4 raw bits are a modulation.
241// We accept two or three consecutive "0" in any position with the rest "1"
242const bool Mod_Miller_LUT[] = {
243 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
244 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
245};
246#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
247#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
248
7bc95e2e 249void UartReset()
15c4dc5a 250{
7bc95e2e 251 Uart.state = STATE_UNSYNCD;
252 Uart.bitCount = 0;
253 Uart.len = 0; // number of decoded data bytes
254 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
255 Uart.parityBits = 0; //
256 Uart.twoBits = 0x0000; // buffer for 2 Bits
257 Uart.highCnt = 0;
258 Uart.startTime = 0;
259 Uart.endTime = 0;
260}
15c4dc5a 261
d714d3ef 262
7bc95e2e 263// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
265{
15c4dc5a 266
7bc95e2e 267 Uart.twoBits = (Uart.twoBits << 8) | bit;
268
269 if (Uart.state == STATE_UNSYNCD) { // not yet synced
270 if (Uart.highCnt < 7) { // wait for a stable unmodulated signal
271 if (Uart.twoBits == 0xffff) {
272 Uart.highCnt++;
273 } else {
274 Uart.highCnt = 0;
15c4dc5a 275 }
7bc95e2e 276 } else {
277 Uart.syncBit = 0xFFFF; // not set
278 // look for 00xx1111 (the start bit)
279 if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7;
280 else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
281 else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
282 else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
283 else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
284 else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
285 else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
286 else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
287 if (Uart.syncBit != 0xFFFF) {
288 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
289 Uart.startTime -= Uart.syncBit;
d7aa3739 290 Uart.endTime = Uart.startTime;
7bc95e2e 291 Uart.state = STATE_START_OF_COMMUNICATION;
15c4dc5a 292 }
7bc95e2e 293 }
15c4dc5a 294
7bc95e2e 295 } else {
15c4dc5a 296
d7aa3739 297 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
298 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
299 UartReset();
300 Uart.highCnt = 6;
301 } else { // Modulation in first half = Sequence Z = logic "0"
7bc95e2e 302 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
303 UartReset();
304 Uart.highCnt = 6;
305 } else {
306 Uart.bitCount++;
307 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
308 Uart.state = STATE_MILLER_Z;
309 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
310 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
311 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
312 Uart.parityBits <<= 1; // make room for the parity bit
313 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
314 Uart.bitCount = 0;
315 Uart.shiftReg = 0;
15c4dc5a 316 }
7bc95e2e 317 }
d7aa3739 318 }
319 } else {
320 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
7bc95e2e 321 Uart.bitCount++;
322 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
323 Uart.state = STATE_MILLER_X;
324 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
325 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
326 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
327 Uart.parityBits <<= 1; // make room for the new parity bit
328 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
329 Uart.bitCount = 0;
330 Uart.shiftReg = 0;
331 }
d7aa3739 332 } else { // no modulation in both halves - Sequence Y
7bc95e2e 333 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
15c4dc5a 334 Uart.state = STATE_UNSYNCD;
7bc95e2e 335 if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits
336 Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output
337 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
338 Uart.parityBits <<= 1; // no parity bit - add "0"
d7aa3739 339 Uart.bitCount--; // last "0" was part of the EOC sequence
7bc95e2e 340 }
15c4dc5a 341 return TRUE;
342 }
7bc95e2e 343 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
344 UartReset();
345 Uart.highCnt = 6;
346 } else { // a logic "0"
347 Uart.bitCount++;
348 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
349 Uart.state = STATE_MILLER_Y;
350 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
351 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
352 Uart.parityBits <<= 1; // make room for the parity bit
353 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
354 Uart.bitCount = 0;
355 Uart.shiftReg = 0;
15c4dc5a 356 }
357 }
d7aa3739 358 }
15c4dc5a 359 }
7bc95e2e 360
361 }
15c4dc5a 362
7bc95e2e 363 return FALSE; // not finished yet, need more data
15c4dc5a 364}
365
7bc95e2e 366
367
15c4dc5a 368//=============================================================================
e691fc45 369// ISO 14443 Type A - Manchester decoder
15c4dc5a 370//=============================================================================
e691fc45 371// Basics:
7bc95e2e 372// This decoder is used when the PM3 acts as a reader.
e691fc45 373// The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
374// at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
375// ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
376// The Manchester decoder needs to identify the following sequences:
377// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
378// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
379// 8 ticks unmodulated: Sequence F = end of communication
380// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
7bc95e2e 381// Note 1: the bitstream may start at any time. We therefore need to sync.
e691fc45 382// Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
b62a5a84 383static tDemod Demod;
15c4dc5a 384
d7aa3739 385// Lookup-Table to decide if 4 raw bits are a modulation.
d714d3ef 386// We accept three or four "1" in any position
7bc95e2e 387const bool Mod_Manchester_LUT[] = {
d7aa3739 388 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
d714d3ef 389 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
7bc95e2e 390};
391
392#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
393#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
15c4dc5a 394
2f2d9fc5 395
7bc95e2e 396void DemodReset()
e691fc45 397{
7bc95e2e 398 Demod.state = DEMOD_UNSYNCD;
399 Demod.len = 0; // number of decoded data bytes
400 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
401 Demod.parityBits = 0; //
402 Demod.collisionPos = 0; // Position of collision bit
403 Demod.twoBits = 0xffff; // buffer for 2 Bits
404 Demod.highCnt = 0;
405 Demod.startTime = 0;
406 Demod.endTime = 0;
e691fc45 407}
15c4dc5a 408
7bc95e2e 409// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
410static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
e691fc45 411{
7bc95e2e 412
413 Demod.twoBits = (Demod.twoBits << 8) | bit;
e691fc45 414
7bc95e2e 415 if (Demod.state == DEMOD_UNSYNCD) {
416
417 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
418 if (Demod.twoBits == 0x0000) {
419 Demod.highCnt++;
420 } else {
421 Demod.highCnt = 0;
422 }
423 } else {
424 Demod.syncBit = 0xFFFF; // not set
425 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
426 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
427 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
428 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
429 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
430 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
431 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
432 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
d7aa3739 433 if (Demod.syncBit != 0xFFFF) {
7bc95e2e 434 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
435 Demod.startTime -= Demod.syncBit;
436 Demod.bitCount = offset; // number of decoded data bits
e691fc45 437 Demod.state = DEMOD_MANCHESTER_DATA;
2f2d9fc5 438 }
7bc95e2e 439 }
15c4dc5a 440
7bc95e2e 441 } else {
15c4dc5a 442
7bc95e2e 443 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
444 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
e691fc45 445 if (!Demod.collisionPos) {
446 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
447 }
448 } // modulation in first half only - Sequence D = 1
7bc95e2e 449 Demod.bitCount++;
450 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
451 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
e691fc45 452 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 453 Demod.parityBits <<= 1; // make room for the parity bit
e691fc45 454 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
455 Demod.bitCount = 0;
456 Demod.shiftReg = 0;
15c4dc5a 457 }
7bc95e2e 458 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
459 } else { // no modulation in first half
460 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
e691fc45 461 Demod.bitCount++;
7bc95e2e 462 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
e691fc45 463 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
e691fc45 464 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
7bc95e2e 465 Demod.parityBits <<= 1; // make room for the new parity bit
e691fc45 466 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
467 Demod.bitCount = 0;
468 Demod.shiftReg = 0;
15c4dc5a 469 }
7bc95e2e 470 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
e691fc45 471 } else { // no modulation in both halves - End of communication
d7aa3739 472 if (Demod.len > 0 || Demod.bitCount > 0) { // received something
473 if(Demod.bitCount > 0) { // if we decoded bits
474 Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output
475 Demod.output[Demod.len++] = Demod.shiftReg & 0xff;
476 // No parity bit, so just shift a 0
477 Demod.parityBits <<= 1;
478 }
479 return TRUE; // we are finished with decoding the raw data sequence
480 } else { // nothing received. Start over
481 DemodReset();
e691fc45 482 }
15c4dc5a 483 }
7bc95e2e 484 }
e691fc45 485
486 }
15c4dc5a 487
e691fc45 488 return FALSE; // not finished yet, need more data
15c4dc5a 489}
490
491//=============================================================================
492// Finally, a `sniffer' for ISO 14443 Type A
493// Both sides of communication!
494//=============================================================================
495
496//-----------------------------------------------------------------------------
497// Record the sequence of commands sent by the reader to the tag, with
498// triggering so that we start recording at the point that the tag is moved
499// near the reader.
500//-----------------------------------------------------------------------------
5cd9ec01
M
501void RAMFUNC SnoopIso14443a(uint8_t param) {
502 // param:
503 // bit 0 - trigger from first card answer
504 // bit 1 - trigger from first reader 7-bit request
505
506 LEDsoff();
507 // init trace buffer
5f6d6c90 508 iso14a_clear_trace();
991f13f2 509 iso14a_set_tracing(TRUE);
5cd9ec01
M
510
511 // We won't start recording the frames that we acquire until we trigger;
512 // a good trigger condition to get started is probably when we see a
513 // response from the tag.
514 // triggered == FALSE -- to wait first for card
7bc95e2e 515 bool triggered = !(param & 0x03);
516
5cd9ec01 517 // The command (reader -> tag) that we're receiving.
15c4dc5a 518 // The length of a received command will in most cases be no more than 18 bytes.
519 // So 32 should be enough!
5cd9ec01
M
520 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
521 // The response (tag -> reader) that we're receiving.
522 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
15c4dc5a 523
5cd9ec01
M
524 // As we receive stuff, we copy it from receivedCmd or receivedResponse
525 // into trace, along with its length and other annotations.
526 //uint8_t *trace = (uint8_t *)BigBuf;
527
528 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 529 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
530 uint8_t *data = dmaBuf;
531 uint8_t previous_data = 0;
5cd9ec01
M
532 int maxDataLen = 0;
533 int dataLen = 0;
7bc95e2e 534 bool TagIsActive = FALSE;
535 bool ReaderIsActive = FALSE;
536
537 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
15c4dc5a 538
5cd9ec01
M
539 // Set up the demodulator for tag -> reader responses.
540 Demod.output = receivedResponse;
15c4dc5a 541
5cd9ec01 542 // Set up the demodulator for the reader -> tag commands
5cd9ec01 543 Uart.output = receivedCmd;
15c4dc5a 544
7bc95e2e 545 // Setup and start DMA.
5cd9ec01 546 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
7bc95e2e 547
5cd9ec01 548 // And now we loop, receiving samples.
