]> git.zerfleddert.de Git - proxmark3-svn/blame - tools/nonce2key/crapto1.c
CHG: Updated the crapto1 imp to latest vesion3.3 ( Thanks @blapost !)
[proxmark3-svn] / tools / nonce2key / crapto1.c
CommitLineData
93f57590 1/* crapto1.c\r
2\r
3 This program is free software; you can redistribute it and/or\r
4 modify it under the terms of the GNU General Public License\r
5 as published by the Free Software Foundation; either version 2\r
6 of the License, or (at your option) any later version.\r
7\r
8 This program is distributed in the hope that it will be useful,\r
9 but WITHOUT ANY WARRANTY; without even the implied warranty of\r
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
11 GNU General Public License for more details.\r
12\r
13 You should have received a copy of the GNU General Public License\r
14 along with this program; if not, write to the Free Software\r
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,\r
16 Boston, MA 02110-1301, US$\r
17\r
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>\r
19*/\r
20#include "crapto1.h"\r
21#include <stdlib.h>\r
22\r
23#if !defined LOWMEM && defined __GNUC__\r
24static uint8_t filterlut[1 << 20];\r
25static void __attribute__((constructor)) fill_lut()\r
26{\r
27 uint32_t i;\r
28 for(i = 0; i < 1 << 20; ++i)\r
29 filterlut[i] = filter(i);\r
30}\r
31#define filter(x) (filterlut[(x) & 0xfffff])\r
32#endif\r
33\r
34static void quicksort(uint32_t* const start, uint32_t* const stop)\r
35{\r
72109f82 36 uint32_t *it = start + 1, *rit = stop, t;\r
93f57590 37\r
38 if(it > rit)\r
39 return;\r
40\r
41 while(it < rit)\r
42 if(*it <= *start)\r
43 ++it;\r
44 else if(*rit > *start)\r
45 --rit;\r
46 else\r
72109f82 47 t = *it, *it = *rit, *rit = t;\r
93f57590 48\r
49 if(*rit >= *start)\r
50 --rit;\r
51 if(rit != start)\r
72109f82 52 t = *rit, *rit = *start, *start = t;\r
93f57590 53\r
54 quicksort(start, rit - 1);\r
55 quicksort(rit + 1, stop);\r
56}\r
57/** binsearch\r
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r
59 */\r
72109f82 60static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)\r
93f57590 61{\r
62 uint32_t mid, val = *stop & 0xff000000;\r
63 while(start != stop)\r
64 if(start[mid = (stop - start) >> 1] > val)\r
65 stop = &start[mid];\r
66 else\r
67 start += mid + 1;\r
68\r
69 return start;\r
70}\r
71\r
72/** update_contribution\r
73 * helper, calculates the partial linear feedback contributions and puts in MSB\r
74 */\r
75static inline void\r
76update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r
77{\r
78 uint32_t p = *item >> 25;\r
79\r
80 p = p << 1 | parity(*item & mask1);\r
81 p = p << 1 | parity(*item & mask2);\r
82 *item = p << 24 | (*item & 0xffffff);\r
83}\r
84\r
85/** extend_table\r
86 * using a bit of the keystream extend the table of possible lfsr states\r
87 */\r
88static inline void\r
89extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
90{\r
91 in <<= 24;\r
92 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
93 if(filter(*tbl) ^ filter(*tbl | 1)) {\r
94 *tbl |= filter(*tbl) ^ bit;\r
95 update_contribution(tbl, m1, m2);\r
96 *tbl ^= in;\r
97 } else if(filter(*tbl) == bit) {\r
98 *++*end = tbl[1];\r
99 tbl[1] = tbl[0] | 1;\r
100 update_contribution(tbl, m1, m2);\r
101 *tbl++ ^= in;\r
102 update_contribution(tbl, m1, m2);\r
103 *tbl ^= in;\r
104 } else\r
105 *tbl-- = *(*end)--;\r
106}\r
107/** extend_table_simple\r
108 * using a bit of the keystream extend the table of possible lfsr states\r
109 */\r
110static inline void\r
111extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r
112{\r
113 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
114 if(filter(*tbl) ^ filter(*tbl | 1)) {\r
115 *tbl |= filter(*tbl) ^ bit;\r
116 } else if(filter(*tbl) == bit) {\r
117 *++*end = *++tbl;\r
118 *tbl = tbl[-1] | 1;\r
119 } else\r
120 *tbl-- = *(*end)--;\r
121}\r
122/** recover\r
123 * recursively narrow down the search space, 4 bits of keystream at a time\r
124 */\r
125static struct Crypto1State*\r
126recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r
127 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r
128 struct Crypto1State *sl, uint32_t in)\r
129{\r
130 uint32_t *o, *e, i;\r
131\r
132 if(rem == -1) {\r
133 for(e = e_head; e <= e_tail; ++e) {\r
134 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r
135 for(o = o_head; o <= o_tail; ++o, ++sl) {\r
136 sl->even = *o;\r
137 sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r
138 sl[1].odd = sl[1].even = 0;\r
139 }\r
140 }\r
141 return sl;\r
142 }\r
143\r
144 for(i = 0; i < 4 && rem--; i++) {\r
72109f82 145 oks >>= 1;\r
146 eks >>= 1;\r
147 in >>= 2;\r
148 extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,\r
149 LF_POLY_ODD << 1, 0);\r
93f57590 150 if(o_head > o_tail)\r
151 return sl;\r
152\r
72109f82 153 extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,\r
154 LF_POLY_EVEN << 1 | 1, in & 3);\r
93f57590 155 if(e_head > e_tail)\r
156 return sl;\r
157 }\r
158\r
159 quicksort(o_head, o_tail);\r
160 quicksort(e_head, e_tail);\r
161\r
162 while(o_tail >= o_head && e_tail >= e_head)\r
163 if(((*o_tail ^ *e_tail) >> 24) == 0) {\r
164 o_tail = binsearch(o_head, o = o_tail);\r
165 e_tail = binsearch(e_head, e = e_tail);\r
166 sl = recover(o_tail--, o, oks,\r
167 e_tail--, e, eks, rem, sl, in);\r
168 }\r
169 else if(*o_tail > *e_tail)\r
170 o_tail = binsearch(o_head, o_tail) - 1;\r
171 else\r
172 e_tail = binsearch(e_head, e_tail) - 1;\r
173\r
174 return sl;\r
175}\r
176/** lfsr_recovery\r
177 * recover the state of the lfsr given 32 bits of the keystream\r
178 * additionally you can use the in parameter to specify the value\r
179 * that was fed into the lfsr at the time the keystream was generated\r
180 */\r
181struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r
182{\r
183 struct Crypto1State *statelist;\r
184 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r
185 uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r
186 int i;\r
187\r
188 for(i = 31; i >= 0; i -= 2)\r
189 oks = oks << 1 | BEBIT(ks2, i);\r
190 for(i = 30; i >= 0; i -= 2)\r
191 eks = eks << 1 | BEBIT(ks2, i);\r
192\r
193 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r
194 even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r
195 statelist = malloc(sizeof(struct Crypto1State) << 18);\r
72109f82 196 if(!odd_tail-- || !even_tail-- || !statelist) {\r
197 free(statelist);\r
198 statelist = 0;\r
93f57590 199 goto out;\r
72109f82 200 }\r
93f57590 201\r
202 statelist->odd = statelist->even = 0;\r
203\r
204 for(i = 1 << 20; i >= 0; --i) {\r
205 if(filter(i) == (oks & 1))\r
206 *++odd_tail = i;\r
207 if(filter(i) == (eks & 1))\r
208 *++even_tail = i;\r
209 }\r
210\r
211 for(i = 0; i < 4; i++) {\r
212 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r
213 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r
214 }\r
215\r
216 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);\r
217 recover(odd_head, odd_tail, oks,\r
218 even_head, even_tail, eks, 11, statelist, in << 1);\r
219\r
220out:\r
221 free(odd_head);\r
222 free(even_head);\r
223 return statelist;\r
224}\r
225\r
226static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r
227 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r
228 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r
229static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r
230 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r
231 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r
232 0x7EC7EE90, 0x7F63F748, 0x79117020};\r
233static const uint32_t T1[] = {\r
234 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r
235 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r
236 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r
237 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r
238static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r
239 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r
240 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r