7bc95e2e 549 for(uint32_t rsamples = 0; TRUE; ) {
550
5cd9ec01
M
551 if(BUTTON_PRESS()) {
552 DbpString("cancelled by button");
7bc95e2e 553 break;
5cd9ec01 554 }
15c4dc5a 555
5cd9ec01
M
556 LED_A_ON();
557 WDT_HIT();
15c4dc5a 558
5cd9ec01
M
559 int register readBufDataP = data - dmaBuf;
560 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
561 if (readBufDataP <= dmaBufDataP){
562 dataLen = dmaBufDataP - readBufDataP;
563 } else {
7bc95e2e 564 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
5cd9ec01
M
565 }
566 // test for length of buffer
567 if(dataLen > maxDataLen) {
568 maxDataLen = dataLen;
569 if(dataLen > 400) {
7bc95e2e 570 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
571 break;
5cd9ec01
M
572 }
573 }
574 if(dataLen < 1) continue;
575
576 // primary buffer was stopped( <-- we lost data!
577 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
578 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
579 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
7bc95e2e 580 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
581 }
582 // secondary buffer sets as primary, secondary buffer was stopped
583 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
584 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
585 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
586 }
587
588 LED_A_OFF();
7bc95e2e 589
590 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
3be2a5ae 591
7bc95e2e 592 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
593 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
594 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
595 LED_C_ON();
5cd9ec01 596
7bc95e2e 597 // check - if there is a short 7bit request from reader
598 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
5cd9ec01 599
7bc95e2e 600 if(triggered) {
601 if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break;
602 if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
603 }
604 /* And ready to receive another command. */
605 UartReset();
606 /* And also reset the demod code, which might have been */
607 /* false-triggered by the commands from the reader. */
608 DemodReset();
609 LED_B_OFF();
610 }
611 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
5cd9ec01 612 }
3be2a5ae 613
7bc95e2e 614 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
615 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
616 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
617 LED_B_ON();
5cd9ec01 618
7bc95e2e 619 if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break;
620 if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break;
5cd9ec01 621
7bc95e2e 622 if ((!triggered) && (param & 0x01)) triggered = TRUE;
5cd9ec01 623
7bc95e2e 624 // And ready to receive another response.
625 DemodReset();
626 LED_C_OFF();
627 }
628 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
629 }
5cd9ec01
M
630 }
631
7bc95e2e 632 previous_data = *data;
633 rsamples++;
5cd9ec01 634 data++;
d714d3ef 635 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01
M
636 data = dmaBuf;
637 }
638 } // main cycle
639
640 DbpString("COMMAND FINISHED");
15c4dc5a 641
7bc95e2e 642 FpgaDisableSscDma();
643 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
644 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
5cd9ec01 645 LEDsoff();
15c4dc5a 646}
647
15c4dc5a 648//-----------------------------------------------------------------------------
649// Prepare tag messages
650//-----------------------------------------------------------------------------
8f51ddb0 651static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
15c4dc5a 652{
8f51ddb0 653 int i;
15c4dc5a 654
8f51ddb0 655 ToSendReset();
15c4dc5a 656
657 // Correction bit, might be removed when not needed
658 ToSendStuffBit(0);
659 ToSendStuffBit(0);
660 ToSendStuffBit(0);
661 ToSendStuffBit(0);
662 ToSendStuffBit(1); // 1
663 ToSendStuffBit(0);
664 ToSendStuffBit(0);
665 ToSendStuffBit(0);
8f51ddb0 666
15c4dc5a 667 // Send startbit
72934aa3 668 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 669 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 670
8f51ddb0
M
671 for(i = 0; i < len; i++) {
672 int j;
673 uint8_t b = cmd[i];
15c4dc5a 674
675 // Data bits
15c4dc5a 676 for(j = 0; j < 8; j++) {
15c4dc5a 677 if(b & 1) {
72934aa3 678 ToSend[++ToSendMax] = SEC_D;
15c4dc5a 679 } else {
72934aa3 680 ToSend[++ToSendMax] = SEC_E;
8f51ddb0
M
681 }
682 b >>= 1;
683 }
15c4dc5a 684
0014cb46 685 // Get the parity bit
8f51ddb0
M
686 if ((dwParity >> i) & 0x01) {
687 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 688 LastProxToAirDuration = 8 * ToSendMax - 4;
15c4dc5a 689 } else {
72934aa3 690 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 691 LastProxToAirDuration = 8 * ToSendMax;
15c4dc5a 692 }
8f51ddb0 693 }
15c4dc5a 694
8f51ddb0
M
695 // Send stopbit
696 ToSend[++ToSendMax] = SEC_F;
15c4dc5a 697
8f51ddb0
M
698 // Convert from last byte pos to length
699 ToSendMax++;
8f51ddb0
M
700}
701
702static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
703 CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
15c4dc5a 704}
705
15c4dc5a 706
8f51ddb0
M
707static void Code4bitAnswerAsTag(uint8_t cmd)
708{
709 int i;
710
5f6d6c90 711 ToSendReset();
8f51ddb0
M
712
713 // Correction bit, might be removed when not needed
714 ToSendStuffBit(0);
715 ToSendStuffBit(0);
716 ToSendStuffBit(0);
717 ToSendStuffBit(0);
718 ToSendStuffBit(1); // 1
719 ToSendStuffBit(0);
720 ToSendStuffBit(0);
721 ToSendStuffBit(0);
722
723 // Send startbit
724 ToSend[++ToSendMax] = SEC_D;
725
726 uint8_t b = cmd;
727 for(i = 0; i < 4; i++) {
728 if(b & 1) {
729 ToSend[++ToSendMax] = SEC_D;
7bc95e2e 730 LastProxToAirDuration = 8 * ToSendMax - 4;
8f51ddb0
M
731 } else {
732 ToSend[++ToSendMax] = SEC_E;
7bc95e2e 733 LastProxToAirDuration = 8 * ToSendMax;
8f51ddb0
M
734 }
735 b >>= 1;
736 }
737
738 // Send stopbit
739 ToSend[++ToSendMax] = SEC_F;
740
5f6d6c90 741 // Convert from last byte pos to length
742 ToSendMax++;
15c4dc5a 743}
744
745//-----------------------------------------------------------------------------
746// Wait for commands from reader
747// Stop when button is pressed
748// Or return TRUE when command is captured
749//-----------------------------------------------------------------------------
f7e3ed82 750static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
15c4dc5a 751{
752 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
753 // only, since we are receiving, not transmitting).
754 // Signal field is off with the appropriate LED
755 LED_D_OFF();
756 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
757
758 // Now run a `software UART' on the stream of incoming samples.
7bc95e2e 759 UartReset();
15c4dc5a 760 Uart.output = received;
7bc95e2e 761
762 // clear RXRDY:
763 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 764
765 for(;;) {
766 WDT_HIT();
767
768 if(BUTTON_PRESS()) return FALSE;
7bc95e2e 769
15c4dc5a 770 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
7bc95e2e 771 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
772 if(MillerDecoding(b, 0)) {
773 *len = Uart.len;
15c4dc5a 774 return TRUE;
775 }
7bc95e2e 776 }
15c4dc5a 777 }
778}
28afbd2b 779
7bc95e2e 780static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded);
781int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
28afbd2b 782int EmSend4bit(uint8_t resp);
7bc95e2e 783int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
784int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par);
785int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded);
28afbd2b 786int EmSendCmd(uint8_t *resp, int respLen);
787int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
7bc95e2e 788bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
789 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity);
15c4dc5a 790
ce02f6f9 791static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
792
793typedef struct {
794 uint8_t* response;
795 size_t response_n;
796 uint8_t* modulation;
797 size_t modulation_n;
7bc95e2e 798 uint32_t ProxToAirDuration;
ce02f6f9 799} tag_response_info_t;
800
801void reset_free_buffer() {
802 free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
803}
804
805bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
7bc95e2e 806 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
ce02f6f9 807 // This will need the following byte array for a modulation sequence
808 // 144 data bits (18 * 8)
809 // 18 parity bits
810 // 2 Start and stop
811 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
812 // 1 just for the case
813 // ----------- +
814 // 166 bytes, since every bit that needs to be send costs us a byte
815 //
816
817 // Prepare the tag modulation bits from the message
818 CodeIso14443aAsTag(response_info->response,response_info->response_n);
819
820 // Make sure we do not exceed the free buffer space
821 if (ToSendMax > max_buffer_size) {
822 Dbprintf("Out of memory, when modulating bits for tag answer:");
823 Dbhexdump(response_info->response_n,response_info->response,false);
824 return false;
825 }
826
827 // Copy the byte array, used for this modulation to the buffer position
828 memcpy(response_info->modulation,ToSend,ToSendMax);
829
7bc95e2e 830 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
ce02f6f9 831 response_info->modulation_n = ToSendMax;
7bc95e2e 832 response_info->ProxToAirDuration = LastProxToAirDuration;
ce02f6f9 833
834 return true;
835}
836
837bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
838 // Retrieve and store the current buffer index
839 response_info->modulation = free_buffer_pointer;
840
841 // Determine the maximum size we can use from our buffer
842 size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer;
843
844 // Forward the prepare tag modulation function to the inner function
845 if (prepare_tag_modulation(response_info,max_buffer_size)) {
846 // Update the free buffer offset
847 free_buffer_pointer += ToSendMax;
848 return true;
849 } else {
850 return false;
851 }
852}
853
15c4dc5a 854//-----------------------------------------------------------------------------
855// Main loop of simulated tag: receive commands from reader, decide what
856// response to send, and send it.
857//-----------------------------------------------------------------------------
28afbd2b 858void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
15c4dc5a 859{
5f6d6c90 860 // Enable and clear the trace
5f6d6c90 861 iso14a_clear_trace();
7bc95e2e 862 iso14a_set_tracing(TRUE);
81cd0474 863
81cd0474 864 uint8_t sak;
865
866 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
867 uint8_t response1[2];
868
869 switch (tagType) {
870 case 1: { // MIFARE Classic
871 // Says: I am Mifare 1k - original line
872 response1[0] = 0x04;
873 response1[1] = 0x00;
874 sak = 0x08;
875 } break;
876 case 2: { // MIFARE Ultralight
877 // Says: I am a stupid memory tag, no crypto
878 response1[0] = 0x04;
879 response1[1] = 0x00;
880 sak = 0x00;
881 } break;
882 case 3: { // MIFARE DESFire
883 // Says: I am a DESFire tag, ph33r me
884 response1[0] = 0x04;
885 response1[1] = 0x03;
886 sak = 0x20;
887 } break;
888 case 4: { // ISO/IEC 14443-4
889 // Says: I am a javacard (JCOP)
890 response1[0] = 0x04;
891 response1[1] = 0x00;
892 sak = 0x28;
893 } break;
894 default: {
895 Dbprintf("Error: unkown tagtype (%d)",tagType);
896 return;
897 } break;
898 }
899
900 // The second response contains the (mandatory) first 24 bits of the UID
901 uint8_t response2[5];
902
903 // Check if the uid uses the (optional) part
904 uint8_t response2a[5];
905 if (uid_2nd) {
906 response2[0] = 0x88;
907 num_to_bytes(uid_1st,3,response2+1);
908 num_to_bytes(uid_2nd,4,response2a);
909 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
910
911 // Configure the ATQA and SAK accordingly
912 response1[0] |= 0x40;
913 sak |= 0x04;
914 } else {
915 num_to_bytes(uid_1st,4,response2);
916 // Configure the ATQA and SAK accordingly
917 response1[0] &= 0xBF;
918 sak &= 0xFB;
919 }
920
921 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
922 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
923
924 // Prepare the mandatory SAK (for 4 and 7 byte UID)
925 uint8_t response3[3];
926 response3[0] = sak;
927 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
928
929 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
930 uint8_t response3a[3];
931 response3a[0] = sak & 0xFB;
932 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
933
254b70a4 934 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
ce02f6f9 935 uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
936 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
937
7bc95e2e 938 #define TAG_RESPONSE_COUNT 7
939 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
940 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
941 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
942 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
943 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
944 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
945 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
946 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
947 };
948
949 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
950 // Such a response is less time critical, so we can prepare them on the fly
951 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
952 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
953 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
954 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
955 tag_response_info_t dynamic_response_info = {
956 .response = dynamic_response_buffer,
957 .response_n = 0,
958 .modulation = dynamic_modulation_buffer,
959 .modulation_n = 0
960 };
ce02f6f9 961
7bc95e2e 962 // Reset the offset pointer of the free buffer
963 reset_free_buffer();
ce02f6f9 964
7bc95e2e 965 // Prepare the responses of the anticollision phase
ce02f6f9 966 // there will be not enough time to do this at the moment the reader sends it REQA
7bc95e2e 967 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
968 prepare_allocated_tag_modulation(&responses[i]);
969 }
15c4dc5a 970
254b70a4 971 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
7bc95e2e 972 int len = 0;
15c4dc5a 973
974 // To control where we are in the protocol
975 int order = 0;
976 int lastorder;
977
978 // Just to allow some checks
979 int happened = 0;
980 int happened2 = 0;
81cd0474 981 int cmdsRecvd = 0;
15c4dc5a 982
254b70a4 983 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 984 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
15c4dc5a 985
254b70a4 986 cmdsRecvd = 0;
7bc95e2e 987 tag_response_info_t* p_response;
15c4dc5a 988
254b70a4 989 LED_A_ON();
990 for(;;) {
7bc95e2e 991 // Clean receive command buffer
992
81cd0474 993 if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
ce02f6f9 994 DbpString("Button press");
254b70a4 995 break;
996 }
7bc95e2e 997
998 p_response = NULL;
999
254b70a4 1000 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1001 // Okay, look at the command now.
1002 lastorder = order;
1003 if(receivedCmd[0] == 0x26) { // Received a REQUEST
ce02f6f9 1004 p_response = &responses[0]; order = 1;
254b70a4 1005 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
ce02f6f9 1006 p_response = &responses[0]; order = 6;
254b70a4 1007 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
ce02f6f9 1008 p_response = &responses[1]; order = 2;
254b70a4 1009 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
ce02f6f9 1010 p_response = &responses[2]; order = 20;
254b70a4 1011 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
ce02f6f9 1012 p_response = &responses[3]; order = 3;
254b70a4 1013 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
ce02f6f9 1014 p_response = &responses[4]; order = 30;
254b70a4 1015 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
5f6d6c90 1016 EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
7bc95e2e 1017 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
5f6d6c90 1018 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
7bc95e2e 1019 p_response = NULL;
254b70a4 1020 } else if(receivedCmd[0] == 0x50) { // Received a HALT
17331e14 1021// DbpString("Reader requested we HALT!:");
7bc95e2e 1022 if (tracing) {
1023 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1024 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1025 }
1026 p_response = NULL;
254b70a4 1027 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
ce02f6f9 1028 p_response = &responses[5]; order = 7;
254b70a4 1029 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
7bc95e2e 1030 if (tagType == 1 || tagType == 2) { // RATS not supported
1031 EmSend4bit(CARD_NACK_NA);
1032 p_response = NULL;
1033 } else {
1034 p_response = &responses[6]; order = 70;
1035 }
1036 } else if (order == 7 && len == 8) { // Received authentication request
1037 if (tracing) {
1038 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1039 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1040 }
1041 uint32_t nr = bytes_to_num(receivedCmd,4);
1042 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1043 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1044 } else {
1045 // Check for ISO 14443A-4 compliant commands, look at left nibble
1046 switch (receivedCmd[0]) {
1047
1048 case 0x0B:
1049 case 0x0A: { // IBlock (command)
1050 dynamic_response_info.response[0] = receivedCmd[0];
1051 dynamic_response_info.response[1] = 0x00;
1052 dynamic_response_info.response[2] = 0x90;
1053 dynamic_response_info.response[3] = 0x00;
1054 dynamic_response_info.response_n = 4;
1055 } break;
1056
1057 case 0x1A:
1058 case 0x1B: { // Chaining command
1059 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1060 dynamic_response_info.response_n = 2;
1061 } break;
1062
1063 case 0xaa:
1064 case 0xbb: {
1065 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1066 dynamic_response_info.response_n = 2;
1067 } break;
1068
1069 case 0xBA: { //
1070 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1071 dynamic_response_info.response_n = 2;
1072 } break;
1073
1074 case 0xCA:
1075 case 0xC2: { // Readers sends deselect command
1076 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1077 dynamic_response_info.response_n = 2;
1078 } break;
1079
1080 default: {
1081 // Never seen this command before
1082 if (tracing) {
1083 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1084 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1085 }
1086 Dbprintf("Received unknown command (len=%d):",len);
1087 Dbhexdump(len,receivedCmd,false);
1088 // Do not respond
1089 dynamic_response_info.response_n = 0;
1090 } break;
1091 }
ce02f6f9 1092
7bc95e2e 1093 if (dynamic_response_info.response_n > 0) {
1094 // Copy the CID from the reader query
1095 dynamic_response_info.response[1] = receivedCmd[1];
ce02f6f9 1096
7bc95e2e 1097 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1098 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1099 dynamic_response_info.response_n += 2;
ce02f6f9 1100
7bc95e2e 1101 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1102 Dbprintf("Error preparing tag response");
1103 if (tracing) {
1104 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
1105 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
1106 }
1107 break;
1108 }
1109 p_response = &dynamic_response_info;
1110 }
81cd0474 1111 }
15c4dc5a 1112
1113 // Count number of wakeups received after a halt
1114 if(order == 6 && lastorder == 5) { happened++; }
1115
1116 // Count number of other messages after a halt
1117 if(order != 6 && lastorder == 5) { happened2++; }
1118
15c4dc5a 1119 if(cmdsRecvd > 999) {
1120 DbpString("1000 commands later...");
254b70a4 1121 break;
15c4dc5a 1122 }
ce02f6f9 1123 cmdsRecvd++;
1124
1125 if (p_response != NULL) {
7bc95e2e 1126 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1127 // do the tracing for the previous reader request and this tag answer:
1128 EmLogTrace(Uart.output,
1129 Uart.len,
1130 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1131 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1132 Uart.parityBits,
1133 p_response->response,
1134 p_response->response_n,
1135 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1136 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1137 SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n));
1138 }
1139
1140 if (!tracing) {
1141 Dbprintf("Trace Full. Simulation stopped.");
1142 break;
1143 }
1144 }
15c4dc5a 1145
1146 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1147 LED_A_OFF();
1148}
1149
9492e0b0 1150
1151// prepare a delayed transfer. This simply shifts ToSend[] by a number
1152// of bits specified in the delay parameter.
1153void PrepareDelayedTransfer(uint16_t delay)
1154{
1155 uint8_t bitmask = 0;
1156 uint8_t bits_to_shift = 0;
1157 uint8_t bits_shifted = 0;
1158
1159 delay &= 0x07;
1160 if (delay) {
1161 for (uint16_t i = 0; i < delay; i++) {
1162 bitmask |= (0x01 << i);
1163 }
7bc95e2e 1164 ToSend[ToSendMax++] = 0x00;
9492e0b0 1165 for (uint16_t i = 0; i < ToSendMax; i++) {
1166 bits_to_shift = ToSend[i] & bitmask;
1167 ToSend[i] = ToSend[i] >> delay;
1168 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1169 bits_shifted = bits_to_shift;
1170 }
1171 }
1172}
1173
7bc95e2e 1174
1175//-------------------------------------------------------------------------------------
15c4dc5a 1176// Transmit the command (to the tag) that was placed in ToSend[].