241 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r
242 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r
243 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r
244static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r
245static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r
246/** Reverse 64 bits of keystream into possible cipher states\r
247 * Variation mentioned in the paper. Somewhat optimized version\r
248 */\r
249struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r
250{\r
251 struct Crypto1State *statelist, *sl;\r
252 uint8_t oks[32], eks[32], hi[32];\r
253 uint32_t low = 0, win = 0;\r
254 uint32_t *tail, table[1 << 16];\r
255 int i, j;\r
256\r
257 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r
258 if(!sl)\r
259 return 0;\r
260 sl->odd = sl->even = 0;\r
261\r
262 for(i = 30; i >= 0; i -= 2) {\r
72109f82 263 oks[i >> 1] = BEBIT(ks2, i);\r
264 oks[16 + (i >> 1)] = BEBIT(ks3, i);\r
93f57590 265 }\r
266 for(i = 31; i >= 0; i -= 2) {\r
72109f82 267 eks[i >> 1] = BEBIT(ks2, i);\r
268 eks[16 + (i >> 1)] = BEBIT(ks3, i);\r
93f57590 269 }\r
270\r
271 for(i = 0xfffff; i >= 0; --i) {\r
272 if (filter(i) != oks[0])\r
273 continue;\r
274\r
275 *(tail = table) = i;\r
276 for(j = 1; tail >= table && j < 29; ++j)\r
277 extend_table_simple(table, &tail, oks[j]);\r
278\r
279 if(tail < table)\r
280 continue;\r
281\r
282 for(j = 0; j < 19; ++j)\r
283 low = low << 1 | parity(i & S1[j]);\r
284 for(j = 0; j < 32; ++j)\r
285 hi[j] = parity(i & T1[j]);\r
286\r
287 for(; tail >= table; --tail) {\r
288 for(j = 0; j < 3; ++j) {\r
289 *tail = *tail << 1;\r
290 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r
291 if(filter(*tail) != oks[29 + j])\r
292 goto continue2;\r
293 }\r
294\r
295 for(j = 0; j < 19; ++j)\r
296 win = win << 1 | parity(*tail & S2[j]);\r
297\r
298 win ^= low;\r
299 for(j = 0; j < 32; ++j) {\r
300 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r
301 if(filter(win) != eks[j])\r
302 goto continue2;\r
303 }\r
304\r
305 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r
306 sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r
307 sl->even = win;\r
308 ++sl;\r
309 sl->odd = sl->even = 0;\r
310 continue2:;\r
311 }\r
312 }\r
313 return statelist;\r
314}\r
315\r
316/** lfsr_rollback_bit\r
317 * Rollback the shift register in order to get previous states\r
318 */\r
72109f82 319uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r
93f57590 320{\r
321 int out;\r
72109f82 322 uint8_t ret;\r
323 uint32_t t;\r
93f57590 324\r
325 s->odd &= 0xffffff;\r
72109f82 326 t = s->odd, s->odd = s->even, s->even = t;\r
93f57590 327\r
328 out = s->even & 1;\r
329 out ^= LF_POLY_EVEN & (s->even >>= 1);\r
330 out ^= LF_POLY_ODD & s->odd;\r
331 out ^= !!in;\r
72109f82 332 out ^= (ret = filter(s->odd)) & !!fb;\r
93f57590 333\r
334 s->even |= parity(out) << 23;\r
72109f82 335 return ret;\r
93f57590 336}\r
337/** lfsr_rollback_byte\r
338 * Rollback the shift register in order to get previous states\r
339 */\r
72109f82 340uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
93f57590 341{\r
72109f82 342 int i, ret = 0;\r
93f57590 343 for (i = 7; i >= 0; --i)\r
72109f82 344 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;\r
345 return ret;\r
93f57590 346}\r
347/** lfsr_rollback_word\r
348 * Rollback the shift register in order to get previous states\r
349 */\r
72109f82 350uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
93f57590 351{\r
352 int i;\r
72109f82 353 uint32_t ret = 0;\r
93f57590 354 for (i = 31; i >= 0; --i)\r
72109f82 355 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);\r
356 return ret;\r
93f57590 357}\r
358\r
359/** nonce_distance\r
360 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r
361 */\r
362static uint16_t *dist = 0;\r
363int nonce_distance(uint32_t from, uint32_t to)\r
364{\r
365 uint16_t x, i;\r
366 if(!dist) {\r
367 dist = malloc(2 << 16);\r
368 if(!dist)\r
369 return -1;\r
370 for (x = i = 1; i; ++i) {\r