9492e0b0 1177// Parameter timing:
7bc95e2e 1178// if NULL: transfer at next possible time, taking into account
1179// request guard time and frame delay time
1180// if == 0: transfer immediately and return time of transfer
9492e0b0 1181// if != 0: delay transfer until time specified
7bc95e2e 1182//-------------------------------------------------------------------------------------
9492e0b0 1183static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
15c4dc5a 1184{
7bc95e2e 1185
9492e0b0 1186 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
e30c654b 1187
7bc95e2e 1188 uint32_t ThisTransferTime = 0;
e30c654b 1189
9492e0b0 1190 if (timing) {
1191 if(*timing == 0) { // Measure time
7bc95e2e 1192 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
9492e0b0 1193 } else {
1194 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1195 }
7bc95e2e 1196 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1197 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1198 LastTimeProxToAirStart = *timing;
1199 } else {
1200 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1201 while(GetCountSspClk() < ThisTransferTime);
1202 LastTimeProxToAirStart = ThisTransferTime;
9492e0b0 1203 }
1204
7bc95e2e 1205 // clear TXRDY
1206 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1207
7bc95e2e 1208 uint16_t c = 0;
9492e0b0 1209 for(;;) {
1210 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1211 AT91C_BASE_SSC->SSC_THR = cmd[c];
1212 c++;
1213 if(c >= len) {
1214 break;
1215 }
1216 }
1217 }
7bc95e2e 1218
f6c18637 1219 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
15c4dc5a 1220}
1221
7bc95e2e 1222
15c4dc5a 1223//-----------------------------------------------------------------------------
195af472 1224// Prepare reader command (in bits, support short frames) to send to FPGA
15c4dc5a 1225//-----------------------------------------------------------------------------
195af472 1226void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
15c4dc5a 1227{
7bc95e2e 1228 int i, j;
1229 int last;
1230 uint8_t b;
e30c654b 1231
7bc95e2e 1232 ToSendReset();
e30c654b 1233
7bc95e2e 1234 // Start of Communication (Seq. Z)
1235 ToSend[++ToSendMax] = SEC_Z;
1236 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1237 last = 0;
1238
1239 size_t bytecount = nbytes(bits);
1240 // Generate send structure for the data bits
1241 for (i = 0; i < bytecount; i++) {
1242 // Get the current byte to send
1243 b = cmd[i];
1244 size_t bitsleft = MIN((bits-(i*8)),8);
1245
1246 for (j = 0; j < bitsleft; j++) {
1247 if (b & 1) {
1248 // Sequence X
1249 ToSend[++ToSendMax] = SEC_X;
1250 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1251 last = 1;
1252 } else {
1253 if (last == 0) {
1254 // Sequence Z
1255 ToSend[++ToSendMax] = SEC_Z;
1256 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1257 } else {
1258 // Sequence Y
1259 ToSend[++ToSendMax] = SEC_Y;
1260 last = 0;
1261 }
1262 }
1263 b >>= 1;
1264 }
1265
1266 // Only transmit (last) parity bit if we transmitted a complete byte
1267 if (j == 8) {
1268 // Get the parity bit
1269 if ((dwParity >> i) & 0x01) {
1270 // Sequence X
1271 ToSend[++ToSendMax] = SEC_X;
1272 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1273 last = 1;
1274 } else {
1275 if (last == 0) {
1276 // Sequence Z
1277 ToSend[++ToSendMax] = SEC_Z;
1278 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1279 } else {
1280 // Sequence Y
1281 ToSend[++ToSendMax] = SEC_Y;
1282 last = 0;
1283 }
1284 }
1285 }
1286 }
e30c654b 1287
7bc95e2e 1288 // End of Communication: Logic 0 followed by Sequence Y
1289 if (last == 0) {
1290 // Sequence Z
1291 ToSend[++ToSendMax] = SEC_Z;
1292 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1293 } else {
1294 // Sequence Y
1295 ToSend[++ToSendMax] = SEC_Y;
1296 last = 0;
1297 }
1298 ToSend[++ToSendMax] = SEC_Y;
e30c654b 1299
7bc95e2e 1300 // Convert to length of command:
1301 ToSendMax++;
15c4dc5a 1302}
1303
195af472 1304//-----------------------------------------------------------------------------
1305// Prepare reader command to send to FPGA
1306//-----------------------------------------------------------------------------
1307void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
1308{
1309 CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
1310}
1311
9ca155ba
M
1312//-----------------------------------------------------------------------------
1313// Wait for commands from reader
1314// Stop when button is pressed (return 1) or field was gone (return 2)
1315// Or return 0 when command is captured
1316//-----------------------------------------------------------------------------
7bc95e2e 1317static int EmGetCmd(uint8_t *received, int *len)
9ca155ba
M
1318{
1319 *len = 0;
1320
1321 uint32_t timer = 0, vtime = 0;
1322 int analogCnt = 0;
1323 int analogAVG = 0;
1324
1325 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1326 // only, since we are receiving, not transmitting).
1327 // Signal field is off with the appropriate LED
1328 LED_D_OFF();
1329 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1330
1331 // Set ADC to read field strength
1332 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1333 AT91C_BASE_ADC->ADC_MR =
1334 ADC_MODE_PRESCALE(32) |
1335 ADC_MODE_STARTUP_TIME(16) |
1336 ADC_MODE_SAMPLE_HOLD_TIME(8);
1337 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1338 // start ADC
1339 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1340
1341 // Now run a 'software UART' on the stream of incoming samples.
7bc95e2e 1342 UartReset();
9ca155ba 1343 Uart.output = received;
7bc95e2e 1344
1345 // Clear RXRDY:
1346 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba
M
1347
1348 for(;;) {
1349 WDT_HIT();
1350
1351 if (BUTTON_PRESS()) return 1;
1352
1353 // test if the field exists
1354 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1355 analogCnt++;
1356 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1357 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1358 if (analogCnt >= 32) {
1359 if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1360 vtime = GetTickCount();
1361 if (!timer) timer = vtime;
1362 // 50ms no field --> card to idle state
1363 if (vtime - timer > 50) return 2;
1364 } else
1365 if (timer) timer = 0;
1366 analogCnt = 0;
1367 analogAVG = 0;
1368 }
1369 }
7bc95e2e 1370
9ca155ba 1371 // receive and test the miller decoding
7bc95e2e 1372 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1373 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1374 if(MillerDecoding(b, 0)) {
1375 *len = Uart.len;
9ca155ba
M
1376 return 0;
1377 }
7bc95e2e 1378 }
1379
9ca155ba
M
1380 }
1381}
1382
9ca155ba 1383
7bc95e2e 1384static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded)
1385{
1386 uint8_t b;
1387 uint16_t i = 0;
1388 uint32_t ThisTransferTime;
1389
9ca155ba
M
1390 // Modulate Manchester
1391 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
7bc95e2e 1392
1393 // include correction bit if necessary
1394 if (Uart.parityBits & 0x01) {
1395 correctionNeeded = TRUE;
1396 }
1397 if(correctionNeeded) {
9ca155ba
M
1398 // 1236, so correction bit needed
1399 i = 0;
7bc95e2e 1400 } else {
1401 i = 1;
9ca155ba 1402 }
7bc95e2e 1403
d714d3ef 1404 // clear receiving shift register and holding register
7bc95e2e 1405 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1406 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1407 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1408 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
9ca155ba 1409
7bc95e2e 1410 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1411 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1412 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1413 if (AT91C_BASE_SSC->SSC_RHR) break;
1414 }
1415
1416 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1417
1418 // Clear TXRDY:
1419 AT91C_BASE_SSC->SSC_THR = SEC_F;
1420
9ca155ba 1421 // send cycle
7bc95e2e 1422 for(; i <= respLen; ) {
9ca155ba 1423 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
7bc95e2e 1424 AT91C_BASE_SSC->SSC_THR = resp[i++];
1425 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
9ca155ba 1426 }
7bc95e2e 1427
9ca155ba
M
1428 if(BUTTON_PRESS()) {
1429 break;
1430 }
1431 }
1432
7bc95e2e 1433 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1434 for (i = 0; i < 2 ; ) {
1435 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1436 AT91C_BASE_SSC->SSC_THR = SEC_F;
1437 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1438 i++;
1439 }
1440 }
1441
1442 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1443
9ca155ba
M
1444 return 0;
1445}
1446
7bc95e2e 1447int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1448 Code4bitAnswerAsTag(resp);
0a39986e 1449 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1450 // do the tracing for the previous reader request and this tag answer:
1451 EmLogTrace(Uart.output,
1452 Uart.len,
1453 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1454 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1455 Uart.parityBits,
1456 &resp,
1457 1,
1458 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1459 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1460 SwapBits(GetParity(&resp, 1), 1));
0a39986e 1461 return res;
9ca155ba
M
1462}
1463
8f51ddb0 1464int EmSend4bit(uint8_t resp){
7bc95e2e 1465 return EmSend4bitEx(resp, false);
8f51ddb0
M
1466}
1467
7bc95e2e 1468int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){
1469 CodeIso14443aAsTagPar(resp, respLen, par);
8f51ddb0 1470 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
7bc95e2e 1471 // do the tracing for the previous reader request and this tag answer:
1472 EmLogTrace(Uart.output,
1473 Uart.len,
1474 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1475 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1476 Uart.parityBits,
1477 resp,
1478 respLen,
1479 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1480 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1481 SwapBits(GetParity(resp, respLen), respLen));
8f51ddb0
M
1482 return res;
1483}
1484
7bc95e2e 1485int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){
8f51ddb0
M
1486 return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
1487}
1488
1489int EmSendCmd(uint8_t *resp, int respLen){
7bc95e2e 1490 return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen));
8f51ddb0
M
1491}
1492
1493int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
7bc95e2e 1494 return EmSendCmdExPar(resp, respLen, false, par);
1495}
1496
1497bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity,
1498 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity)
1499{
1500 if (tracing) {
1501 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1502 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1503 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1504 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1505 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1506 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1507 reader_EndTime = tag_StartTime - exact_fdt;
1508 reader_StartTime = reader_EndTime - reader_modlen;
1509 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) {
1510 return FALSE;
1511 } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) {
1512 return FALSE;
1513 } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) {
1514 return FALSE;
1515 } else {
1516 return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE));
1517 }
1518 } else {
1519 return TRUE;
1520 }
9ca155ba
M
1521}
1522
15c4dc5a 1523//-----------------------------------------------------------------------------
1524// Wait a certain time for tag response
1525// If a response is captured return TRUE
e691fc45 1526// If it takes too long return FALSE
15c4dc5a 1527//-----------------------------------------------------------------------------
7bc95e2e 1528static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen)
15c4dc5a 1529{
7bc95e2e 1530 uint16_t c;
e691fc45 1531
15c4dc5a 1532 // Set FPGA mode to "reader listen mode", no modulation (listen
534983d7 1533 // only, since we are receiving, not transmitting).
1534 // Signal field is on with the appropriate LED
1535 LED_D_ON();
1536 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1c611bbd 1537
534983d7 1538 // Now get the answer from the card
7bc95e2e 1539 DemodReset();
534983d7 1540 Demod.output = receivedResponse;
15c4dc5a 1541
7bc95e2e 1542 // clear RXRDY:
1543 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1544
15c4dc5a 1545 c = 0;
1546 for(;;) {
534983d7 1547 WDT_HIT();
15c4dc5a 1548
534983d7 1549 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
534983d7 1550 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
7bc95e2e 1551 if(ManchesterDecoding(b, offset, 0)) {
1552 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
15c4dc5a 1553 return TRUE;
7bc95e2e 1554 } else if(c++ > iso14a_timeout) {
1555 return FALSE;
15c4dc5a 1556 }
534983d7 1557 }
1558 }
15c4dc5a 1559}
1560
9492e0b0 1561void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
15c4dc5a 1562{
981bd429 1563
7bc95e2e 1564 CodeIso14443aBitsAsReaderPar(frame,bits,par);
dfc3c505 1565
7bc95e2e 1566 // Send command to tag
1567 TransmitFor14443a(ToSend, ToSendMax, timing);
1568 if(trigger)
1569 LED_A_ON();
dfc3c505 1570
7bc95e2e 1571 // Log reader command in trace buffer
1572 if (tracing) {
1573 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1574 LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE);
1575 }
15c4dc5a 1576}
1577
9492e0b0 1578void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
dfc3c505 1579{
9492e0b0 1580 ReaderTransmitBitsPar(frame,len*8,par, timing);
dfc3c505 1581}
15c4dc5a 1582
e691fc45 1583void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing)
1584{
1585 // Generate parity and redirect
1586 ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing);
1587}
1588
9492e0b0 1589void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
15c4dc5a 1590{
1591 // Generate parity and redirect
9492e0b0 1592 ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
15c4dc5a 1593}
1594
e691fc45 1595int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset)
1596{
7bc95e2e 1597 if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE;
1598 if (tracing) {
1599 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1600 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1601 }
e691fc45 1602 return Demod.len;
1603}
1604
f7e3ed82 1605int ReaderReceive(uint8_t* receivedAnswer)
15c4dc5a 1606{
e691fc45 1607 return ReaderReceiveOffset(receivedAnswer, 0);
15c4dc5a 1608}
1609
e691fc45 1610int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr)
f89c7050 1611{
7bc95e2e 1612 if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE;
1613 if (tracing) {
1614 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE);
1615 LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE);
1616 }
f89c7050 1617 *parptr = Demod.parityBits;
e691fc45 1618 return Demod.len;
f89c7050
M
1619}
1620
e691fc45 1621/* performs iso14443a anticollision procedure
534983d7 1622 * fills the uid pointer unless NULL
1623 * fills resp_data unless NULL */
79a73ab2 1624int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
ed258538 1625 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1626 uint8_t sel_all[] = { 0x93,0x20 };
e691fc45 1627 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
ed258538 1628 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1629 uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
79a73ab2 1630 byte_t uid_resp[4];
1631 size_t uid_resp_len;
15c4dc5a 1632
ed258538 1633 uint8_t sak = 0x04; // cascade uid
1634 int cascade_level = 0;
1635 int len;
79a73ab2 1636
ed258538 1637 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
9492e0b0 1638 ReaderTransmitBitsPar(wupa,7,0, NULL);
7bc95e2e 1639
ed258538 1640 // Receive the ATQA
1641 if(!ReaderReceive(resp)) return 0;
e691fc45 1642 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1c611bbd 1643
ed258538 1644 if(p_hi14a_card) {
1645 memcpy(p_hi14a_card->atqa, resp, 2);
79a73ab2 1646 p_hi14a_card->uidlen = 0;
1647 memset(p_hi14a_card->uid,0,10);
1648 }
5f6d6c90 1649
79a73ab2 1650 // clear uid
1651 if (uid_ptr) {
1c611bbd 1652 memset(uid_ptr,0,10);
79a73ab2 1653 }
1654
ed258538 1655 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1656 // which case we need to make a cascade 2 request and select - this is a long UID
1657 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1658 for(; sak & 0x04; cascade_level++) {
1659 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1660 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1661
1662 // SELECT_ALL
9492e0b0 1663 ReaderTransmit(sel_all,sizeof(sel_all), NULL);
ed258538 1664 if (!ReaderReceive(resp)) return 0;
5f6d6c90 1665
e691fc45 1666 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1667 memset(uid_resp, 0, 4);
1668 uint16_t uid_resp_bits = 0;
1669 uint16_t collision_answer_offset = 0;
1670 // anti-collision-loop:
1671 while (Demod.collisionPos) {
1672 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1673 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1674 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1675 uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8);
1676 }
1677 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1678 uid_resp_bits++;
1679 // construct anticollosion command:
1680 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1681 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1682 sel_uid[2+i] = uid_resp[i];
1683 }
1684 collision_answer_offset = uid_resp_bits%8;
1685 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1686 if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0;
1687 }
1688 // finally, add the last bits and BCC of the UID
1689 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1690 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1691 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1692 }
1693
1694 } else { // no collision, use the response to SELECT_ALL as current uid
1695 memcpy(uid_resp,resp,4);
1696 }
1697 uid_resp_len = 4;
7bc95e2e 1698 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
5f6d6c90 1699
e691fc45 1700 // calculate crypto UID. Always use last 4 Bytes.
5f6d6c90 1701 if(cuid_ptr) {
1702 *cuid_ptr = bytes_to_num(uid_resp, 4);
79a73ab2 1703 }
e30c654b 1704
ed258538 1705 // Construct SELECT UID command
e691fc45 1706 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1707 memcpy(sel_uid+2,uid_resp,4); // the UID
1708 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1709 AppendCrc14443a(sel_uid,7); // calculate and add CRC
9492e0b0 1710 ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
534983d7 1711
ed258538 1712 // Receive the SAK
1713 if (!ReaderReceive(resp)) return 0;
1714 sak = resp[0];
79a73ab2 1715
1716 // Test if more parts of the uid are comming
e691fc45 1717 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
79a73ab2 1718 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1719 // http://www.nxp.com/documents/application_note/AN10927.pdf
a61b4976 1720 // This was earlier:
1721 //memcpy(uid_resp, uid_resp + 1, 3);
1722 // But memcpy should not be used for overlapping arrays,
1723 // and memmove appears to not be available in the arm build.
1724 // So this has been replaced with a for-loop:
1725 for(int xx = 0; xx < 3; xx++)
1726 uid_resp[xx] = uid_resp[xx+1];
79a73ab2 1727 uid_resp_len = 3;
1728 }
5f6d6c90 1729
79a73ab2 1730 if(uid_ptr) {
1731 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1732 }
5f6d6c90 1733
79a73ab2 1734 if(p_hi14a_card) {
1735 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1736 p_hi14a_card->uidlen += uid_resp_len;
1737 }
ed258538 1738 }
79a73ab2 1739
ed258538 1740 if(p_hi14a_card) {
1741 p_hi14a_card->sak = sak;
1742 p_hi14a_card->ats_len = 0;
1743 }
534983d7 1744
ed258538 1745 if( (sak & 0x20) == 0) {
1746 return 2; // non iso14443a compliant tag
79a73ab2 1747 }
534983d7 1748
ed258538 1749 // Request for answer to select
5191b3d1 1750 AppendCrc14443a(rats, 2);
9492e0b0 1751 ReaderTransmit(rats, sizeof(rats), NULL);
1c611bbd 1752
5191b3d1 1753 if (!(len = ReaderReceive(resp))) return 0;
1754
1755 if(p_hi14a_card) {
ed258538 1756 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1757 p_hi14a_card->ats_len = len;
1758 }
5f6d6c90 1759
ed258538 1760 // reset the PCB block number
1761 iso14_pcb_blocknum = 0;
1762 return 1;
7e758047 1763}
15c4dc5a 1764
7bc95e2e 1765void iso14443a_setup(uint8_t fpga_minor_mode) {
7cc204bf 1766 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
9492e0b0 1767 // Set up the synchronous serial port
1768 FpgaSetupSsc();
7bc95e2e 1769 // connect Demodulated Signal to ADC:
7e758047 1770 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
e30c654b 1771
7e758047 1772 // Signal field is on with the appropriate LED
7bc95e2e 1773 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1774 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1775 LED_D_ON();
1776 } else {
1777 LED_D_OFF();
1778 }
1779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
534983d7 1780
7bc95e2e 1781 // Start the timer
1782 StartCountSspClk();
1783
1784 DemodReset();
1785 UartReset();
1786 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
f38a1528 1787 iso14a_set_timeout(1050); // 10ms default 10*105 =
7e758047 1788}
15c4dc5a 1789
534983d7 1790int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
1791 uint8_t real_cmd[cmd_len+4];
1792 real_cmd[0] = 0x0a; //I-Block
b0127e65 1793 // put block number into the PCB
1794 real_cmd[0] |= iso14_pcb_blocknum;
534983d7 1795 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1796 memcpy(real_cmd+2, cmd, cmd_len);
1797 AppendCrc14443a(real_cmd,cmd_len+2);
1798
9492e0b0 1799 ReaderTransmit(real_cmd, cmd_len+4, NULL);
534983d7 1800 size_t len = ReaderReceive(data);
b0127e65 1801 uint8_t * data_bytes = (uint8_t *) data;
1802 if (!len)
1803 return 0; //DATA LINK ERROR
1804 // if we received an I- or R(ACK)-Block with a block number equal to the
1805 // current block number, toggle the current block number
1806 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1807 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1808 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1809 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1810 {
1811 iso14_pcb_blocknum ^= 1;
1812 }
1813
534983d7 1814 return len;
1815}
1816
7e758047 1817//-----------------------------------------------------------------------------
1818// Read an ISO 14443a tag. Send out commands and store answers.
1819//
1820//-----------------------------------------------------------------------------
7bc95e2e 1821void ReaderIso14443a(UsbCommand *c)
7e758047 1822{
534983d7 1823 iso14a_command_t param = c->arg[0];
7bc95e2e 1824 uint8_t *cmd = c->d.asBytes;
f38a1528 1825 size_t len = c->arg[1] & 0xFFFF;
1826 size_t lenbits = c->arg[1] >> 16;
9492e0b0 1827 uint32_t arg0 = 0;
1828 byte_t buf[USB_CMD_DATA_SIZE];
902cb3c0 1829
5f6d6c90 1830 if(param & ISO14A_CONNECT) {
1831 iso14a_clear_trace();
1832 }
e691fc45 1833
7bc95e2e 1834 iso14a_set_tracing(TRUE);
e30c654b 1835
79a73ab2 1836 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1837 iso14a_set_trigger(TRUE);
9492e0b0 1838 }
15c4dc5a 1839
534983d7 1840 if(param & ISO14A_CONNECT) {
7bc95e2e 1841 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
5f6d6c90 1842 if(!(param & ISO14A_NO_SELECT)) {
1843 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1844 arg0 = iso14443a_select_card(NULL,card,NULL);
1845 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1846 }
534983d7 1847 }
e30c654b 1848
534983d7 1849 if(param & ISO14A_SET_TIMEOUT) {
313ee67e 1850 iso14a_set_timeout(c->arg[2]);
534983d7 1851 }
e30c654b 1852
534983d7 1853 if(param & ISO14A_APDU) {
902cb3c0 1854 arg0 = iso14_apdu(cmd, len, buf);
79a73ab2 1855 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1856 }
e30c654b 1857
534983d7 1858 if(param & ISO14A_RAW) {
1859 if(param & ISO14A_APPEND_CRC) {
1860 AppendCrc14443a(cmd,len);
1861 len += 2;
f38a1528 1862 lenbits += 16;
15c4dc5a 1863 }
5f6d6c90 1864 if(lenbits>0) {
f38a1528 1865
5f6d6c90 1866 ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL);
1867 } else {
1868 ReaderTransmit(cmd,len, NULL);
1869 }
902cb3c0 1870 arg0 = ReaderReceive(buf);
9492e0b0 1871 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
534983d7 1872 }
15c4dc5a 1873
79a73ab2 1874 if(param & ISO14A_REQUEST_TRIGGER) {
7bc95e2e 1875 iso14a_set_trigger(FALSE);
9492e0b0 1876 }
15c4dc5a 1877
79a73ab2 1878 if(param & ISO14A_NO_DISCONNECT) {
534983d7 1879 return;
9492e0b0 1880 }
15c4dc5a 1881
15c4dc5a 1882 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1883 LEDsoff();
15c4dc5a 1884}
b0127e65 1885
1c611bbd 1886
1c611bbd 1887// Determine the distance between two nonces.