371 dist[(x & 0xff) << 8 | x >> 8] = i;\r
372 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r
373 }\r
374 }\r
375 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r
376}\r
377\r
378\r
379static uint32_t fastfwd[2][8] = {\r
380 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r
381 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r
382\r
383\r
384/** lfsr_prefix_ks\r
385 *\r
386 * Is an exported helper function from the common prefix attack\r
387 * Described in the "dark side" paper. It returns an -1 terminated array\r
388 * of possible partial(21 bit) secret state.\r
389 * The required keystream(ks) needs to contain the keystream that was used to\r
72109f82 390 * encrypt the NACK which is observed when varying only the 3 last bits of Nr\r
93f57590 391 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r
392 */\r
393uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r
394{\r
72109f82 395 uint32_t c, entry, *candidates = malloc(4 << 10);\r
396 int i, size = 0, good;\r
93f57590 397\r
398 if(!candidates)\r
399 return 0;\r
400\r
72109f82 401 for(i = 0; i < 1 << 21; ++i) {\r
402 for(c = 0, good = 1; good && c < 8; ++c) {\r
403 entry = i ^ fastfwd[isodd][c];\r
404 good &= (BIT(ks[c], isodd) == filter(entry >> 1));\r
405 good &= (BIT(ks[c], isodd + 2) == filter(entry));\r
93f57590 406 }\r
72109f82 407 if(good)\r
408 candidates[size++] = i;\r
409 }\r
93f57590 410\r
72109f82 411 candidates[size] = -1;\r
93f57590 412\r
413 return candidates;\r
414}\r
415\r
72109f82 416/** check_pfx_parity\r
93f57590 417 * helper function which eliminates possible secret states using parity bits\r
418 */\r
419static struct Crypto1State*\r
72109f82 420check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],\r
93f57590 421 uint32_t odd, uint32_t even, struct Crypto1State* sl)\r
422{\r
72109f82 423 uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;\r
424\r
425 for(c = 0; good && c < 8; ++c) {\r
426 sl->odd = odd ^ fastfwd[1][c];\r
427 sl->even = even ^ fastfwd[0][c];\r
428\r
429 lfsr_rollback_bit(sl, 0, 0);\r
430 lfsr_rollback_bit(sl, 0, 0);\r
431\r
432 ks3 = lfsr_rollback_bit(sl, 0, 0);\r
433 ks2 = lfsr_rollback_word(sl, 0, 0);\r
434 ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);\r
435\r
93f57590 436 nr = ks1 ^ (prefix | c << 5);\r
437 rr = ks2 ^ rresp;\r
438\r
93f57590 439 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r
440 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r
441 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r
442 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r
72109f82 443 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;\r
93f57590 444 }\r
445\r
72109f82 446 return sl + good;\r
93f57590 447} \r
448\r
449\r
450/** lfsr_common_prefix\r
451 * Implentation of the common prefix attack.\r
452 * Requires the 28 bit constant prefix used as reader nonce (pfx)\r
453 * The reader response used (rr)\r
454 * The keystream used to encrypt the observed NACK's (ks)\r
455 * The parity bits (par)\r
456 * It returns a zero terminated list of possible cipher states after the\r
457 * tag nonce was fed in\r
458 */\r
459struct Crypto1State*\r
460lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])\r
461{\r
462 struct Crypto1State *statelist, *s;\r
463 uint32_t *odd, *even, *o, *e, top;\r
464\r
465 odd = lfsr_prefix_ks(ks, 1);\r
466 even = lfsr_prefix_ks(ks, 0);\r
467\r
72109f82 468 s = statelist = malloc((sizeof *statelist) << 20);\r
469 if(!s || !odd || !even) {\r
470 free(statelist);\r
471 statelist = 0;\r
472 goto out;\r
473 }\r
93f57590 474\r
72109f82 475 for(o = odd; *o + 1; ++o)\r
476 for(e = even; *e + 1; ++e)\r
93f57590 477 for(top = 0; top < 64; ++top) {\r
72109f82 478 *o += 1 << 21;\r
479 *e += (!(top & 7) + 1) << 21;\r
480 s = check_pfx_parity(pfx, rr, par, *o, *e, s);\r
93f57590 481 }\r
482\r
483 s->odd = s->even = 0;\r
72109f82 484out:\r
93f57590 485 free(odd);\r
486 free(even);\r
93f57590 487 return statelist;\r
488}\r
Impressum, Datenschutz