1888// Assume that the difference is small, but we don't know which is first.
1889// Therefore try in alternating directions.
1890int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1891
1892 uint16_t i;
1893 uint32_t nttmp1, nttmp2;
e772353f 1894
1c611bbd 1895 if (nt1 == nt2) return 0;
1896
1897 nttmp1 = nt1;
1898 nttmp2 = nt2;
1899
1900 for (i = 1; i < 32768; i++) {
1901 nttmp1 = prng_successor(nttmp1, 1);
1902 if (nttmp1 == nt2) return i;
1903 nttmp2 = prng_successor(nttmp2, 1);
1904 if (nttmp2 == nt1) return -i;
1905 }
1906
1907 return(-99999); // either nt1 or nt2 are invalid nonces
e772353f 1908}
1909
e772353f 1910
1c611bbd 1911//-----------------------------------------------------------------------------
1912// Recover several bits of the cypher stream. This implements (first stages of)
1913// the algorithm described in "The Dark Side of Security by Obscurity and
1914// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1915// (article by Nicolas T. Courtois, 2009)
1916//-----------------------------------------------------------------------------
1917void ReaderMifare(bool first_try)
1918{
1919 // Mifare AUTH
1920 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1921 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1922 static uint8_t mf_nr_ar3;
e772353f 1923
1c611bbd 1924 uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
7bc95e2e 1925
d2f487af 1926 iso14a_clear_trace();
7bc95e2e 1927 iso14a_set_tracing(TRUE);
e772353f 1928
1c611bbd 1929 byte_t nt_diff = 0;
1930 byte_t par = 0;
1931 //byte_t par_mask = 0xff;
1932 static byte_t par_low = 0;
1933 bool led_on = TRUE;
1934 uint8_t uid[10];
1935 uint32_t cuid;
e772353f 1936
a61b4976 1937 uint32_t nt = 0;
1938 uint32_t previous_nt = 0;
1c611bbd 1939 static uint32_t nt_attacked = 0;
1940 byte_t par_list[8] = {0,0,0,0,0,0,0,0};
1941 byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
e772353f 1942
1c611bbd 1943 static uint32_t sync_time;
1944 static uint32_t sync_cycles;
1945 int catch_up_cycles = 0;
1946 int last_catch_up = 0;
1947 uint16_t consecutive_resyncs = 0;
1948 int isOK = 0;
e772353f 1949
e772353f 1950
e772353f 1951
1c611bbd 1952 if (first_try) {
1c611bbd 1953 mf_nr_ar3 = 0;
7bc95e2e 1954 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
1955 sync_time = GetCountSspClk() & 0xfffffff8;
1c611bbd 1956 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1957 nt_attacked = 0;
1958 nt = 0;
1959 par = 0;
1960 }
1961 else {
1962 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1963 // nt_attacked = prng_successor(nt_attacked, 1);
1964 mf_nr_ar3++;
1965 mf_nr_ar[3] = mf_nr_ar3;
1966 par = par_low;
1967 }
e30c654b 1968
15c4dc5a 1969 LED_A_ON();
1970 LED_B_OFF();
1971 LED_C_OFF();
1c611bbd 1972
7bc95e2e 1973
1c611bbd 1974 for(uint16_t i = 0; TRUE; i++) {
1975
1976 WDT_HIT();
e30c654b 1977
1c611bbd 1978 // Test if the action was cancelled
1979 if(BUTTON_PRESS()) {
1980 break;
1981 }
1982
1983 LED_C_ON();
e30c654b 1984
1c611bbd 1985 if(!iso14443a_select_card(uid, NULL, &cuid)) {
9492e0b0 1986 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
1c611bbd 1987 continue;
1988 }
1989
9492e0b0 1990 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
1c611bbd 1991 catch_up_cycles = 0;
1992
1993 // if we missed the sync time already, advance to the next nonce repeat
7bc95e2e 1994 while(GetCountSspClk() > sync_time) {
9492e0b0 1995 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
1c611bbd 1996 }
e30c654b 1997
9492e0b0 1998 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1999 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
f89c7050 2000
1c611bbd 2001 // Receive the (4 Byte) "random" nonce
2002 if (!ReaderReceive(receivedAnswer)) {
9492e0b0 2003 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
1c611bbd 2004 continue;
2005 }
2006
1c611bbd 2007 previous_nt = nt;
2008 nt = bytes_to_num(receivedAnswer, 4);
2009
2010 // Transmit reader nonce with fake par
9492e0b0 2011 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
1c611bbd 2012
2013 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2014 int nt_distance = dist_nt(previous_nt, nt);
2015 if (nt_distance == 0) {
2016 nt_attacked = nt;
2017 }
2018 else {
2019 if (nt_distance == -99999) { // invalid nonce received, try again
2020 continue;
2021 }
2022 sync_cycles = (sync_cycles - nt_distance);
9492e0b0 2023 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
1c611bbd 2024 continue;
2025 }
2026 }
2027
2028 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2029 catch_up_cycles = -dist_nt(nt_attacked, nt);
2030 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2031 catch_up_cycles = 0;
2032 continue;
2033 }
2034 if (catch_up_cycles == last_catch_up) {
2035 consecutive_resyncs++;
2036 }
2037 else {
2038 last_catch_up = catch_up_cycles;
2039 consecutive_resyncs = 0;
2040 }
2041 if (consecutive_resyncs < 3) {
9492e0b0 2042 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
1c611bbd 2043 }
2044 else {
2045 sync_cycles = sync_cycles + catch_up_cycles;
9492e0b0 2046 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
1c611bbd 2047 }
2048 continue;
2049 }
2050
2051 consecutive_resyncs = 0;
2052
2053 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2054 if (ReaderReceive(receivedAnswer))
2055 {
9492e0b0 2056 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
1c611bbd 2057
2058 if (nt_diff == 0)
2059 {
2060 par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2061 }
2062
2063 led_on = !led_on;
2064 if(led_on) LED_B_ON(); else LED_B_OFF();
2065
2066 par_list[nt_diff] = par;
2067 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2068
2069 // Test if the information is complete
2070 if (nt_diff == 0x07) {
2071 isOK = 1;
2072 break;
2073 }
2074
2075 nt_diff = (nt_diff + 1) & 0x07;
2076 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2077 par = par_low;
2078 } else {
2079 if (nt_diff == 0 && first_try)
2080 {
2081 par++;
2082 } else {
2083 par = (((par >> 3) + 1) << 3) | par_low;
2084 }
2085 }
2086 }
2087
1c611bbd 2088
2089 mf_nr_ar[3] &= 0x1F;
2090
2091 byte_t buf[28];
2092 memcpy(buf + 0, uid, 4);
2093 num_to_bytes(nt, 4, buf + 4);
2094 memcpy(buf + 8, par_list, 8);
2095 memcpy(buf + 16, ks_list, 8);
2096 memcpy(buf + 24, mf_nr_ar, 4);
2097
2098 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2099
2100 // Thats it...
2101 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2102 LEDsoff();
7bc95e2e 2103
2104 iso14a_set_tracing(FALSE);
20f9a2a1 2105}
1c611bbd 2106
d2f487af 2107/**
2108 *MIFARE 1K simulate.
2109 *
2110 *@param flags :
2111 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2112 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2113 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2114 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2115 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2116 */
2117void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
20f9a2a1 2118{
50193c1e 2119 int cardSTATE = MFEMUL_NOFIELD;
8556b852 2120 int _7BUID = 0;
9ca155ba 2121 int vHf = 0; // in mV
8f51ddb0 2122 int res;
0a39986e
M
2123 uint32_t selTimer = 0;
2124 uint32_t authTimer = 0;
2125 uint32_t par = 0;
9ca155ba 2126 int len = 0;
8f51ddb0 2127 uint8_t cardWRBL = 0;
9ca155ba
M
2128 uint8_t cardAUTHSC = 0;
2129 uint8_t cardAUTHKEY = 0xff; // no authentication
51969283 2130 uint32_t cardRr = 0;
9ca155ba 2131 uint32_t cuid = 0;
d2f487af 2132 //uint32_t rn_enc = 0;
51969283 2133 uint32_t ans = 0;
0014cb46
M
2134 uint32_t cardINTREG = 0;
2135 uint8_t cardINTBLOCK = 0;
9ca155ba
M
2136 struct Crypto1State mpcs = {0, 0};
2137 struct Crypto1State *pcs;
2138 pcs = &mpcs;
d2f487af 2139 uint32_t numReads = 0;//Counts numer of times reader read a block
8f51ddb0
M
2140 uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
2141 uint8_t *response = eml_get_bigbufptr_sendbuf();
9ca155ba 2142
d2f487af 2143 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2144 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2145 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2146 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2147 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
9ca155ba 2148
d2f487af 2149 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2150 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
7bc95e2e 2151
d2f487af 2152 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2153 // This can be used in a reader-only attack.
2154 // (it can also be retrieved via 'hf 14a list', but hey...
2155 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2156 uint8_t ar_nr_collected = 0;
0014cb46 2157
0a39986e 2158 // clear trace
7bc95e2e 2159 iso14a_clear_trace();
2160 iso14a_set_tracing(TRUE);
51969283 2161
7bc95e2e 2162 // Authenticate response - nonce
51969283 2163 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
7bc95e2e 2164
d2f487af 2165 //-- Determine the UID
2166 // Can be set from emulator memory, incoming data
2167 // and can be 7 or 4 bytes long
7bc95e2e 2168 if (flags & FLAG_4B_UID_IN_DATA)
d2f487af 2169 {
2170 // 4B uid comes from data-portion of packet
2171 memcpy(rUIDBCC1,datain,4);
8556b852 2172 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
8556b852 2173
7bc95e2e 2174 } else if (flags & FLAG_7B_UID_IN_DATA) {
d2f487af 2175 // 7B uid comes from data-portion of packet
2176 memcpy(&rUIDBCC1[1],datain,3);
2177 memcpy(rUIDBCC2, datain+3, 4);
2178 _7BUID = true;
7bc95e2e 2179 } else {
d2f487af 2180 // get UID from emul memory
2181 emlGetMemBt(receivedCmd, 7, 1);
2182 _7BUID = !(receivedCmd[0] == 0x00);
2183 if (!_7BUID) { // ---------- 4BUID
2184 emlGetMemBt(rUIDBCC1, 0, 4);
2185 } else { // ---------- 7BUID
2186 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2187 emlGetMemBt(rUIDBCC2, 3, 4);
2188 }
2189 }
7bc95e2e 2190
d2f487af 2191 /*
2192 * Regardless of what method was used to set the UID, set fifth byte and modify
2193 * the ATQA for 4 or 7-byte UID
2194 */
d2f487af 2195 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
7bc95e2e 2196 if (_7BUID) {
d2f487af 2197 rATQA[0] = 0x44;
8556b852 2198 rUIDBCC1[0] = 0x88;
8556b852
M
2199 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2200 }
2201
9ca155ba 2202 // We need to listen to the high-frequency, peak-detected path.
7bc95e2e 2203 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
9ca155ba 2204
9ca155ba 2205
d2f487af 2206 if (MF_DBGLEVEL >= 1) {
2207 if (!_7BUID) {
f38a1528 2208 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]);
7bc95e2e 2209 } else {
f38a1528 2210 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]);
d2f487af 2211 }
2212 }
7bc95e2e 2213
2214 bool finished = FALSE;
d2f487af 2215 while (!BUTTON_PRESS() && !finished) {
9ca155ba 2216 WDT_HIT();
9ca155ba
M
2217
2218 // find reader field
2219 // Vref = 3300mV, and an 10:1 voltage divider on the input
2220 // can measure voltages up to 33000 mV
2221 if (cardSTATE == MFEMUL_NOFIELD) {
2222 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
2223 if (vHf > MF_MINFIELDV) {
0014cb46 2224 cardSTATE_TO_IDLE();
9ca155ba
M
2225 LED_A_ON();
2226 }
2227 }
d2f487af 2228 if(cardSTATE == MFEMUL_NOFIELD) continue;
9ca155ba 2229
d2f487af 2230 //Now, get data
2231
7bc95e2e 2232 res = EmGetCmd(receivedCmd, &len);
d2f487af 2233 if (res == 2) { //Field is off!
2234 cardSTATE = MFEMUL_NOFIELD;
2235 LEDsoff();
2236 continue;
7bc95e2e 2237 } else if (res == 1) {
2238 break; //return value 1 means button press
2239 }
2240
d2f487af 2241 // REQ or WUP request in ANY state and WUP in HALTED state
2242 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2243 selTimer = GetTickCount();
2244 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2245 cardSTATE = MFEMUL_SELECT1;
2246
2247 // init crypto block
2248 LED_B_OFF();
2249 LED_C_OFF();
2250 crypto1_destroy(pcs);
2251 cardAUTHKEY = 0xff;
2252 continue;
0a39986e 2253 }
7bc95e2e 2254
50193c1e 2255 switch (cardSTATE) {
d2f487af 2256 case MFEMUL_NOFIELD:
2257 case MFEMUL_HALTED:
50193c1e 2258 case MFEMUL_IDLE:{
7bc95e2e 2259 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2260 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
50193c1e
M
2261 break;
2262 }
2263 case MFEMUL_SELECT1:{
9ca155ba
M
2264 // select all
2265 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
d2f487af 2266 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
9ca155ba 2267 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
0014cb46 2268 break;
9ca155ba
M
2269 }
2270
d2f487af 2271 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2272 {
2273 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2274 }
9ca155ba 2275 // select card
0a39986e
M
2276 if (len == 9 &&
2277 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
bfb6a143 2278 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
9ca155ba 2279 cuid = bytes_to_num(rUIDBCC1, 4);
8556b852
M
2280 if (!_7BUID) {
2281 cardSTATE = MFEMUL_WORK;
0014cb46
M
2282 LED_B_ON();
2283 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2284 break;
8556b852
M
2285 } else {
2286 cardSTATE = MFEMUL_SELECT2;
8556b852 2287 }
9ca155ba 2288 }
50193c1e
M
2289 break;
2290 }
d2f487af 2291 case MFEMUL_AUTH1:{
2292 if( len != 8)
2293 {
2294 cardSTATE_TO_IDLE();
7bc95e2e 2295 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2296 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
d2f487af 2297 break;
2298 }
2299 uint32_t ar = bytes_to_num(receivedCmd, 4);
2300 uint32_t nr= bytes_to_num(&receivedCmd[4], 4);
2301
2302 //Collect AR/NR
2303 if(ar_nr_collected < 2){
273b57a7 2304 if(ar_nr_responses[2] != ar)
2305 {// Avoid duplicates... probably not necessary, ar should vary.
d2f487af 2306 ar_nr_responses[ar_nr_collected*4] = cuid;
2307 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2308 ar_nr_responses[ar_nr_collected*4+2] = ar;
2309 ar_nr_responses[ar_nr_collected*4+3] = nr;
273b57a7 2310 ar_nr_collected++;
d2f487af 2311 }
2312 }
2313
2314 // --- crypto
2315 crypto1_word(pcs, ar , 1);
2316 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2317
2318 // test if auth OK
2319 if (cardRr != prng_successor(nonce, 64)){
f38a1528 2320 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64));
7bc95e2e 2321 // Shouldn't we respond anything here?
d2f487af 2322 // Right now, we don't nack or anything, which causes the
2323 // reader to do a WUPA after a while. /Martin
b03c0f2d 2324 // -- which is the correct response. /piwi
d2f487af 2325 cardSTATE_TO_IDLE();
7bc95e2e 2326 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2327 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
d2f487af 2328 break;
2329 }
2330
2331 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2332
2333 num_to_bytes(ans, 4, rAUTH_AT);
2334 // --- crypto
2335 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2336 LED_C_ON();
2337 cardSTATE = MFEMUL_WORK;
b03c0f2d 2338 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2339 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2340 GetTickCount() - authTimer);
d2f487af 2341 break;
2342 }
50193c1e 2343 case MFEMUL_SELECT2:{
7bc95e2e 2344 if (!len) {
2345 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2346 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2347 break;
2348 }
8556b852 2349 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
9ca155ba 2350 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
8556b852
M
2351 break;
2352 }
9ca155ba 2353
8556b852
M
2354 // select 2 card
2355 if (len == 9 &&
2356 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2357 EmSendCmd(rSAK, sizeof(rSAK));
8556b852
M
2358 cuid = bytes_to_num(rUIDBCC2, 4);
2359 cardSTATE = MFEMUL_WORK;
2360 LED_B_ON();
0014cb46 2361 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
8556b852
M
2362 break;
2363 }
0014cb46
M
2364
2365 // i guess there is a command). go into the work state.
7bc95e2e 2366 if (len != 4) {
2367 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2368 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2369 break;
2370 }
0014cb46 2371 cardSTATE = MFEMUL_WORK;
d2f487af 2372 //goto lbWORK;
2373 //intentional fall-through to the next case-stmt
50193c1e 2374 }
51969283 2375
7bc95e2e 2376 case MFEMUL_WORK:{
2377 if (len == 0) {
2378 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2379 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2380 break;
2381 }
2382
d2f487af 2383 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2384
7bc95e2e 2385 if(encrypted_data) {
51969283
M
2386 // decrypt seqence
2387 mf_crypto1_decrypt(pcs, receivedCmd, len);
d2f487af 2388 }
7bc95e2e 2389
d2f487af 2390 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2391 authTimer = GetTickCount();
2392 cardAUTHSC = receivedCmd[1] / 4; // received block num
2393 cardAUTHKEY = receivedCmd[0] - 0x60;
2394 crypto1_destroy(pcs);//Added by martin
2395 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
51969283 2396
d2f487af 2397 if (!encrypted_data) { // first authentication
b03c0f2d 2398 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
51969283 2399
d2f487af 2400 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2401 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
7bc95e2e 2402 } else { // nested authentication
b03c0f2d 2403 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
7bc95e2e 2404 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
d2f487af 2405 num_to_bytes(ans, 4, rAUTH_AT);
2406 }
2407 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2408 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2409 cardSTATE = MFEMUL_AUTH1;
2410 break;
51969283 2411 }
7bc95e2e 2412
8f51ddb0
M
2413 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2414 // BUT... ACK --> NACK
2415 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2416 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2417 break;
2418 }
2419
2420 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2421 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2422 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2423 break;
0a39986e
M
2424 }
2425
7bc95e2e 2426 if(len != 4) {
2427 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2428 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
2429 break;
2430 }
d2f487af 2431
2432 if(receivedCmd[0] == 0x30 // read block
2433 || receivedCmd[0] == 0xA0 // write block
b03c0f2d 2434 || receivedCmd[0] == 0xC0 // inc
2435 || receivedCmd[0] == 0xC1 // dec
2436 || receivedCmd[0] == 0xC2 // restore
7bc95e2e 2437 || receivedCmd[0] == 0xB0) { // transfer
2438 if (receivedCmd[1] >= 16 * 4) {
d2f487af 2439 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2440 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2441 break;
2442 }
2443
7bc95e2e 2444 if (receivedCmd[1] / 4 != cardAUTHSC) {
8f51ddb0 2445 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
d2f487af 2446 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
8f51ddb0
M
2447 break;
2448 }
d2f487af 2449 }
2450 // read block
2451 if (receivedCmd[0] == 0x30) {
b03c0f2d 2452 if (MF_DBGLEVEL >= 4) {
d2f487af 2453 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2454 }
8f51ddb0
M
2455 emlGetMem(response, receivedCmd[1], 1);
2456 AppendCrc14443a(response, 16);
2457 mf_crypto1_encrypt(pcs, response, 18, &par);
2458 EmSendCmdPar(response, 18, par);
d2f487af 2459 numReads++;
7bc95e2e 2460 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
d2f487af 2461 Dbprintf("%d reads done, exiting", numReads);
2462 finished = true;
2463 }
0a39986e
M
2464 break;
2465 }
0a39986e 2466 // write block
d2f487af 2467 if (receivedCmd[0] == 0xA0) {
b03c0f2d 2468 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
8f51ddb0 2469 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
8f51ddb0
M
2470 cardSTATE = MFEMUL_WRITEBL2;
2471 cardWRBL = receivedCmd[1];
0a39986e 2472 break;
7bc95e2e 2473 }
0014cb46 2474 // increment, decrement, restore
d2f487af 2475 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
b03c0f2d 2476 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
d2f487af 2477 if (emlCheckValBl(receivedCmd[1])) {
2478 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
0014cb46
M
2479 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2480 break;
2481 }
2482 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2483 if (receivedCmd[0] == 0xC1)
2484 cardSTATE = MFEMUL_INTREG_INC;
2485 if (receivedCmd[0] == 0xC0)
2486 cardSTATE = MFEMUL_INTREG_DEC;
2487 if (receivedCmd[0] == 0xC2)
2488 cardSTATE = MFEMUL_INTREG_REST;
2489 cardWRBL = receivedCmd[1];
0014cb46
M
2490 break;
2491 }
0014cb46 2492 // transfer
d2f487af 2493 if (receivedCmd[0] == 0xB0) {
b03c0f2d 2494 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
0014cb46
M
2495 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2496 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2497 else
2498 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
0014cb46
M
2499 break;
2500 }
9ca155ba 2501 // halt
d2f487af 2502 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
9ca155ba 2503 LED_B_OFF();
0a39986e 2504 LED_C_OFF();
0014cb46
M
2505 cardSTATE = MFEMUL_HALTED;
2506 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
7bc95e2e 2507 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2508 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0a39986e 2509 break;
9ca155ba 2510 }
d2f487af 2511 // RATS
2512 if (receivedCmd[0] == 0xe0) {//RATS
8f51ddb0
M
2513 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2514 break;
2515 }
d2f487af 2516 // command not allowed
2517 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2518 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
51969283 2519 break;
8f51ddb0
M
2520 }
2521 case MFEMUL_WRITEBL2:{
2522 if (len == 18){
2523 mf_crypto1_decrypt(pcs, receivedCmd, len);
2524 emlSetMem(receivedCmd, cardWRBL, 1);
2525 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2526 cardSTATE = MFEMUL_WORK;
51969283 2527 } else {
0014cb46 2528 cardSTATE_TO_IDLE();
7bc95e2e 2529 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2530 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
8f51ddb0 2531 }
8f51ddb0 2532 break;
50193c1e 2533 }
0014cb46
M
2534
2535 case MFEMUL_INTREG_INC:{
2536 mf_crypto1_decrypt(pcs, receivedCmd, len);
2537 memcpy(&ans, receivedCmd, 4);
2538 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2539 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2540 cardSTATE_TO_IDLE();
2541 break;
7bc95e2e 2542 }
2543 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2544 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0014cb46
M
2545 cardINTREG = cardINTREG + ans;
2546 cardSTATE = MFEMUL_WORK;
2547 break;
2548 }
2549 case MFEMUL_INTREG_DEC:{
2550 mf_crypto1_decrypt(pcs, receivedCmd, len);
2551 memcpy(&ans, receivedCmd, 4);
2552 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2553 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2554 cardSTATE_TO_IDLE();
2555 break;
2556 }
7bc95e2e 2557 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2558 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0014cb46
M
2559 cardINTREG = cardINTREG - ans;
2560 cardSTATE = MFEMUL_WORK;
2561 break;
2562 }
2563 case MFEMUL_INTREG_REST:{
2564 mf_crypto1_decrypt(pcs, receivedCmd, len);
2565 memcpy(&ans, receivedCmd, 4);
2566 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2567 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2568 cardSTATE_TO_IDLE();
2569 break;
2570 }
7bc95e2e 2571 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE);
2572 LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE);
0014cb46
M
2573 cardSTATE = MFEMUL_WORK;
2574 break;
2575 }
50193c1e 2576 }
50193c1e
M
2577 }
2578
9ca155ba
M
2579 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2580 LEDsoff();
2581
d2f487af 2582 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2583 {
2584 //May just aswell send the collected ar_nr in the response aswell
2585 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2586 }
d714d3ef 2587
d2f487af 2588 if(flags & FLAG_NR_AR_ATTACK)
2589 {
7bc95e2e 2590 if(ar_nr_collected > 1) {
d2f487af 2591 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
d714d3ef 2592 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
d2f487af 2593 ar_nr_responses[0], // UID
2594 ar_nr_responses[1], //NT
2595 ar_nr_responses[2], //AR1
2596 ar_nr_responses[3], //NR1
2597 ar_nr_responses[6], //AR2
2598 ar_nr_responses[7] //NR2
2599 );
7bc95e2e 2600 } else {
d2f487af 2601 Dbprintf("Failed to obtain two AR/NR pairs!");
7bc95e2e 2602 if(ar_nr_collected >0) {
d714d3ef 2603 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
d2f487af 2604 ar_nr_responses[0], // UID
2605 ar_nr_responses[1], //NT
2606 ar_nr_responses[2], //AR1
2607 ar_nr_responses[3] //NR1
2608 );
2609 }
2610 }
2611 }
0014cb46 2612 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
15c4dc5a 2613}
b62a5a84 2614
d2f487af 2615
2616
b62a5a84
M
2617//-----------------------------------------------------------------------------
2618// MIFARE sniffer.
2619//
2620//-----------------------------------------------------------------------------
5cd9ec01
M
2621void RAMFUNC SniffMifare(uint8_t param) {
2622 // param:
2623 // bit 0 - trigger from first card answer
2624 // bit 1 - trigger from first reader 7-bit request
39864b0b
M
2625
2626 // C(red) A(yellow) B(green)
b62a5a84
M
2627 LEDsoff();
2628 // init trace buffer
991f13f2 2629 iso14a_clear_trace();
2630 iso14a_set_tracing(TRUE);
b62a5a84 2631
b62a5a84
M
2632 // The command (reader -> tag) that we're receiving.
2633 // The length of a received command will in most cases be no more than 18 bytes.
2634 // So 32 should be enough!
2635 uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
2636 // The response (tag -> reader) that we're receiving.
2637 uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
2638
2639 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2640 // into trace, along with its length and other annotations.
2641 //uint8_t *trace = (uint8_t *)BigBuf;
2642
2643 // The DMA buffer, used to stream samples from the FPGA
7bc95e2e 2644 uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET;
2645 uint8_t *data = dmaBuf;
2646 uint8_t previous_data = 0;
5cd9ec01
M
2647 int maxDataLen = 0;
2648 int dataLen = 0;
7bc95e2e 2649 bool ReaderIsActive = FALSE;
2650 bool TagIsActive = FALSE;
2651
2652 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
b62a5a84
M
2653
2654 // Set up the demodulator for tag -> reader responses.
2655 Demod.output = receivedResponse;
b62a5a84
M
2656
2657 // Set up the demodulator for the reader -> tag commands
b62a5a84 2658 Uart.output = receivedCmd;
b62a5a84
M
2659
2660 // Setup for the DMA.
7bc95e2e 2661 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
b62a5a84 2662
b62a5a84 2663 LED_D_OFF();
39864b0b
M
2664
2665 // init sniffer
2666 MfSniffInit();
b62a5a84 2667
b62a5a84 2668 // And now we loop, receiving samples.
7bc95e2e 2669 for(uint32_t sniffCounter = 0; TRUE; ) {
2670
5cd9ec01
M
2671 if(BUTTON_PRESS()) {
2672 DbpString("cancelled by button");
7bc95e2e 2673 break;
5cd9ec01
M
2674 }
2675
b62a5a84
M
2676 LED_A_ON();
2677 WDT_HIT();
39864b0b 2678
7bc95e2e 2679 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2680 // check if a transaction is completed (timeout after 2000ms).
2681 // if yes, stop the DMA transfer and send what we have so far to the client
2682 if (MfSniffSend(2000)) {
2683 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2684 sniffCounter = 0;
2685 data = dmaBuf;
2686 maxDataLen = 0;
2687 ReaderIsActive = FALSE;
2688 TagIsActive = FALSE;
2689 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
39864b0b 2690 }
39864b0b 2691 }
7bc95e2e 2692
2693 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2694 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2695 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2696 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2697 } else {
2698 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
5cd9ec01
M
2699 }
2700 // test for length of buffer
7bc95e2e 2701 if(dataLen > maxDataLen) { // we are more behind than ever...
2702 maxDataLen = dataLen;
5cd9ec01
M
2703 if(dataLen > 400) {
2704 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
7bc95e2e 2705 break;
b62a5a84
M
2706 }
2707 }
5cd9ec01 2708 if(dataLen < 1) continue;
b62a5a84 2709
7bc95e2e 2710 // primary buffer was stopped ( <-- we lost data!
5cd9ec01
M
2711 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2712 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2713 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
55acbb2a 2714 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
5cd9ec01
M
2715 }
2716 // secondary buffer sets as primary, secondary buffer was stopped
2717 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2718 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
b62a5a84
M
2719 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2720 }
5cd9ec01
M
2721
2722 LED_A_OFF();
b62a5a84 2723
7bc95e2e 2724 if (sniffCounter & 0x01) {
b62a5a84 2725
7bc95e2e 2726 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2727 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2728 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2729 LED_C_INV();
2730 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break;
b62a5a84 2731
7bc95e2e 2732 /* And ready to receive another command. */
2733 UartReset();
2734
2735 /* And also reset the demod code */
2736 DemodReset();
2737 }
2738 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2739 }
2740
2741 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2742 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2743 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2744 LED_C_INV();
b62a5a84 2745
7bc95e2e 2746 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
39864b0b 2747
7bc95e2e 2748 // And ready to receive another response.
2749 DemodReset();
2750 }
2751 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2752 }
b62a5a84
M
2753 }
2754
7bc95e2e 2755 previous_data = *data;
2756 sniffCounter++;
5cd9ec01 2757 data++;
d714d3ef 2758 if(data == dmaBuf + DMA_BUFFER_SIZE) {
5cd9ec01 2759 data = dmaBuf;
b62a5a84 2760 }
7bc95e2e 2761
b62a5a84
M
2762 } // main cycle
2763
2764 DbpString("COMMAND FINISHED");
2765
55acbb2a 2766 FpgaDisableSscDma();
39864b0b
M
2767 MfSniffEnd();
2768
7bc95e2e 2769 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
b62a5a84 2770 LEDsoff();
3803d529 2771}
Impressum, Datenschutz